POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die sprunghafte Entwicklung in der Femtosekundenlasertechnologie Anfang der 90er Jahre ermöglicht es, laserphysikalische Experimente in den verschiedensten Bereichen der Naturwissenschaften bei Pulsdauern von einigen Femtosekunden und elektrischen Feldstärken in der Größenordnung inneratomarer Felder durchzuführen. Im Rahmen dieser Arbeit wurden die drei wichtigsten Prozesse im Bereich der Wechselwirkung von Atomen mit starken Laserfeldern untersucht: Im Fall der Above-threshold Ionisation (ATI) absorbiert ein Elektron aus dem Lichtfeld mehr Photonen, als zu seiner Ionisation notwendig sind. Die Überschussenergie kann mit einem Flugzeitspektrometer in Form der kinetischen Energie des Photoelektrons gemessen werden. Im ATI-Spektrum wird die Zahl der gemessenen Photoelektronen als Funktion ihrer Energie aufgetragen: Es ergibt sich eine Serie von Maxima im Abstand der Photonenenergie. Diese fallen mit steigender Photoelektronenenergie stark ab und entsprechen der Anzahl der jenseits der Ionisationsschwelle absorbierten Photonen. Die Form der Spektren gibt detaillierte Hinweise auf Einzelheiten des Ionisationsvorgangs. Zum Beispiel misst man für lineare Polarisation des eingestrahlten Lichts eine plateauartige Struktur, die durch einen Rückstreuprozess des Elektrons am Ionenrumpf hervorgerufen wird: Die Einhüllende des ATI-Spektrums folgt zunächst dem störungstheoretisch erwarteten starken Abfall für niedrige Elektronenenergien. Sie geht dann in das ATIPlateau über, bis sie am sogenannten Cutoff endgültig stark abfällt. Neben dem Ionisationsprozess beobachtet man bei der Wechselwirkung von Atomen mit intensiven Laserfeldern auch die Erzeugung hoher Harmonischer (high harmonic generation, HHG). Dabei emittieren die Atome Strahlung mit Photonenenergien, die einem Vielfachen der Energie der eingestrahlten Photonen entsprechen. Aufgrund der Inversionssymmetrie werden im Gas nur die Harmonischen ungerader Ordnung erzeugt. HHG kann durch Elektronen erklärt werden, die - statt wie bei ATI am Ionenrumpf zu streuen, rekombinieren und auf diese Weise die aus dem Laserfeld aufgenommene Energie in Form von hochenergetischer Strahlung abgeben. Auch im Spektrum der Harmonischen fand man ein Plateau, das sich bis in den Bereich weicher Röntgenstrahlung erstrecken kann. HHG erlaubt es damit, vergleichsweise effizient kohärente kurzwellige Strahlung zu erzeugen, die vielversprechende Anwendungen ermöglicht, zum Beispiel in der Biologie (Mikroskopie). Als dritte Möglichkeit kann das Elektron seine während des Ionisationsprozesses gewonnene Energie dazu benutzen, ein zweites Elektron aus dem Atom zu lösen. Dies wird nicht-sequentielle Doppelionisation (NSDI) genannt und beinhaltet hochinteressante korrelierte Ionisationsdynamik. Für die Experimente dieser Arbeit wurde ein hochrepetitives (100kHz) Lasersystem aufgebaut, das bei einer Pulsenergie von 6µJ und einer Pulsdauer von 50fs Spitzenintensitäten von 2 · 1014W/cm2 erzeugt. Für Messungen in diesem Intensitätsbereich wurde ein kombiniertes Elektronen- und Ionen-Flugzeitspektrometer sowie ein Vakuum-UVSpektrometer konstruiert. Ersteres wurde im Rahmen dieser Arbeit aufgebaut und erlaubt die gleichzeitige Messung von Elektronen und Ionen. Das XUV-Spektrometer wurde im Rahmen dieser Arbeit umgebaut und erstmals zur Messung hoher Harmonischer eingesetzt. Bei einer Repetitionsrate von 100kHz sind sehr detaillierte Analysen des Ionisationsprozesses möglich. So wurde eine vergleichende Studie zum