This Week in Machine Learning & Artificial Intelligence (AI) Podcast

Follow This Week in Machine Learning & Artificial Intelligence (AI) Podcast
Share on
Copy link to clipboard

This Week in Machine Learning & AI is the most popular podcast of its kind, catering to a highly-targeted audience of machine learning & AI enthusiasts. They are data scientists, developers, founders, CTOs, engineers, architects, IT & product leaders, as well as tech-savvy business leaders. These cr…

Sam Charrington


    • Feb 6, 2023 LATEST EPISODE
    • weekdays NEW EPISODES
    • 45m AVG DURATION
    • 633 EPISODES

    4.7 from 331 ratings Listeners of This Week in Machine Learning & Artificial Intelligence (AI) Podcast that love the show mention: machine learning, ml, ai podcast, interview format, sam's, it's clear, trusted, breadth, ah, applied, discusses, easy to follow, humility, companies, wide variety, data, technical, btw, field, covers.



    Search for episodes from This Week in Machine Learning & Artificial Intelligence (AI) Podcast with a specific topic:

    Latest episodes from This Week in Machine Learning & Artificial Intelligence (AI) Podcast

    Data-Centric Zero-Shot Learning for Precision Agriculture with Dimitris Zermas - #615

    Play Episode Listen Later Feb 6, 2023 32:33


    Today we're joined by Dimitris Zermas, a principal scientist at agriscience company Sentera. Dimitris' work at Sentera is focused on developing tools for precision agriculture using machine learning, including hardware like cameras and sensors, as well as ML models for analyzing the vast amount of data they acquire. We explore some specific use cases for machine learning, including plant counting, the challenges of working with classical computer vision techniques, database management, and data annotation. We also discuss their use of approaches like zero-shot learning and how they've taken advantage of a data-centric mindset when building a better, more cost-efficient product.

    How LLMs and Generative AI are Revolutionizing AI for Science with Anima Anandkumar - #614

    Play Episode Listen Later Jan 30, 2023 61:44


    Today we're joined by Anima Anandkumar, Bren Professor of Computing And Mathematical Sciences at Caltech and Sr Director of AI Research at NVIDIA. In our conversation, we take a broad look at the emerging field of AI for Science, focusing on both practical applications and longer-term research areas. We discuss the latest developments in the area of protein folding, and how much it has evolved since we first discussed it on the podcast in 2018, the impact of generative models and stable diffusion on the space, and the application of neural operators. We also explore the ways in which prediction models like weather models could be improved, how foundation models are helping to drive innovation, and finally, we dig into MineDojo, a new framework built on the popular Minecraft game for embodied agent research, which won a 2022 Outstanding Paper Award at NeurIPS.  The complete show notes for this episode can be found at twimlai.com/go/614

    AI Trends 2023: Natural Language Proc - ChatGPT, GPT-4 and Cutting Edge Research with Sameer Singh - #613

    Play Episode Listen Later Jan 23, 2023 105:15


    Today we continue our AI Trends 2023 series joined by Sameer Singh, an associate professor in the department of computer science at UC Irvine and fellow at the Allen Institute for Artificial Intelligence (AI2). In our conversation with Sameer, we focus on the latest and greatest advancements and developments in the field of NLP, starting out with one that took the internet by storm just a few short weeks ago, ChatGPT. We also explore top themes like decomposed reasoning, causal modeling in NLP, and the need for “clean” data. We also discuss projects like HuggingFace's BLOOM, the debacle that was the Galactica demo, the impending intersection of LLMs and search, use cases like Copilot, and of course, we get Sameer's predictions for what will happen this year in the field. The complete show notes for this episode can be found at twimlai.com/go/613.

    AI Trends 2023: Reinforcement Learning - RLHF, Robotic Pre-Training, and Offline RL with Sergey Levine - #612

    Play Episode Listen Later Jan 16, 2023 59:40


    Today we're taking a deep dive into the latest and greatest in the world of Reinforcement Learning with our friend Sergey Levine, an associate professor, at UC Berkeley. In our conversation with Sergey, we explore some game-changing developments in the field including the release of ChatGPT and the onset of RLHF. We also explore more broadly the intersection of RL and language models, as well as advancements in offline RL and pre-training for robotics models, inverse RL, Q learning, and a host of papers along the way. Finally, you don't want to miss Sergey's predictions for the top developments of the year 2023!  The complete show notes for this episode can be found at twimlai.com/go/612

