POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
1.Die A1-ATPase-Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG wurden in den Fusionsvektor pMal-c2 kloniert und in Escherichia coli exprimiert.Die Fusionsproteine wurden aus dem Zellextrakt isoliert und zur Immunisierung von Kaninchen eingesetzt.Die spezifischen Antiseren gegen die A1-ATPase- Untereinheiten AhaA,AhaB,AhaC,AhaE und AhaF wurden für die Studien dieser Arbeit eingesetzt. 2.Die für die hydrophile Domäne der A1-ATPase kodierenden Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG des methanogenen Archäons Methanosarcina mazei Gö1 wurden in den Überexpressionsvektor pGEM-4Z hinter die lac und T7-Promotoren kloniert.Dieses Konstrukt wurde pTL2 genannt.pTL2 enthält zusätzlich 162 Bp stromaufwärts von ahaE 3.Die auf pTL2 lokalisierten Gene wurden heterolog in E. coli DK8 exprimiert und die A1-ATPase funktionell synthetisiert.Die spezifische ATPase-Aktivität im zellfreien Extrakt von E. coli DK8 (pSÖ1)betrug 186 mU/mg Protein.Die Synthese der A1-ATPase-Untereinheiten AhaA,AhaB,AhaC und AhaF konnte nachgewiesen werden.AhaE und AhaG konnten nicht detektiert werden. 4.Die A1-ATPase wurde aus dem Zellextrakt von E. coli DK8 (pTL2)über Ultra- zentrifugation,Ammoniumsulfatfällung,Gelfiltration an BioPrep SE 1000/17, Ionenaustauschchromatographie an BioScale DEAE und einer zweiten Gelfiltration an Sephacryl S-300 HR bis zur apparenten Homogenität gereinigt. 5.Das gereinigte Enzym wies eine molekulare Masse von 355 kDa auf und setzte sich aus 5 verschiedenen Untereinheiten zusammen.Die einzelnen Untereinheiten AhaA (65 kDa),AhaB (55 kDa),AhaC (41 kDa),AhaD (28 kDa)und AhaF (9 kDa)wurden mittels N-terminaler Sequenzierung identifiziert und wiesen im ATPase-Komplex eine Stöchiometrie von A3B3CDF auf.AhaE und AhaG waren nicht im Komplex enthalten. 6.Der ATPase-Testpuffer wurde für die heterolog exprimierte A1-ATPase optimiert (50 mM MES-HCl,40 mM Na-Acetat,30 mM NaHSO3,8 mM MgSO4,4 mM ATP,pH 5,2).Na-Acetat und Sulfit stimulieren die A1-A7.Die gereinigte A1-ATPase aus M. mazei Gö1 hydrolysierte Mg-ATP (im Verhältnis 2:1)als bevorzugtes Substrat mit einem V von 13 ± 3 U/mg Protein und einem K von 1,3 ± 0,3 mM für ATP. 8.DES,Hexestrol und Dienestrol wurden als spezifische Inhibitoren der archäellen A1-ATPase identifiziert.Die I Werte dieser Hemmstoffe betrugen 5 µmol Hexestrol/mg Protein,3 µmol DES/mg Protein und 6 µmol Dienestrol/mg Protein. 9.Quervernetzungsexperimente konnten belegen,dass die Kopien der Untereinheit AhaA in direkter Nachbarschaft zueinander stehen.Dies trifft auch für die Kopien der Untereinheit AhaB und für die Untereinheiten AhaA und AhaB untereinander zu.Zudem konnte eine direkte Nachbarschaft der Untereinheiten AhaA und AhaD festgestellt werden. 10.Die A1-ATPase besitzt eine dreifache Achsensymmetrie.Der Kopfteil der A1-ATPase ist hexagonal geformt und setzt sich aus sechs peripheren und einer zentralen Masse zusammen. 11.Die über Röntgenkleinwinkelstreuung ermittelten Dimensionen der A1-ATPase sind:Gesamtlänge =17,8 nm,Länge Kopfteil =9,4 nm,Stiellänge =8,4 nm, Stieldurchmesser =6 nm,Kopfdurchmesser (variabel,abhängig vom Substrat)= 10,06 nm,Kopfradius (variabel,abhängig vom Substrat)=5,03 nm. TPase,wohingegen sich alkoholische Lösungsmittel die ATPase-Aktivität hemmten.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
1. Aus chromosomaler DNA von A. woodii wurde durch heterologe Starteroligonukleotide ein Bereich des Flagellingens mittels PCR amplifiziert. Durch die Verwendung dieses DNA-Fragmentes als Sonde wurden weitere 6 kBp an chromosomaler DNA von A. woodii kloniert, sequenziert und analysiert. 2. Innerhalb dieses klonierten DNA-Abschnittes wurden zwei partielle und fünf vollständige offene Leserahmen lokalisiert, die jeweils über eine Shine-Dalgarno-Sequenz verfügten und größer als 300 Bp waren. Durch Sequenzvergleiche ließ sich das Flagellingen (fliC) identifizieren. Stromaufwärts von fliC wurden offene Leserahmen (flgL, flgK) gefunden, die für die Haken-assoziierten Proteine 1 und 3 des A. woodii-Flagellums kodieren, sowie ein Leserahmen (orfA) dessen abgeleitetes Produkt keine Ähnlichkeit keinem bekannten Protein ähnlich ist. Durch die Expression von orfA in Minizellen von E. coli DK6 wurde aber gezeigt, daß orfA für ein Protein kodiert. Stromabwärts vom Flagellingen wurden keine Flagellengene identifiziert. Die abgeleiteten Produkte, der hier lokalisierten ORFs orfB und orfC zeigten keine Ähnlichkeiten zu in Datenbanken hinterlegten Proteinsequenzen. Am 3'-Ende des klonierten DNA-Abschnittes war ein partieller ORF (orfD) vorhanden, dessen abgeleitete Aminosäuresequenz große Ähnlichkeiten zu dNTP-Zucker modifizierenden Enzymen aufwies. 