Einfluß der Elliptizität des einfallenden Lichtfeldes auf die drei oben genannten Effekte durchgeführt. Elliptisch polarisiertes Licht beschleunigt das Elektron in zwei Raumrichtungen. Mit zunehmender Elliptizität verringert sich die Wahrscheinlichkeit, dass das Elektron während des Ionisationsprozesses zum Ionenrumpf zurückkehrt und damit auch die Effizienz von ATI, HHG und NSDI. Ihre Abhängigkeit von der Elliptizität wurde unter nahezu identischen experimentellen Bedingungen gemessen. Die Messung bestätigt die gemeinsame Wurzel der drei Prozesse. Der Einfluß der Polarisation auf die Bahn des Elektrons kann in einem einfachen klassischen Modell beschrieben werden, das die gemessene Abhängigkeit näherungsweise reproduziert. Ein Durchbruch in der theoretischen Beschreibung von Prozessen in starken Feldern gelang Lewenstein et. al. mit vom Feynman’schen Pfadintegral abgeleiteten Gleichungen. Der klassische Limes dieser Theorie ist das oben erwähnte klassische Modell. Beide erlauben eine intuitive Deutung der physikalischen Vorgänge mit Hilfe von räumlichen Trajektorien bzw. Quantentrajektorien, die das Elektron aufgrund der Wechselwirkung mit dem Feld nehmen kann. Im ATI-Experiment ist es uns dabei gelungen, unter bestimmten Bedingungen ein ATI-Spektrum in die Beiträge von einzelnen Paaren von Quantentrajektorien zu zerlegen. Führen mehrere Quantentrajektorien zum gleichen Endzustand des Elektrons, so können sie miteinander interferieren. Die Interferenz von Quantentrajektorien beeinflusst die Form der ATI-Spektren auf verschiedenste Art. Dies zeigt zum einen die Messung der Interferenz niederenergetischer Elektronen und rückgestreuter hochenergetischer Elektronen. Eine Voraussetzung für ihre Interferenz mit messbarem Kontrast ist eine vergleichbare Amplitude in den entsprechenden Termen der Wellenfunktion. Im Plateau-Bereich der Photoelektronenspektren ist dies für kleine elliptische Polarisation des Lichts erfüllt, da dann, wie schon erwähnt, der Rückstreuvorgang abgeschwächt wird. Die Interferenz der beiden Beiträge zeigt sich in der Winkelverteilung der Photoelektronen dadurch, dass sich das ATI-Plateau aufgrund der Interferenz aufspaltet. Ein zweites Beispiel für den Einfluss von Interferenzeffekten betrifft die Form der Einhüllenden eines ATI-Spektrums. Diese wird durch resonanzartig auftretende Effekte bei bestimmten Intensitäten dominiert. Die Dynamik in der Ausbildung des ATI-Plateaus wurde durch die detaillierte Messung der Intensitätsabhängigkeit der ATI-Spektren untersucht. Dazu wurde in kleinen Schritten die Intensität erhöht und die dazugehörigen Spektren aufgenommen. Die resonanzartigen Effekte treten gerade bei solchen Intensitäten auf, bei denen die Theorie eine große Anzahl von Quantentrajektorien braucht, um das Spektrum zu approximieren. Daraus kann man auf konstruktive Interferenz der beteiligten Trajektorien schließen. Ein völlig neuer Bereich der Wechselwirkung ultrakurzer Pulse mit Atomen eröffnet sich bei Pulslängen um oder kürzer als 5fs. Solche Pulse bestehen aus weniger als zwei optischen Zyklen (FWHM). Dadurch wird die Phase zwischen der Einhüllenden des Pulses und seiner Trägerwelle von Bedeutung (absolute Phase). Da alle Effekte, die durch intensive Laserfelder hervorgerufen werden, vom Verlauf des elektrischen Feldes des Laserpulses abhängen, hängen sie auch von der absoluten Phase ab. Dies ist von entscheidender Bedeutung für verschiedene moderne Forschungsbereiche wie die Erzeugung von Attosekundenpulsen, die kohärente Steuerung atomarer und molekularer Prozesse, die Laserplasmaphysik aber auch die Entwicklung optischer Frequenzstandards. An der Politecnico di Milano haben wir mit einem 5fs-Lasersystem erstmals Effekte der absoluten Phase nachweisen können. Dies wurde durch eine Korrelationsanalyse der in entgegengesetzte Raumrichtungen emittierten Photoelektronen erreicht.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