    Supporting Food Security in Africa Using ML with Catherine Nakalembe - #611

    Play Episode Listen Later Jan 9, 2023 66:09


    Today we conclude our coverage of the 2022 NeurIPS series joined by Catherine Nakalembe, an associate research professor at the University of Maryland, and Africa Program Director under NASA Harvest. In our conversation with Catherine, we take a deep dive into her talk from the ML in the Physical Sciences workshop, Supporting Food Security in Africa using Machine Learning and Earth Observations. We discuss the broad challenges associated with food insecurity, as well as Catherine's role and the priorities of Harvest Africa, a program focused on advancing innovative satellite-driven methods to produce automated within-season crop type and crop-specific condition products that support agricultural assessments. We explore some of the technical challenges of her work, including the limited, but growing, access to remote sensing and earth observation datasets and how the availability of that data has changed in recent years, the lack of benchmarks for the tasks she's working on, examples of how they've applied techniques like multi-task learning and task-informed meta-learning, and much more.  The complete show notes for this episode can be found at twimlai.com/go/611.

    Service Cards and ML Governance with Michael Kearns - #610

    Play Episode Listen Later Jan 2, 2023 39:08


    Today we conclude our AWS re:Invent 2022 series joined by Michael Kearns, a professor in the department of computer and information science at UPenn, as well as an Amazon Scholar. In our conversation, we briefly explore Michael's broader research interests in responsible AI and ML governance and his role at Amazon. We then discuss the announcement of service cards, and their take on “model cards” at a holistic, system level as opposed to an individual model level. We walk through the information represented on the cards, as well as explore the decision-making process around specific information being omitted from the cards. We also get Michael's take on the years-old debate of algorithmic bias vs dataset bias, what some of the current issues are around this topic, and what research he has seen (and hopes to see) addressing issues of “fairness” in large language models.   The complete show notes for this episode can be found at twimlai.com/go/610.

    Reinforcement Learning for Personalization at Spotify with Tony Jebara - #609

    Play Episode Listen Later Dec 29, 2022 41:27


    Today we continue our NeurIPS 2022 series joined by Tony Jebara, VP of engineering and head of machine learning at Spotify. In our conversation with Tony, we discuss his role at Spotify and how the company's use of machine learning has evolved over the last few years, and the business value of machine learning, specifically recommendations, hold at the company. We dig into his talk on the intersection of reinforcement learning and lifetime value (LTV) at Spotify, which explores the application of Offline RL for user experience personalization. We discuss the various papers presented in the talk, and how they all map toward determining and increasing a user's LTV.  The complete show notes for this episode can be found at twimlai.com/go/609.

    Will ChatGPT take my job? - #608

    Play Episode Listen Later Dec 26, 2022 37:28


    More than any system before it, ChatGPT has tapped into our enduring fascination with artificial intelligence, raising in a more concrete and present way important questions and fears about what AI is capable of and how it will impact us as humans. One of the concerns most frequently voiced, whether sincerely or cloaked in jest, is how ChatGPT or systems like it, will impact our livelihoods. In other words, “will ChatGPT put me out of a job???” In this episode of the podcast, I seek to answer this very question by conducting an interview in which ChatGPT is asking all the questions. (The questions are answered by a second ChatGPT, as in my own recent Interview with it, Exploring Large Laguage Models with ChatGPT.) In addition to the straight dialogue, I include my own commentary along the way and conclude with a discussion of the results of the experiment, that is, whether I think ChatGPT will be taking my job as your host anytime soon. Ultimately, though, I hope you'll be the judge of that and share your thoughts on how ChatGPT did at my job via a comment below or on social media.

    Geospatial Machine Learning at AWS with Kumar Chellapilla - #607

    Play Episode Listen Later Dec 22, 2022 36:46


    Today we continue our re:Invent 2022 series joined by Kumar Chellapilla, a general manager of ML and AI Services at AWS. We had the opportunity to speak with Kumar after announcing their recent addition of geospatial data to the SageMaker Platform. In our conversation, we explore Kumar's role as the GM for a diverse array of SageMaker services, what has changed in the geospatial data landscape over the last 10 years, and why Amazon decided now was the right time to invest in geospatial data. We discuss the challenges of accessing and working with this data and the pain points they're trying to solve. Finally, Kumar walks us through a few customer use cases, describes how this addition will make users more effective than they currently are, and shares his thoughts on the future of this space over the next 2-5 years, including the potential intersection of geospatial data and stable diffusion/generative models. The complete show notes for this episode can be found at twimlai.com/go/607

    Real-Time ML Workflows at Capital One with Disha Singla - #606

    Play Episode Listen Later Dec 19, 2022 43:36


    Today we're joined by Disha Singla, a senior director of machine learning engineering at Capital One. In our conversation with Disha, we explore her role as the leader of the Data Insights team at Capital One, where they've been tasked with creating reusable libraries, components, and workflows to make ML usable broadly across the company, as well as a platform to make it all accessible and to drive meaningful insights. We discuss the construction of her team, as well as the types of interactions and requests they receive from their customers (data scientists), productionized use cases from the platform, and their efforts to transition from batch to real-time deployment. Disha also shares her thoughts on the ROI of machine learning and getting buy-in from executives, how she sees machine learning evolving at the company over the next 10 years, and much more! The complete show notes for this episode can be found at twimlai.com/go/606

