POPULARITY
Computer graphics reveal the processes at Hanningfield Reservoir, providing drinking water to 60,000 people. The panel explain the purpose of new membrane technology.
Transcript -- Computer graphics reveal the processes at Hanningfield Reservoir, providing drinking water to 60,000 people. The panel explain the purpose of new membrane technology.
Computer graphics reveal the processes at Hanningfield Reservoir, providing drinking water to 60,000 people. The panel explain the purpose of new membrane technology.
Transcript -- Computer graphics reveal the processes at Hanningfield Reservoir, providing drinking water to 60,000 people. The panel explain the purpose of new membrane technology.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Molecular machines are at the ultimate limit of miniaturization. Living organisms provide a variety of examples for such molecular machines, but in order to utilize and to control them, they need to be interfaced with the macroscopic world. On the other h and, there are synthetic molecular machines. Some have been interfaced already but usually in high vacuum at very low temperatures, which is clearly not desirable for technical applications. In this thesis, AFM-based single molecule force spectroscopy (S M FS) was utilized to investigate the mechanical change in single synthetic molecules upon environmental changes (external stimuli) in liquid environment at room temperature. The molecules are either from theory or from bulk experiments supposed to be ab le to convert such an external stimulus into mechanical work, which is a prerequisite for molecular motors. Three different types of molecules and various external energy inputs were investigated which led to the realization of a light driven synthetic mo le cular machine: - Polyelectrolytes should, by OSF-theory, change their persistence length (and therefore the overall length at a constant force) with the Debye screening length of the solvent (which is manipulated by the salt concentration). Therefore, t he elasticity of the polyelectrolyte polyvinylamine, which could be covalently attached to the substrate and the AFM tip, was investigated in dependence on the salt concentration. It was found that the dependence of persistence length on salt concentr atio n is much smaller than expected from OSF-theory, which made this system less attractive for a molecular machine, but led to new theoretical insights. - The adhesive properties of polyelectrolytes onto charged solid supports in aqueous solution are a subj ect of current research in industry and academia. A manipulation of polymer – substrate adhesion, e. g. at an AFM tip, could lead to a molecular 'grab and release' device. Therefore, the desorption force of single polyvinylamine-molecules from solid suppo rts was investigated. Polyvinylamine was physisorbed to a glass substrate and covalently attached to the cantilever. Then, the charge-charge interaction was manipulated by variation in salt concentration and polymer charge. While this has not led t o a sin gle molecule device yet, it gave new insights into the desorption of polyelectrolytes from charged substrates. The measurements performed here revealed that van der Waals forces and other non-covalent chemical interactions such as hydrogen and coo rdinative bonds can by far outweigh the electrostatic coulomb force (namely at short distances), and are therefore a more promising candidate for the tuning of adhesion forces. - Elastin-based polypeptides have proven various kinds of energy conversion i n cross-linked bulk samples. The mechanism is based on a hydrophobic folding transition, which can be manipulated by temperature, salt, pH, electrochemistry, and/or by the composition (hydrophobicity) of the polymers. The difference between the folded and random state could be detected and investigated here at the level of individual polymer chains and characterized by the force-extension traces of the two polypeptides (GVGVP)nx251 and (GVGIP)nx260. Because of their different hydophobicity their folding t emperatu res lie above and below room temperature, respectively. With the polypeptide (GVGIP)nx260 the folded state was investigated extensively. All observations support the conjecture, that intermolecular aggregation dominates intramolecular aggregatio n. This i s further supported by the finding that neither a change in temperature nor the treatment with sodium dodecyl sulfate or guanidinium hydrochloride could force any of the two polypeptides from the folded to the random state or vice versa within a n experime nt, which in turn would be a prerequisite for a polypeptide based molecular motor. - The most successful approach to building an AFM-interfaced molecular machine was in taking advantage of reversible configurational changes in azobenzene poly mer molecul es upon irradiation with light. Azobenzene can be driven from a shorter 'cis' to a longer 'trans' configuration by illumination with l = 420 nm light and vice versa by l = 365 nm. In order to utilize azobenzene, a setup had to be developed and built, whic h allows for the coupling of light into the AFM experiment. Total internal reflection geometry was necessary to avoid any artifacts due to direct effects of the light on the cantilever. A polypeptide chain with multiple functional azobenzene units was cov alently fixed to both, a gold coated cantilever and a flint glass substrate. In the force-extension traces lengthening as well as shortening of the polyazopeptide was observed even under an applied external force. This is not only a proof of principle for the first single molecule motor interfaced to the macroscopic world, but also generates discussion concerning potential energy landscapes under external force.