1 Hydraziniumazide In dieser Arbeit wurde untersucht, ob die Eigenschaften von Hydraziniumazid durch Einführung organischer Substituenten verbessert werden können. Die Hydraziniumazidderivate wurden aus den jeweiligen wasserfreien, substituierten Hydrazinen und einer wasserfreien Lösung von HN3 in Ether dargestellt, die aus der Reaktion von Tetrafluoroborsäureetherat mit Natriumazid gewonnen wurde. Hydraziniumazid ist ein Addukt der schwachen Säure HN3 (pKs = 4.92) mit Hydrazin. Zwischen den Hydrazinium- und Azidionen treten starke Wasserstoffbrückenbindungen auf. Die Stärke der Wasserstoffbrückenbindungen ist entscheidend für die Eigenschaften der jeweiligen Verbindungen. Die Leichtflüchtigkeit sowie die Hygroskopie von Hydraziniumazid und seinen Derivaten lassen sich auf die Stärke und Zahl der Wasserstoffbrückenbindungen zurückführen. Die Einführung organischer Substituenten schwächt die Bindung zwischen Azidionen und Hydraziniumionen bereits dadurch, dass weniger NH Wasserstoffatome, die Wasserstoffbrückenbindungen bilden können, vorhanden sind. Je mehr Substituenten vorhanden sind, desto schwächer ist somit die Bindung zwischen Hydrazin und HN3. Der Schmelzpunkt der Hydraziniumazide ist eine gute Beschreibungsgröße für die Stärke der Wasserstoffbrückenbindungen und damit die Stärke des Hydrazin-HN3 Addukts. Dies kann an den sinkenden Schmelzpunkten der methylierten Verbindungen Methylhydraziniumazid (3), N,N-Dimethylhydraziniumazid (4), N,N´- Dimethylhydraziniumazid (5), und N,N,N´-Trimethylhydraziniumazid (6) überprüft werden. Die organischen Substituenten lieferten während der Explosion keine Energiebeiträge, da sie entweder zum Kohlenwasserstoff oder zum organylsubstituierten Amin reagierten. Daher sinkt der Anteil an aktiver Masse mit zunehmendem Substitutionsgrad. Erstaunlicherweise explodierten aber die flüssigen di-, tri- und tetramethylierten Verbindungen 4-7 bei Erwärmung heftiger als das monomethylierte 3. Dies ist auf die schwache Bindung von HN3 in diesen Verbindungen zurückzuführen. Es wurde zuerst HN3 abgespalten, das dann explodierte. Es wurde versucht, die Bindung zwischen Hydrazinium- und Azidionen durch zusätzliche Wasserstoffbrückenbindungen mit weiteren NH und OH Protonen in 2-Hydroxyethylhydrazin und Ethylendihydrazin zu stärken. Aus der Reaktion dieser Hydrazinderivate mit HN3 wurden keine Feststoffe, sondern zähflüssige Produkte, die nicht die stöchiometrische Menge HN3 enthielten, isoliert.Der Einbau eines Hydrazinstickstoffatoms in Ringsysteme führt zur Erhöhung der Basizität des Stickstoffatoms. Stärkere Hydrazin-HN3 Addukte sollten sich ergeben. Dies wird dadurch belegt, dass der Schmelzpunkt der N,N-dimethylierten Verbindungen N,NDimethylhydraziniumazid (4) und N-Amino-1-azoniacyclohexanazid (18) im Sechsringsystem 18 um 50 °C höher ist. Das Siebenringsystem N-Amino-1- azoniacycloheptanazid (19) zeigt ebenfalls eine Erhöhung des Schmelzpunktes von 18 °C gegenüber 4. Die Erhöhung ist geringer als bei 18, da in Siebenringsystemen die Basizitätserhöhung des Ringstickstoffatoms niedriger ist als in Sechsringsystemen. Das bei N-Amino-1-azonia-4-oxacylcohexanazid (20) im Ringsystem vorhandene Sauerstoffatom zeigt keine Auswirkungen auf den Schmelzpunkt. 