    Weakly Supervised Causal Representation Learning with Johann Brehmer - #605

    Play Episode Listen Later Dec 15, 2022 46:44


    Today we're excited to kick off our coverage of the 2022 NeurIPS conference with Johann Brehmer, a research scientist at Qualcomm AI Research in Amsterdam. We begin our conversation discussing some of the broader problems that causality will help us solve, before turning our focus to Johann's paper Weakly supervised causal representation learning, which seeks to prove that high-level causal representations are identifiable in weakly supervised settings. We also discuss a few other papers that the team at Qualcomm presented, including neural topological ordering for computation graphs, as well as some of the demos they showcased, which we'll link to on the show notes page.  The complete show notes for this episode can be found at twimlai.com/go/605.

    Stable Diffusion & Generative AI with Emad Mostaque - #604

    Play Episode Listen Later Dec 12, 2022 42:51


    Today we're excited to kick off our 2022 AWS re:Invent series with a conversation with Emad Mostaque, Founder and CEO of Stability.ai. Stability.ai is a very popular name in the generative AI space at the moment, having taken the internet by storm with the release of its stable diffusion model just a few months ago. In our conversation with Emad, we discuss the story behind Stability's inception, the model's speed and scale, and the connection between stable diffusion and programming. We explore some of the spaces that Emad anticipates being disrupted by this technology, his thoughts on the open-source vs API debate, how they're dealing with issues of user safety and artist attribution, and of course, what infrastructure they're using to stand the model up. The complete show notes for this episode can be found at https://twimlai.com/go/604.

    Exploring Large Language Models with ChatGPT - #603

    Play Episode Listen Later Dec 8, 2022 36:30


    Today we're joined by ChatGPT, the latest and coolest large language model developed by OpenAl. In our conversation with ChatGPT, we discuss the background and capabilities of large language models, the potential applications of these models, and some of the technical challenges and open questions in the field. We also explore the role of supervised learning in creating ChatGPT, and the use of PPO in training the model. Finally, we discuss the risks of misuse of large language models, and the best resources for learning more about these models and their applications. Join us for a fascinating conversation with ChatGPT, and learn more about the exciting world of large language models. The complete show notes for this episode can be found at https://twimlai.com/go/603

    Accelerating Intelligence with AI-Generating Algorithms with Jeff Clune - #602

    Play Episode Listen Later Dec 5, 2022 56:41


    Are AI-generating algorithms the path to artificial general intelligence(AGI)?  Today we're joined by Jeff Clune, an associate professor of computer science at the University of British Columbia, and faculty member at the Vector Institute. In our conversation with Jeff, we discuss the broad ambitious goal of the AI field, artificial general intelligence, where we are on the path to achieving it, and his opinion on what we should be doing to get there, specifically, focusing on AI generating algorithms. With the goal of creating open-ended algorithms that can learn forever, Jeff shares his three pillars to an AI-GA, meta-learning architectures, meta-learning algorithms, and auto-generating learning environments. Finally, we discuss the inherent safety issues with these learning algorithms and Jeff's thoughts on how to combat them, and what the not-so-distant future holds for this area of research.  The complete show notes for this episode can be found at twimlai.com/go/602.

    Programmatic Labeling and Weak Supervision for Autonomous Commercial Aviation with Cedric Cocaud - #601

    Play Episode Listen Later Nov 28, 2022 54:40


    Today we're joined by Cedric Cocaud, the chief engineer of the Wayfinder Group at ACubed, the innovation center for aircraft manufacturer Airbus. In our conversation with Cedric, we explore some of the technical challenges of innovation in the aircraft space, including autonomy. Cedric's work on Project Vahanna, A3's foray into air taxis, attempted to leverage work in the self-driving car industry to develop fully autonomous planes. We discuss some of the algorithms being developed for this work, the data collection process, and Cedric's thoughts on using synthetic data for these tasks. We also discuss the challenges of labeling the data, including programmatic and automated labeling, and much more. 

    Engineering Production NLP Systems at T-Mobile with Heather Nolis - #600

    Play Episode Listen Later Nov 21, 2022 43:53


    Today we're joined by Heather Nolis, a principal machine learning engineer at T-Mobile. In our conversation with Heather, we explored her machine learning journey at T-Mobile, including their initial proof of concept project, which held the goal of putting their first real-time deep learning model into production. We discuss the use case, which aimed to build a model customer intent model that would pull relevant information about a customer during conversations with customer support. This process has now become widely known as blank assist. We also discuss the decision to use supervised learning to solve this problem and the challenges they faced when developing a taxonomy. Finally, we explore the idea of using small models vs uber-large models, the hardware being used to stand up their infrastructure, and how Heather thinks about the age-old question of build vs buy. 

