POPULARITY
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
In this episode, I speak with Arthur Gretton, Wittawat Jitkrittum, Zoltan Szabo and Kenji Fukumizu, who, alongside Wenkai Xu authored the 2017 NIPS Best Paper Award winner “A Linear-Time Kernel Goodness-of-Fit Test.” In our discussion, we cover what exactly a “goodness of fit” test is, and how it can be used to determine how well a statistical model applies to a given real-world scenario. The group and I the discuss this particular test, the applications of this work, as well as how this work fits in with other research the group has recently published. Enjoy! In our discussion, we cover what exactly a “goodness of fit” test is, and how it can be used to determine how well a statistical model applies to a given real-world scenario. The group and I the discuss this particular test, the applications of this work, as well as how this work fits in with other research the group has recently published. Enjoy! This is your last chance to register for the RE•WORK Deep Learning and AI Assistant Summits in San Francisco, which are this Thursday and Friday, January 25th and 26th. These events feature leading researchers and technologists like the ones you heard in our Deep Learning Summit series last week. The San Francisco will event is headlined by Ian Goodfellow of Google Brain, Daphne Koller of Calico Labs, and more! Definitely check it out and use the code TWIMLAI for 20% off of registration. The notes for this show can be found at twimlai.com/talk/100.
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
In this episode I speak with Tuomas Sandholm, Carnegie Mellon University Professor and Founder and CEO of startups Optimized Markets and Strategic Machine. Tuomas, along with his PhD student Noam Brown, won a 2017 NIPS Best Paper award for their paper “Safe and Nested Subgame Solving for Imperfect-Information Games.” Tuomas and I dig into the significance of the paper, including a breakdown of perfect vs imperfect information games, the role of abstractions in game solving, and how the concept of safety applies to gameplay. We discuss how all these elements and techniques are applied to poker, and how the algorithm described in this paper was used by Noam and Tuomas to create Libratus, the first AI to beat top human pros in No Limit Texas Hold’em, a particularly difficult game to beat due to its large state space. This was a fascinating interview that I'm really excited to share with you all. Enjoy! This is your last chance to register for the RE•WORK Deep Learning and AI Assistant Summits in San Francisco, which are this Thursday and Friday, January 25th and 26th. These events feature leading researchers and technologists like the ones you heard in our Deep Learning Summit series last week. The San Francisco will event is headlined by Ian Goodfellow of Google Brain, Daphne Koller of Calico Labs, and more! Definitely check it out and use the code TWIMLAI for 20% off of registration. The notes for this show can be found at twimlai.com/talk/99
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
In today’s show, I sit down with Eric Humphrey, Research Scientist in the music understanding group at Spotify. Eric was at the Deep Learning Summit to give a talk on Advances in Deep Architectures and Methods for Separating Vocals in Recorded Music. We discuss his talk, including how Spotify's large music catalog enables such an experiment to even take place, the methods they use to train algorithms to isolate and remove vocals from music, and how architectures like U-Net and Pix2Pix come into play when building his algorithms. We also hit on the idea of “creative AI,” Spotify’s attempt at understanding music content at scale, optical music recognition, and more. This show is part of a series of shows recorded at the RE•WORK Deep Learning Summit in Montreal back in October. This was a great event and, in fact, their next event, the Deep Learning Summit San Francisco is right around the corner on January 25th and 26th, and will feature more leading researchers and technologists like the ones you’ll hear here on the show this week, including Ian Goodfellow of Google Brain, Daphne Koller of Calico Labs, and more! Definitely check it out and use the code TWIMLAI for 20% off of registration. The notes for this show can be found at twimlai.com/talk/98
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
In this show I speak with Greg Diamos, senior computer systems researcher at Baidu. Greg joined me before his talk at the Deep Learning Summit, where he spoke on “The Next Generation of AI Chips.” Greg’s talk focused on some work his team was involved in that accelerates deep learning training by using mixed 16-bit and 32-bit floating point arithmetic. We cover a ton of interesting ground in this conversation, and if you’re interested in systems level thinking around scaling and accelerating deep learning, you’re really going to like this one. And of course, if you like this one, you’re also going to like TWiML Talk #14 with Greg’s former colleague, Shubho Sengupta, which covers a bunch of related topics. This show is part of a series of shows recorded at the RE•WORK Deep Learning Summit in Montreal back in October. This was a great event and, in fact, their next event, the Deep Learning Summit San Francisco is right around the corner on January 25th and 26th, and will feature more leading researchers and technologists like the ones you’ll hear here on the show this week, including Ian Goodfellow of Google Brain, Daphne Koller of Calico Labs, and more! Definitely check it out and use the code TWIMLAI for 20% off of registration.
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
In this episode, we hear from David Duvenaud, assistant professor in the Computer Science and Statistics departments at the University of Toronto. David joined me after his talk at the Deep Learning Summit on “Composing Graphical Models With Neural Networks for Structured Representations and Fast Inference.” In our conversation, we discuss the generalized modeling and inference framework that David and his team have created, which combines the strengths of both probabilistic graphical models and deep learning methods. He gives us a walkthrough of his use case which is to automatically segment and categorize mouse behavior from raw video, and we discuss how the framework is applied here and for other use cases. We also discuss some of the differences between the frequentist and bayesian statistical approaches. The notes for this show can be found at twimlai.com/talk/96
At the #Deep Learning Summit in Montreal #ReworkDL