20 spaltete jedoch während längerer Lagerung eine NH2-Gruppe ab, Morpholiniumazid (21) wurde erhalten. Auch bei den N,N´-dimethylierten Verbindungen N,N´-Dimethylhydraziniumazid 5, N,N´-Diethylhydraziniumazid (22), Pyrazolidiniumazid (23) und Hexahydropyridaziniumazid (24) wurde eine Erhöhung des Schmelzpunktes durch Einbinden des Hydrazinmoleküls in ein Ringssystem festgestellt. Während die offenkettigen Azide 5 und 22 erst unterhalb Raumtemperatur fest wurden, waren die Ringsysteme 23 und 24 bei Raumtemperatur fest. Diorganylsubstituierte Hydraziniumazide sind nicht praktisch anwendbar, da zu viele organische Substituenten vorhanden sind, die die Explosion hemmen. Während der Explosion entstanden große Mengen an organischen Nebenprodukten, vor allem Organylamine. Ein weiterer Nachteil ist die Oxidationsempfindlichkeit der Alkylhydrazine, die sich in den Azidderivaten wiederfindet. Die Verbindungen N,N,N´,N´-Tetramethylhydraziniumazid-tetramethylhydrazinat (7) und Phenylhydraziniumazid-phenylhydrazinat (14) sind Grenzfälle. Bei der Reaktion mit HN3 bildeten sich Dimere der Hydrazine, an die das Azidion über Wasserstoffbrückenbindungen gebunden ist. Es war nicht möglich, aus einem festen, substituierten Hydrazin das Addukt mit HN3 zu bilden, da bei der Entfernung des Lösungsmittels immer das substituierte Hydrazin ausfiel. Substituierte Hydrazine mit einem permethylierten Stickstoffatom ergaben Hydraziniumazidderivate, die nicht mehr flüchtig, aber sehr hygroskopisch sind. Sie wurden aus der Umsetzung der jeweiligen Hydraziniumiodide mit Silberazid erhalten. N,N,NTrimethylhydraziniumazid (8), N,N,N,N´-Tetramethylhydraziniumazid (9) und Pentamethylhydraziniumazid (10) haben Schmelzpunkte um 180 °C. Die Anzahl der Methylgruppen wirkt sich hier nicht auf den Schmelzpunkt aus. 8-10 explodierten aufgrund der vielen organischen Substituenten nur schwach, bei der Explosion entstanden größere Mengen Trimethylamin. Günstige Auswirkung auf die Eigenschaften von Hydraziniumazid hat die Adduktbildung mit einem weiteren Molekül Hydrazin. Hydraziniumazidhydrazinat (2) ist nicht mehr hygroskopisch, wesentlich weniger flüchtig und die Empfindlichlichkeit gegenüber Schlag, Reibung und Temperaturerhöhung sinkt. Der Schmelzpunkt ist mit 65 °C allerdings noch niedriger als der Schmelzpunkt von Hydraziniumazid mit 75 °C. Ein weiterer Nachteil ist, dass bei der Explosion mehr Ammoniak entsteht als bei Hydraziniumazid. Als Beispiel ist hier die Struktur von Hydraziniumazidhydrazinat (2) abgebildet, die Strukturen vieler anderer Hydraziniumazide finden sich in Kapitel 1. 2 Methylierte Hydraziniumnitrate In Raketentriebwerken werden Methylhydrazin oder N,N-Dimethylhydrazin und N2O4 eingesetzt. Bei der unvollständigen Verbrennung können Ablagerungen der jeweiligen Ammonium- und Hydraziniumnitrate gebildet werden. Die mono- und N,N-dimethylierten Ammonium- und Hydraziniumnitrate wurden hergestellt und ihre Eigenschaften überprüft. Sowohl Methylhydrazinium- (27) als auch N,N-Dimethylhydraziniumnitrat (28) sind sehr hygroskopische Substanzen. Wasser konnte aus den Hydraziniumnitraten nicht im Vakuum entfernt werden. Daher wurden 27 und 28 aus den wasserfreien, methylierten Hydrazinen und wasserfreier Salpetersäure bei –78 °C hergestellt. Die Hydraziniumnitrate zersetzten sich bei leicht erhöhter Temperatur (60 °C) bereits langsam zu den jeweiligen Ammoniumnitraten. Die Strukturen von Methylhydraziniumnitrat (27) und