    Sim2Real and Optimus, the Humanoid Robot with Ken Goldberg - #599

    Play Episode Listen Later Nov 14, 2022 47:11


    Today we're joined by return guest Ken Goldberg, a professor at UC Berkeley and the chief scientist at Ambi Robotics. It's been a few years since our initial conversation with Ken, so we spent a bit of time talking through the progress that has been made in robotics in the time that has passed. We discuss Ken's recent work, including the paper Autonomously Untangling Long Cables, which won Best Systems Paper at the RSS conference earlier this year, including the complexity of the problem and why it is classified as a systems challenge, as well as the advancements in hardware that made solving this problem possible. We also explore Ken's thoughts on the push towards simulation by research entities and large tech companies, and the potential for causal modeling to find its way into robotics. Finally, we discuss the recent showcase of Optimus, Tesla, and Elon Musk's “humanoid” robot and how far we are from it being a viable piece of technology. The complete show notes for this episode can be found at twimlai.com/go/599.

    The Evolution of the NLP Landscape with Oren Etzioni - #598

    Play Episode Listen Later Nov 7, 2022 53:15


    Today friend of the show and esteemed guest host John Bohannon is back with another great interview, this time around joined by Oren Etzioni, former CEO of the Allen Institute for AI, where he is currently an advisor. In our conversation with Oren, we discuss his philosophy as a researcher and how that has manifested in his pivot to institution builder. We also explore his thoughts on the current landscape of NLP, including the emergence of LLMs and the hype being built up around AI systems from folks like Elon Musk. Finally, we explore some of the research coming out of AI2, including Semantic Scholar, an AI-powered research tool analogous to arxiv, and the somewhat controversial Delphi project, a research prototype designed to model people's moral judgments on a variety of everyday situations.

    Live from TWIMLcon! The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools - #597

    Play Episode Listen Later Oct 31, 2022 47:59


    Over the last few years, it's been established that your ML team needs at least some basic tooling in order to be effective, providing support for various aspects of the machine learning workflow, from data acquisition and management, to model development and optimization, to model deployment and monitoring. But how do you get there? Many tools available off the shelf, both commercial and open source, can help. At the extremes, these tools can fall into one of a couple of buckets. End-to-end platforms that try to provide support for many aspects of the ML lifecycle, and specialized tools that offer deep functionality in a particular domain or area. At TWIMLcon: AI Platforms 2022, our panelists debated the merits of these approaches in The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools.

    Live from TWIMLcon: AI Platforms 2022 - You're not Facebook. Architecting MLOps for B2B Use Cases with Jacopo Tagliabue - #596

    Play Episode Listen Later Oct 24, 2022 49:42


    Much of the way we talk and think about MLOps comes from the perspective of large consumer internet companies like Facebook or Google. If you work at a FAANG company, these approaches might work well for you. But what about if you work at one of the many small, B2B companies that stand to benefit through the use of machine learning? How should you be thinking about MLOps and the ML lifecycle in that case? In this live podcast interview from TWIMLcon: AI Platforms 2022, Sam Charrington explores these questions with Jacopo Tagliabue, whose perspectives and contributions on scaling down MLOps have served to make the field more accessible and relevant to a wider array of practitioners.

    Building Foundational ML Platforms with Kubernetes and Kubeflow with Ali Rodell - #595

    Play Episode Listen Later Oct 17, 2022 43:24


    Today we're joined by Ali Rodell, a senior director of machine learning engineering at Capital One. In our conversation with Ali, we explore his role as the head of model development platforms at Capital One, including how his 25+ years in software development have shaped his view on building platforms and the evolution of the platforms space over the last 10 years. We discuss the importance of a healthy open source tooling ecosystem, Capital One's use of various open source capabilites like kubeflow and kubernetes to build out platforms, and some of the challenges that come along with modifying/customizing these tools to work for him and his teams. Finally, we explore the range of user personas that need to be accounted for when making decisions about tooling, supporting things like Jupyter notebooks and other low level tools, and how that can be potentially challenging in a highly regulated environment like the financial industry. The complete show notes for this episode can be found at twimlai.com/go/595

    AI-Powered Peer Programming with Vasi Philomin - #594

    Play Episode Listen Later Oct 10, 2022 35:53


    Today we're joined by Vasi Philomin, vice president of AI services at AWS, joins us for our first in-person interview since 2019! In our conversation with Vasi, we discussed the recently released Amazon Code Whisperer, a developer-focused coding companion. We begin by exploring Vasi's role and the various products under the banner of cognitive and non-cognitive services, and how those came together where Code Whisperer fits into the equation and some of the differences between Code Whisperer and some of the other recently released coding companions like GitHub Copilot. We also discuss the training corpus for the model, and how they've dealt with the potential issues of bias that arise when training LLMs with crawled web data, and Vasi's thoughts on what the path of innovation looks like for Code Whisperer.  At the end of our conversation, Vasi was gracious enough to share a quick live demo of Code Whisperer, so you can catch that here.

