POPULARITY
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02
This thesis is concerned with the development of flexible continuous-time survival models based on the accelerated failure time (AFT) model for the survival time and the Cox relative risk (CRR) model for the hazard rate. The flexibility concerns on the one hand the extension of the predictor to take into account simultaneously for a variety of different forms of covariate effects. On the other hand, the often too restrictive parametric assumptions about the survival distribution are replaced by semiparametric approaches that allow very flexible shapes of survival distribution. We use the Bayesian methodology for inference. The arising problems, like e. g. the penalization of high-dimensional linear covariate effects, the smoothing of nonlinear effects as well as the smoothing of the baseline survival distribution, are solved with the application of regularization priors tailored for the respective demand. The considered expansion of the two survival model classes enables to deal with various challenges arising in practical analysis of survival data. For example the models can deal with high-dimensional feature spaces (e. g. gene expression data), they facilitate feature selection from the whole set or a subset of the available covariates and enable the simultaneous modeling of any type of nonlinear covariate effects for covariates that should always be included in the model. The option of the nonlinear modeling of covariate effects as well as the semiparametric modeling of the survival time distribution enables furthermore also a visual inspection of the linearity assumptions about the covariate effects or accordingly parametric assumptions about the survival time distribution. In this thesis it is shown, how the p>n paradigm, feature relevance, semiparametric inference for functional effect forms and the semiparametric inference for the survival distribution can be treated within a unified Bayesian framework. Due the option to control the amount of regularization of the considered priors for the linear regression coefficients, there is no need to distinguish conceptionally between the cases pn. To accomplish the desired regularization, the regression coefficients are associated with shrinkage, selection or smoothing priors. Since the utilized regularization priors all facilitate a hierarchical representation, the resulting modular prior structure, in combination with adequate independence assumptions for the prior parameters, enables to establish a unified framework and the possibility to construct efficient MCMC sampling schemes for joint shrinkage, selection and smoothing in flexible classes of survival models. The Bayesian formulation enables therefore the simultaneous estimation of all parameters involved in the models as well as prediction and uncertainty statements about model specification. The presented methods are inspired from the flexible and general approach for structured additive regression (STAR) for responses from an exponential family and CRR-type survival models. Such systematic and flexible extensions are in general not available for AFT models. An aim of this work is to extend the class of AFT models in order to provide such a rich class of models as resulting from the STAR approach, where the main focus relies on the shrinkage of linear effects, the selection of covariates with linear effects together with the smoothing of nonlinear effects of continuous covariates as representative of a nonlinear modeling. Combined are in particular the Bayesian lasso, the Bayesian ridge and the Bayesian NMIG (a kind of spike-and-slab prior) approach to regularize the linear effects and the P-spline approach to regularize the smoothness of the nonlinear effects and the baseline survival time distribution. To model a flexible error distribution for the AFT model, the parametric assumption for the baseline error distribution is replaced by the assumption of a finite Gaussian mixture distribution. For the special case of specifying one basis mixture component the estimation problem essentially boils down to estimation of log-normal AFT model with STAR predictor. In addition, the existing class of CRR survival models with STAR predictor, where also baseline hazard rate is approximated by a P-spline, is expanded to enable the regularization of the linear effects with the mentioned priors, which broadens further the area of application of this rich class of CRR models. Finally, the combined shrinkage, selection and smoothing approach is also introduced to the semiparametric version of the CRR model, where the baseline hazard is unspecified and inference is based on the partial likelihood. Besides the extension of the two survival model classes the different regularization properties of the considered shrinkage and selection priors are examined. The developed methods and algorithms are implemented in the public available software BayesX and in R-functions and the performance of the methods and algorithms is extensively tested by simulation studies and illustrated through three real world data sets.
Mathematik, Informatik und Statistik - Open Access LMU - Teil 02/03
We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function.
Mathematik, Informatik und Statistik - Open Access LMU - Teil 02/03
Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX.
Mathematik, Informatik und Statistik - Open Access LMU - Teil 02/03
There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models.
Mathematik, Informatik und Statistik - Open Access LMU - Teil 01/03
BayesX is a Software tool for Bayesian inference based on Markov Chain Monte Carlo (MCMC) inference techniques. The main feature of BayesX so far, is a very powerful regression tool for Bayesian semiparametric regression within the Generalized linear models framework. BayesX is able to estimate nonlinear effects of metrical covariates, trends and flexible seasonal patterns of time scales, structured and/or unstructured random effects of spatial covariates (geographical data) and unstructured random effects of unordered group indicators. Moreover, BayesX is able to estimate varying coefficients models with metrical and even spatial covariates as effectmodifiers. The distribution of the response can be either Gaussian, binomial or Poisson. In addition, BayesX has some useful functions for handling and manipulating datasets and geographical maps.