Dimethylhydraziniumnitrat (28) wurden bestimmt, die Struktur von Methylhydraziniumnitrat (27) ist hier als Beispiel angegeben. Die Zersetzung der Ammonium- und Hydraziniumnitrate bei hoher Temperatur erfolgte nicht vollständig. Während die Ammoniumnitrate größere Mengen NO2 ergaben, wurden bei den Hydraziniumnitraten nur Produkte einer weiter fortgeschrittenen Zersetzung, z.B. NO, nachgewiesen. Auch kleine Mengen Methylazid wurden gefunden. Während der durchgeführten Test ist es nicht gelungen, die Nitrate zur Explosion zu bringen. Beim starken Erhitzen der Hydraziniumnitrate 27 und 28 fand nur eine Zersetzung, keine Explosion statt. 3 Reaktionen mit cis-Hyponitrit Die in der Literatur erwähnten Verbindungen mit cis-Hyponitritanionen wurden entweder durch Kupplung von zwei NO Molekülen an einem Metallzentrum oder durch Reaktion von N2O mit Natriumoxid erhalten. In dieser Arbeit ist es nicht gelungen, aus Reaktionen des cis-Hyponitritions neue Verbindungen zu isolieren, es wurde immer die Bildung von N2O beobachtet. Die theoretische Untersuchung der Zersetzung der einfach protonierten Verbindung cis-HN2O2 – ergab eine niedrige Aktivierungsbarriere von 11.9 kcal/mol (MP2/6-31+G(d,p)) für die Bildung von N2O und OH– in der Gasphase. Zusätzlich muss berücksichtigt werden, dass vor allem das OH–-Ion in einem Lösungsmittel gegenüber der Gasphase beträchtlich stabilisiert wird, so dass die Aktivierungsenergie in Lösung noch niedriger liegen dürfte. Dies erklärt die Bildung von N2O, die bei allen durchgeführten Experimenten, selbst bei sehr tiefen Temperaturen beobachtet wurde. Eine Isolierung der cis-hyposalpetrigen Säure kann daher wahrscheinlich nicht aus Lösung erfolgen, da sich die einfach protonierte Verbindung sofort zu N2O und OH– zersetzt. Ein Stickstoffoxid N6O4, das aus der Reaktion von Natrium-cis-hyponitrit mit Tetrafluorhydrazin entstehen kann, hat nur bei der Berechnung auf PM3 und HF Niveau ein Miniumum. Bei stärkerer Berücksichtigung der Elektronenkorrelation auf B3LYP oder MP2 Niveau wurden keine Minima auf der Energiehyperfläche gefunden. 4 Verbindungen mit 5,5´-Azotetrazolat Das 5,5´-Azotetrazolation enthält bereits 5 Mol Stickstoff. Durch Kombination mit Kationen von Stickstoffbasen, vor allen Hydraziniumkationen, können Verbindungen erhalten werden, die pro Formeleinheit viele Mole Gas erzeugen. Der Hauptbestandteil der Explosionsgase ist Stickstoff. Hydraziniumverbindungen bilden zusätzlich Wasserstoff, was für hohe Detonationsgeschwindigkeiten sorgt. Verbindungen, die große Mengen Stickstoff erzeugen, werden für Gasgeneratoren in automatischen Feuerlöschsystemen, Airbags und Rettungswesten gesucht. Ein Vorteil der Salze von 5,5´-Azotetrazolat mit Stickstoffbasen ist, dass sie gegenüber Schlag und Reibung relativ unempfindlich sind, was für eine Anwendung wichtig ist. Das empfindlichste Salz ist das Ammoniumsalz, das im Fallhammertest in der Literatur bei 4.4 kg bei einer Fallhöhe von 50 cm explodierte. [130] 5,5´-Azotetrazol ist im Gegensatz zu HN3 eine starke Säure und zerfiel bei Raumtemperatur innerhalb einer Minute vollständig zu Tetrazolhydrazin. Die freie Säure kann bei –30 °C hergestellt und bei –80 °C mehrere Wochen gelagert werden. Aus Methanol kristallisierte 5,5´-Azotetrazol mit zwei Molekülen Kristallwasser (70). 