    The Top 10 Reasons to Register for TWIMLcon: AI Platforms 2022!

    Play Episode Listen Later Oct 3, 2022 4:03


    TWIMLcon: AI Platforms 2022 is just a day away! If you're interested in all things MLOps and Platforms/Infrastructure technology, this is the event for you! Register now at https://twimlcon.com/attend for FREE!

    Applied AI/ML Research at PayPal with Vidyut Naware - #593

    Play Episode Listen Later Sep 26, 2022 31:49


    Today we're joined by Vidyut Naware, the director of machine learning and artificial intelligence at Paypal. As the leader of the ML/AI organization at Paypal, Vidyut is responsible for all things applied, from R&D to MLOps infrastructure. In our conversation, we explore the work being done in four major categories, hardware/compute, data, applied responsible AI, and tools, frameworks, and platforms. We also discuss their use of federated learning and delayed supervision models for use cases like anomaly detection and fraud prevention, research into quantum computing and causal inference, as well as applied use cases like graph machine learning and collusion detection.  The complete show notes for this episode can be found at twimlai.com/go/593

    Assessing Data Quality at Shopify with Wendy Foster - #592

    Play Episode Listen Later Sep 19, 2022 36:29


    Today we're back with another installment of our Data-Centric AI series, joined by Wendy Foster, a director of engineering & data science at Shopify. In our conversation with Wendy, we explore the differences between data-centric and model-centric approaches and how they manifest at Shopify, including on her team, which is responsible for utilizing merchant and product data to assist individual vendors on the platform. We discuss how they address, maintain, and improve data quality, emphasizing the importance of coverage and “freshness” data when solving constantly evolving use cases. Finally, we discuss how data is taxonomized at the company and the challenges that present themselves when producing large-scale ML models, future use cases that Wendy expects her team to tackle, and we briefly explore Merlin, Shopify's new ML platform (that you can hear more about at TWIMLcon!), and how it fits into the broader scope of ML at the company. The complete show notes for this episode can be found at twimlai.com/go/592

    Transformers for Tabular Data at Capital One with Bayan Bruss - #591

    Play Episode Listen Later Sep 12, 2022 46:55


    Today we're joined by Bayan Bruss, a Sr. director of applied ML research at Capital One. In our conversation with Bayan, we dig into his work in applying various deep learning techniques to tabular data, including taking advancements made in other areas like graph CNNs and other traditional graph mining algorithms and applying them to financial services applications. We discuss why despite a “flood” of innovation in the field, work on tabular data doesn't elicit as much fanfare despite its broad use across businesses, Bayan's experience with the difficulty of making deep learning work on tabular data, and what opportunities have been presented for the field with the emergence of multi-modality and transformer models. We also explore a pair of papers from Bayan's team, focused on both transformers and transfer learning for tabular data.  The complete show notes for this episode can be found at twimlai.com/go/591

    Understanding Collective Insect Communication with ML, w/ Orit Peleg - #590

    Play Episode Listen Later Sep 5, 2022 37:13


    Today we're joined by Orit Peleg, an assistant professor at the University of Colorado, Boulder. Orit's work focuses on understanding the behavior of disordered living systems, by merging tools from physics, biology, engineering, and computer science. In our conversation, we discuss how Orit found herself exploring problems of swarming behaviors and their relationship to distributed computing system architecture and spiking neurons. We look at two specific areas of research, the first focused on the patterns observed in firefly species, how the data is collected, and the types of algorithms used for optimization. Finally, we look at how Orit's research with fireflies translates to a completely different insect, the honeybee, and what the next steps are for investigating these and other insect families. The complete show notes for this episode can be found at twimlai.com/go/590

    Multimodal, Multi-Lingual NLP at Hugging Face with John Bohannon and Douwe Kiela - #589