3. Aus Sphäroplasten von A. woodii wurden durch Solubilisierung, differentielle Zentrifugation und eine CsCl-Dichtegradientenzentrifugation ganze Flagellen inklusive des Haken-Basalkörper- Komplexes gereinigt. Durch die Analyse der Präparation in der SDS-PAGE wurden neben dem Flagellin sechs weitere Proteine als Bestandteil der Flagellen identifiziert. 4. Durch die elektronenmikroskopische Analyse der Haken-Basalkörper-Komplexe der Na + -abhängigen Flagellen von A. woodii konnte gezeigt werden, daß diese aus einem Haken, Stab und einem MS-Ring aufgebaut sind. Unterhalb des MS-Rings waren weitere Strukturen vorhanden. Diese Struktur entspricht den aus den H + -abhängigen Flagellen der Gram-positiven Organismen bekannten Strukturen. Durch die Gefrierbruchmethode konnten in der Cytoplasmamembran von A. woodii im elektronenmikroskopischen Bild Partikelringe nachgewiesen werden. Diese entsprechen in Struktur und Größe den Mot-Komplexen der H + -abhängigen Flagellen aus E. coli.5. Zur Analyse der Untereinheitenzusammensetzung der Na + -F1FO-ATPase von A. woodii wurden Antiseren gegen die Untereinheiten a, b, c1, c2/c3 und β generiert. Hierzu wurden die Untereinheiten a, b, c und β als MalE-Fusionen in E. coli produziert und gereinigt. Die Untereinheit c2/c3 wurde durch Chloroform:Methanol-Extraktion aus der Cytoplasmamembran von A. woodii angereichert und durch Elektroelution aus einer SDS-PAGE gereinigt. 6. Durch die Analyse der Cytoplasma- und Membranfraktion mit den fünf Antiseren ließen sich die Untereinheiten a, b, c1, c2/c3 und ˜ in der Cytoplasmamembran nachweisen. 7. Die Na + -F1FO-ATPase von A. woodii wurde durch Blue-Native-PAGE aus der Membranfraktion isoliert. Durch die Auftrennung der ATPase in ihre Untereinheiten und deren aminoterminale Sequenzierung wurden die Untereinheiten a, b, c2/c3, α , β γ,δ und ε identifiziert. 8. Durch immunologische Methoden wurde die Untereinheit c1, das in F1FO-ATPasen einmalige 16-kDa-Proteolipid, als Untereinheit der Na + -F1FO-ATPase von A. woodii erkannt. Die Na + -F1FO- ATPase von A. woodii ist die erste F1FO-ATPase mit einem Heterooligomer aus 8- und 16-kDa-Proteolipiden. 9. Die Untereinheit c1 wurde in A. woodii unabhängig vom Substrat und der Na + -Konzentration produziert. Allerdings wurden Hinweise auf eine erhöhte Expression des gesamten atp-Operons in Methanol-gezogenen-Zellen erhalten. 10. Ein Verfahren zur Reinigung der Na + -F1FO-ATPase unter Erhalt ihrer Untereinheitenstruktur wurde entwickelt. Die Na + -F1FO-ATPase wurde aus der Membranfraktion von A. woodii solubilisiert und durch Gelfiltration über Sephacryl S-400 und eine Glycerin-Dichtegradientenzentrifugation gereinigt. Das gereinigte Enzym besaß alle neun Untereinheiten. Die spezifische Aktivität der gereinigten ATPase betrug 7 U mg Protein -1 und seine molekulare Masse 600 kDa.
Human urinary kallikrein was purified by gel filtration on Sephacryl S-200 and affinity chromatography on aprotinin-Sepharose, followed by ion exchange chromatography on DEAE-Sepharose. In dodecylsulfate gel electrophoresis two protein bands with molecular weights of 41,000 and 34,000 were separated. The amino acid composition and the carbohydrate content of the kallikrein preparation were determined; isoleucine was identified as the only aminoterminal amino acid. The bimolecular velocity constant for the inhibition by diisopropyl fluorophosphate was determined as 9±2 l mol–1 min–1. The hydrolysis of a number of substrates was investigated and AcPheArgOEt was found to be the most sensitive substrate for human urinary kallikrein. Using this substrate an assay method for kallikrein in human urine was developed. It was shown by radioimmunoassay that pig pancreatic kallikrein can be absorbed in the rat intestinal tract. Furthermore, in dogs the renal excretion of glandular kallikrein from blood was demonstrated by radioimmunological methods.