5,5´-Azotetrazolatsalze sind jedoch stabil. Die Synthese von 5,5´-Azotetrazolatsalzen erfolgte durch Umsetzung von Sulfaten der entsprechenden Kationen mit Barium-5,5´-azotetrazolat. Die Stabilität von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen ist davon abhängig, wie leicht das Proton von der Stickstoffbase auf das 5,5´-Azotetrazolation übertragen werden kann. Dies kann an den Ammmoniumsalzen Diammonium-5,5´- azotetrazolat (45), Bis-methylammonium-5,5´-azotetrazolat (46), Bis-dimethylammonium- 5,5´-azotetrazolat (47), Bis-trimethylammonium-5,5´-azotetrazolat (48) und den Hydraziniumsalzen Hydrazinium(2+)-5,5´-azotetrazolat (51), Dihydrazinium-5,5´- azotetrazolat (53), Bis-methylhydrazinium-5,5´-azotetrazolat (54), Bis-N,Ndimethylhydrazinium- 5,5´azotetrazolat (55) und Bis-N,N´-dimethylhydrazinium-5,5´- azotetrazolat (56) abgelesen werden. Je mehr Methylgruppen vorhanden waren, desto tiefer waren die Zersetzungstemperatur der Salze. Waren keine NH+ Gruppen in den Kationen vorhanden, z.B. in Bis-tetramethylammonium-5,5´-azotetrazolat (49) und Bis-N,N,Ntrimethylhydrazinium- 5,5´-azotetrazolat (57), so erfolgte die Zersetzung über einen anderen Mechanismus, der wahrscheinlich umgekehrt zur Bildung der Tetrazolringe verläuft und erst bei höheren Temperaturen stattfindet. Die Synthese von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen kann bei Raumtemperatur nur in Wasser als Lösungsmittel stattfinden. In organischen Lösungsmitteln erfolgte eine Zersetzung des Azotetrazolations. Dihydrazinium-5,5´-azotetrazolat (53) ist eine neue hochenergetische Verbindung, die alle Anforderungen für einen modernen Sprengstoff erfüllt. Die hohe Standardbildungsenthalpie von 264 kcal/mol (ber.), die bei der Detonation freigesetzt wird sowie die bei der Detonation gebildeten großen Mengen Wasserstoff sorgen für ein gute Detonationsgeschwindigkeit von 6330 m/s. Der größte Nachteil von 53 ist die niedrigen Dichte. Bei einer vergleichbaren Dichte würde die Verbindung die Werte der kommerziellen Sprengstoffe RDX und HMX übertreffen. Die bereits bekannten Guanidinium- (66) und Triaminoguanidiniumverbindungen (68), deren Kristallstrukturen in dieser Arbeit bestimmt wurden, haben höhere Dichten und sind thermisch stabiler. Vor allem das Guanidiniumsalz wird wahrscheinlich in den nächsten Jahren in Gasgeneratoren zum Einsatz kommen. Die niedrigen Dichten der Hydraziniumsalze im Vergleich zu den Guanidiuniumsalzen sind geometrisch begründet. Die Guanidiuniumderivate sind flach. Dadurch können sich sowohl die 5,5´-Azotetrazolationen als auch die Kationen platzsparend übereinander anordnen. Hydraziniumionen haben Wasserstoffatome, die nach allen Raumrichtungen ausgerichtet sind. Da diese Wasserstoffatome in Wasserstoffbrückenbindungen einbezogen werden, entstehen Lücken zwischen den 5,5´-Azotetrazolationen in der Kristallpackung. Das Hydraziniumsalz 53 kann zwei Einheiten Wasser oder Hydrazin über Wasserstoffbrücken binden. Sowohl das Ammoniumsalz 45, als auch Hydroxylammonium- 5,5´-azotetrazolat (50) und die methylierten Ammonium- 46-49 und Hydraziniumverbindungen 54-57 können keine zusätzlichen Stickstoffbasen über Wasserstoffbrückenbindungen binden. Die Alkali- und Erdalkalisalze 29-37 von 5,5´-Azotetrazolat binden große Mengen Kristallwasser. Die Wassermoleküle sind sowohl an die Kationen koordiniert als auch über Wasserstoffbrückenbindungen im Kristall gebunden. Daraus ergeben sich verschiedene Bedingungen für die Entfernung des Kristallwassers. Während nur über Wasserstoffbrückenbindungen gebundenes Kristallwasser beim Aufheizen bereits bei Temperaturen um 100 °C entwichen ist, liessen sich die koordierten Wassermoleküle erst bei Temperaturen von 120-150 °C entfernen. Bei der Entfernung der letzten Wassermoleküle wurden