    Play Episode Listen Later Aug 29, 2022 53:12


    In this extra special episode of the TWIML AI Podcast, a friend of the show John Bohannon leads a jam-packed conversation with Hugging Face's recently appointed head of research Douwe Kiela. In our conversation with Douwe, we explore his role at the company, how his perception of Hugging Face has changed since joining, and what research entails at the company. We discuss the emergence of the transformer model and the emergence of BERT-ology, the recent shift to solving more multimodal problems, the importance of this subfield as one of the “Grand Directions'' of Hugging Face's research agenda, and the importance of BLOOM, the open-access Multilingual Language Model that was the output of the BigScience project. Finally, we get into how Douwe's background in philosophy shapes his view of current projects, as well as his projections for the future of NLP and multimodal ML. The complete show notes for this episode can be found at twimlai.com/go/589

    Synthetic Data Generation for Robotics with Bill Vass - #588

    Play Episode Listen Later Aug 22, 2022 36:17


    Today we're joined by Bill Vass, a VP of engineering at Amazon Web Services. Bill spoke at the most recent AWS re:MARS conference, where he delivered an engineering Keynote focused on some recent updates to Amazon sagemaker, including its support for synthetic data generation. In our conversation, we discussed all things synthetic data, including the importance of data quality when creating synthetic data, and some of the use cases that this data is being created for, including warehouses and in the case of one of their more recent acquisitions, iRobot, synthetic house generation. We also explore Astro, the household robot for home monitoring, including the types of models running it, is running, what type of on-device sensor suite it has, the relationship between the robot and the cloud, and the role of simulation.  The complete show notes for this episode can be found at twimlai.com/go/588

    Multi-Device, Multi-Use-Case Optimization with Jeff Gehlhaar - #587

    Play Episode Listen Later Aug 15, 2022 43:30


    Today we're joined by Jeff Gehlhaar, vice president of technology at Qualcomm Technologies. In our annual conversation with Jeff, we dig into the relationship between Jeff's team on the product side and the research team, many of whom we've had on the podcast over the last few years. We discuss the challenges of real-world neural network deployment and doing quantization on-device, as well as a look at the tools that power their AI Stack. We also explore a few interesting automotive use cases, including automated driver assistance, and what advancements Jeff is looking forward to seeing in the next year. The complete show notes for this episode can be found at twimlai.com/go/587

    Causal Conceptions of Fairness and their Consequences with Sharad Goel - #586

    Play Episode Listen Later Aug 8, 2022 37:17


    Today we close out our ICML 2022 coverage joined by Sharad Goel, a professor of public policy at Harvard University. In our conversation with Sharad, we discuss his Outstanding Paper award winner Causal Conceptions of Fairness and their Consequences, which seeks to understand what it means to apply causality to the idea of fairness in ML. We explore the two broad classes of intent that have been conceptualized under the subfield of causal fairness and how they differ, the distinct ways causality is treated in economic and statistical contexts vs a computer science and algorithmic context, and why policies are created in the context of causal definitions are suboptimal broadly. The complete show notes for this episode can be found at twimlai.com/go/586

    Brain-Inspired Hardware and Algorithm Co-Design with Melika Payvand - #585

    Play Episode Listen Later Aug 1, 2022 44:00


    Today we continue our ICML coverage joined by Melika Payvand, a research scientist at the Institute of Neuroinformatics at the University of Zurich and ETH Zurich. Melika spoke at the Hardware Aware Efficient Training (HAET) Workshop, delivering a keynote on Brain-inspired hardware and algorithm co-design for low power online training on the edge. In our conversation with Melika, we explore her work at the intersection of ML and neuroinformatics, what makes the proposed architecture “brain-inspired”, and how techniques like online learning fit into the picture. We also discuss the characteristics of the devices that are running the algorithms she's creating, and the challenges of adapting online learning-style algorithms to this hardware. The complete show notes for this episode can be found at twimlai.com/go/585

    Equivariant Priors for Compressed Sensing with Arash Behboodi - #584

    Play Episode Listen Later Jul 25, 2022 39:30


    Today we're joined by Arash Behboodi, a machine learning researcher at Qualcomm Technologies. In our conversation with Arash, we explore his paper Equivariant Priors for Compressed Sensing with Unknown Orientation, which proposes using equivariant generative models as a prior means to show that signals with unknown orientations can be recovered with iterative gradient descent on the latent space of these models and provide additional theoretical recovery guarantees. We discuss the differences between compression and compressed sensing, how he was able to evolve a traditional VAE architecture to understand equivalence, and some of the research areas he's applying this work, including cryo-electron microscopy. We also discuss a few of the other papers that his colleagues have submitted to the conference, including Overcoming Oscillations in Quantization-Aware Training, Variational On-the-Fly Personalization, and CITRIS: Causal Identifiability from Temporal Intervened Sequences. The complete show notes for this episode can be found at twimlai.com/go/584

    Managing Data Labeling Ops for Success with Audrey Smith - #583

    Play Episode Listen Later Jul 18, 2022 47:26


    Today we continue our Data-Centric AI Series joined by Audrey Smith, the COO at MLtwist, and a recent participant in our panel on DCAI. In our conversation, we do a deep dive into data labeling for ML, exploring the typical journey for an organization to get started with labeling, her experience when making decisions around in-house vs outsourced labeling, and what commitments need to be made to achieve high-quality labels. We discuss how organizations that have made significant investments in labelops typically function, how someone working on an in-house labeling team approaches new projects, the ethical considerations that need to be taken for remote labeling workforces, and much more! The complete show notes for this episode can be found at twimlai.com/go/583

    Engineering A ML-Powered Developer-First Search Engine with Richard Socher - #582

    Play Episode Listen Later Jul 11, 2022 46:32


    Today we're joined by Richard Socher, the CEO of You.com. In our conversation with Richard, we explore the inspiration and motivation behind the You.com search engine, and how it differs from the traditional google search engine experience. We discuss some of the various ways that machine learning is used across the platform including how they surface relevant search results and some of the recent additions like code completion and a text generator that can write complete essays and blog posts. Finally, we talk through some of the projects we covered in our last conversation with Richard, namely his work on Salesforce's AI Economist project.  The complete show notes for this episode can be found at twimlai.com/go/582

    On The Path Towards Robot Vision with Aljosa Osep - #581

    Play Episode Listen Later Jul 4, 2022 47:33


    Today we wrap up our coverage of the 2022 CVPR conference joined by Aljosa Osep, a postdoc at the Technical University of Munich & Carnegie Mellon University. In our conversation with Aljosa, we explore his broader research interests in achieving robot vision, and his vision for what it will look like when that goal is achieved. The first paper we dig into is Text2Pos: Text-to-Point-Cloud Cross-Modal Localization, which proposes a cross-modal localization module that learns to align textual descriptions with localization cues in a coarse-to-fine manner. Next up, we explore the paper Forecasting from LiDAR via Future Object Detection, which proposes an end-to-end approach for detection and motion forecasting based on raw sensor measurement as opposed to ground truth tracks. Finally, we discuss Aljosa's third and final paper Opening up Open-World Tracking, which proposes a new benchmark to analyze existing efforts in multi-object tracking and constructs a baseline for these tasks. The complete show notes for this episode can be found at twimlai.com/go/581

    More Language, Less Labeling with Kate Saenko - #580

    Play Episode Listen Later Jun 27, 2022 47:01


    Today we continue our CVPR series joined by Kate Saenko, an associate professor at Boston University and a consulting professor for the MIT-IBM Watson AI Lab. In our conversation with Kate, we explore her research in multimodal learning, which she spoke about at the Multimodal Learning and Applications Workshop, one of a whopping 6 workshops she spoke at. We discuss the emergence of multimodal learning, the current research frontier, and Kate's thoughts on the inherent bias in LLMs and how to deal with it. We also talk through some of the challenges that come up when building out applications, including the cost of labeling, and some of the methods she's had success with. Finally, we discuss Kate's perspective on the monopolizing of computing resources for “foundational” models, and her paper Unsupervised Domain Generalization by learning a Bridge Across Domains. The complete show notes for this episode can be found at twimlai.com/go/580

    Optical Flow Estimation, Panoptic Segmentation, and Vision Transformers with Fatih Porikli - #579

    Play Episode Listen Later Jun 20, 2022 51:17


    Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented. The complete show notes for this episode can be found at twimlai.com/go/579

    Data Governance for Data Science with Adam Wood - #578

    Play Episode Listen Later Jun 13, 2022 39:20


    Today we're joined by Adam Wood, Director of Data Governance and Data Quality at Mastercard. In our conversation with Adam, we explore the challenges that come along with data governance at a global scale, including dealing with regional regulations like GDPR and federating records at scale. We discuss the role of feature stores in keeping track of data lineage and how Adam and his team have dealt with the challenges of metadata management, how large organizations like Mastercard are dealing with enabling feature reuse, and the steps they take to alleviate bias, especially in scenarios like acquisitions. Finally, we explore data quality for data science and why Adam sees it as an encouraging area of growth within the company, as well as the investments they've made in tooling around data management, catalog, feature management, and more. The complete show notes for this episode can be found at twimlai.com/go/578

    Feature Platforms for Data-Centric AI with Mike Del Balso - #577

    Play Episode Listen Later Jun 6, 2022 45:33


    In the latest installment of our Data-Centric AI series, we're joined by a friend of the show Mike Del Balso, Co-founder and CEO of Tecton. If you've heard any of our other conversations with Mike, you know we spend a lot of time discussing feature stores, or as he now refers to them, feature platforms. We explore the current complexity of data infrastructure broadly and how that has changed over the last five years, as well as the maturation of streaming data platforms. We discuss the wide vs deep paradox that exists around ML tooling, and the idea around the “ML Flywheel”, a strategy that leverages data to accelerate machine learning. Finally, we spend time discussing internal ML team construction, some of the challenges that organizations face when building their ML platforms teams, and how they can avoid the pitfalls as they arise. The complete show notes for this episode can be found at twimlai.com/go/577