im DSC jeweils große Energiemengen festgestellt, die für eine Strukturänderung nach der Entfernung der letzten Wassermoleküle sprechen. Die Temperaturstabilität der Alkali- und Erdalkalimetallsalze sinkt mit zunehmender Größe des Kations. Während die Lithiumverbindung (29) erst bei 335 °C explodierte, explodierte die Bariumverbindung (37) bereits bei 211 °C. Bei der Entfernung von Wasser bei Temperaturen um 100 °C im Ölpumpenvakuum fanden Explosionen statt. Daher kann Wasser praktisch nur durch lange Lagerung der Salze im Exsikkator über P2O5 entfernt werden. Die wasserfreien Alkali- und Erdalkalimetallsalze sind schlag- und reibungsempfindlich, was sie zu potentiellen Primärexplosivstoffen macht Die Kristallstrukturen von Lithium-5,5´-azotetrazolat-hexahydrat (29), Natrium-5,5´- azotetrazolat-pentahydrat (30), Rubidium-5,5´-azotetrazolat-hydrat (32) und Barium-5,5´- azotetrazolat-pentahydrat (37) zeigen eine Koordination von 5,5´-Azotetrazolat– stickstoffatomen an das jeweilige Metallion. In Calcium-5,5´-azotetrazolat-octahydrat (35) und Yttrium-5,5´-azotetrazolat-docosahydrat (39) sind die 5,5´-Azotetrazolatstickstoffatome nicht mehr an die Metallionen koordiniert, die Metallionen sind von einer Hydrathülle umgeben. Auch Magnesium-5,5´-azotetrazolat-octahydrat (34) und die Salze der dreiwertigen Kationen Aluminium 38, Lanthan 40, Cer 41 und Neodym 42 sind im Einklang mit dem HSAB-Prinzip wahrscheinlich nur von einer Hydrathülle umgeben. Das Magnesiumsalz 34 sowie die Salze der dreiwertigen Kationen sind nur solange stabil, wie das Kation von der Hydrathülle umgeben ist. Verlieren die Verbindungen Wasser, z. B. beim Erhitzen, so werden farblose Zersetzungsprodukte erhalten. Bei der Reaktion von [Ce]4+[SO4]2– 2 mit Barium-5,5´-azotetrazolat kommt es sofort zu einer Gasentwicklung, Ce+4 ist in wässriger Lösung zu sauer. Nach Auflösen von Barium-5,5´-azotetrazolat in Hydrazin entfärbte sich die Reaktionslösung innerhalb von zwei Stunden. Farbloses Barium-N,N´-ditetrazolatohydrazintrihydrazin (44) wurde erhalten. 5 Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid Aus der Reaktion von Benzoldiazoniumchlorid mit Lithiumazid konnte Phenylpentazol isoliert werden. Analoge Reaktionen mit verschiedenen Phenylderivaten ergaben substituierte Phenylpentazole. Die Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid ergibt Tetrazolazid. Daher wurde auch in dieser Reaktion eine Pentazolzwischenstufe vermutet. Theoretische Berechnungen ergaben, dass die Aktivierungsenergie für den Zerfall verschiedener Tetrazolpentazolisomere in der Gasphase zu Tetrazolazid und Stickstoff mindestens 14.8 kcal/mol beträgt. Daher erschien es möglich, Tetrazolpentazol im Experiment zu beobachten. Bei der 15N-NMR spektroskopischen Verfolgung der Reaktion von Tetrazoldiazoniumchlorid (71) mit Lithium-15Nα-azid wurden zwei Signale bei δ = –29.7 und δ = 7.7 beobachtet, die bei Erwärmung auf –50 °C an Intensität abnahmen und bei –30 °C vollständig verschwunden waren. Gleichzeitig nahm das Signal von Stickstoff an Intensität zu und ein Signal von Nβ markiertem Tetrazolazid erschien. Die bereits bei tiefen Temperaturen wieder verschwindende Zwischenstufe der Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid entspricht daher sowohl ihrem chemischen Verhalten, als auch in den beobachteten Signalen dem Verhalten, das von Tetrazolpentazol erwartet wird.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Interferierende Laserstrahlen können ein periodisches Potential für Atome induzieren, das es erlaubt, ultrakalte Neutralatome in geordneten Strukturen zu fangen. Diese Ensemble lichtgebundener Atome werden als optische Gitter bezeichnet. Liegt die Frequenz der verwendeten Lichtfelder sehr weit unterhalbder nächstgelegenen atomaren Resonanz, so entstehen quasi-statische Mikrofallen. Sie eignen sich durch ihre nahezu vollkommene Dissipationsfreiheit aufgrund der zu vernachlässigenden spontanen Photonenstreuung sehr gut zur Speicherung und Manipulation von kalten Atomen. In dieser Arbeit wird über Experimente zur kontrollierten Manipulation derartiger lichtgebundener Atome berichtet. Mit dem Licht eines CO2-Lasers der Wellenlänge 10.6 µm wird eine intensive Stehwelle erzeugt, in der kalte Rubidiumatome in mesoskopischen Dipolfallen mit einem Gitterabstand von 5.3 µm und bei Lebensdauern von über drei Sekunden gespeichert werden. Im ersten Teil der Arbeit werden die Eigenschaften der gespeicherten Atome charakterisiert. Es zeigt sich, daß die atomare Temperatur empfindlich von der Fallenlaserintensität abhängt. Für niedrige Intensitäten werden atomare Temperaturen von 21 µK bei Dichten oberhalb 1013 Atome/cm3 beobachtet. Unter alleinigen Verwendung der Laserkühlung wird damit eine atomare Phasenraumdichte von 1/300 erreicht, was nur drei Größenordnungen unterhalbdes Übergangs zur Bose-Einstein-Kondensation liegt. Bei höheren Intensitäten des Fallenlasers steigt die Temperatur im Gitter auf 140 µK an, welches in etwa der Doppler-Temperatur des Rubidiumatoms entspricht. Dies wird auf die große differentielle Lichtverschiebung der Atomzustände durch den Fallenlaser zurückgeführt, die die Effizienz der Subdoppler-Kühlmechanismen verringert. Durch das Erreichen hoher Vibrationsfrequenzen sowohl in radialer als auch in axialer Richtung wird erstmals ein dissipationsfreies, eindimensionales Gitter realisiert, indem der Lamb-Dicke-Bereich in allen drei Raumrichtungen erreicht wird. Dies ist die Grundlage für ein angestrebtes Kühlen der Atome in den Grundzustand des Gitters mit Hilfe des Raman-Seitenband-Verfahrens. Im Rahmen der Arbeit gelingt es weiterhin, Atome in einzelnen Gitterplätzen mit einem Abstand von 5.3 µm in einer Fluoreszenzabbildung optisch aufzulösen. Dies bedeutet den direkten Nachweis der Lokalisierung der in einer Stehwelle gebundenen Atome, so daß lokale Aspekte dieses optischen Gitters untersucht werden können. Gleichzeitig erlaubt ein konfokales Mikroskop, Atome in einzelnen Gitterplätzen mit Hilfe fokussierter, resonanter Lichtpulse selektiv anzusprechen. Dies eröffnet im Prinzip die Möglichkeit der Präparation und des Auslesens von Zuständen einzelner Atome, wie sie für eine Realisierung quantenlogischer Experimente in optischen Gittern erforderlich ist. In weiteren Experimenten werden gepulste Raman-Übergänge an kalten Rubidiumatomen untersucht, die in der CO2-Laser Dipolfalle gefangen sind. Dabei können Mehrphotonen-Übergänge zwischen zwei Zeeman-Grundzustandsniveaus beobachtet werden, sofern die Differenzfrequenz der beiden Raman-Laserstrahlen einer Subharmonischen der Frequenz des Zweiphotonenübergangs entspricht. Man kann diese Resonanzen als Mehrphotonen-Ramanübergänge interpretieren, bei denen n Photonenpaare beteiligt sind. Dabei zeigte sich sowohl experimentell als auch theoretisch, daß die Linienbreiten der höheren Subharmonischen deutlich unterhalbder durch die RamanpulsAlänge gegebenen Fourier-Breite liegen. Man findet weiter, daß das genaue Skalieren der Linienbreiten mit der beteiligten Photonenzahl von der verwendeten Form der Pulseinhüllenden abhängt.