    The Fallacy of "Ground Truth" with Shayan Mohanty - #576

    Play Episode Listen Later May 30, 2022 50:40


    Today we continue our Data-centric AI series joined by Shayan Mohanty, CEO at Watchful. In our conversation with Shayan, we focus on the data labeling aspect of the machine learning process, and ways that a data-centric approach could add value and reduce cost by multiple orders of magnitude. Shayan helps us define “data-centric”, while discussing the main challenges that organizations face when dealing with labeling, how these problems are currently being solved, and how techniques like active learning and weak supervision could be used to more effectively label. We also explore the idea of machine teaching, which focuses on using techniques that make the model training process more efficient, and what organizations need to be successful when trying to make the aforementioned mindset shift to DCAI.  The complete show notes for this episode can be found at twimlai.com/go/576

    Principle-centric AI with Adrien Gaidon - #575

    Play Episode Listen Later May 23, 2022 47:12


    This week, we continue our conversations around the topic of Data-Centric AI joined by a friend of the show Adrien Gaidon, the head of ML research at the Toyota Research Institute (TRI). In our chat, Adrien expresses a fourth, somewhat contrarian, viewpoint to the three prominent schools of thought that organizations tend to fall into, as well as a great story about how the breakthrough came via an unlikely source. We explore his principle-centric approach to machine learning as well as the role of self-supervised machine learning and synthetic data in this and other research threads. Make sure you're following along with the entire DCAI series at twimlai.com/go/dcai. The complete show notes for this episode can be found at twimlai.com/go/575

    Data Debt in Machine Learning with D. Sculley - #574

    Play Episode Listen Later May 19, 2022 36:25


    Today we kick things off with a conversation with D. Sculley, a director on the Google Brain team. Many listeners of today's show will know D. from his work on the paper, The Hidden Technical Debt in Machine Learning Systems, and of course, the infamous diagram. D. has recently translated the idea of technical debt into data debt, something we spend a bit of time on in the interview. We discuss his view of the concept of DCAI, where debt fits into the conversation of data quality, and what a shift towards data-centrism looks like in a world of increasingly larger models i.e. GPT-3 and the recent PALM models. We also explore common sources of data debt, what are things that the community can and have done to mitigate these issues, the usefulness of causal inference graphs in this work, and much more! If you enjoyed this interview or want to hear more on this topic, check back on the DCAI series page weekly at https://twimlai.com/podcast/twimlai/series/data-centric-ai. The complete show notes for this episode can be found at twimlai.com/go/574

    AI for Enterprise Decisioning at Scale with Rob Walker - #573

    Play Episode Listen Later May 16, 2022 38:46


    Today we're joined by Rob Walker, VP of decisioning & analytics and gm of one-to-one customer engagement at Pegasystems. Rob, who you might know from his previous appearances on the podcast, joins us to discuss his work on AI and ML in the context of customer engagement and decisioning, the various problems that need to be solved, including solving the “next best” problem. We explore the distinction between the idea of the next best action and determining it from a recommender system, how the combination of machine learning and heuristics are currently co-existing in engagements, scaling model evaluation, and some of the challenges they're facing when dealing with problems of responsible AI and how they're managed. Finally, we spend a few minutes digging into the upcoming PegaWorld conference, and what attendees should anticipate at the event. The complete show notes for this episode can be found at twimlai.com/go/573

    Data Rights, Quantification and Governance for Ethical AI with Margaret Mitchell - #572

    Play Episode Listen Later May 12, 2022 41:56


    Today we close out our coverage of the ICLR series joined by Meg Mitchell, chief ethics scientist and researcher at Hugging Face. In our conversation with Meg, we discuss her participation in the WikiM3L Workshop, as well as her transition into her new role at Hugging Face, which has afforded her the ability to prioritize coding in her work around AI ethics. We explore her thoughts on the work happening in the fields of data curation and data governance, her interest in the inclusive sharing of datasets and creation of models that don't disproportionately underperform or exploit subpopulations, and how data collection practices have changed over the years.  We also touch on changes to data protection laws happening in some pretty uncertain places, the evolution of her work on Model Cards, and how she's using this and recent Data Cards work to lower the barrier to entry to responsibly informed development of data and sharing of data. The complete show notes for this episode can be found at twimlai.com/go/572

    Studying Machine Intelligence with Been Kim - #571

    Play Episode Listen Later May 9, 2022 52:13


    Today we continue our ICLR coverage joined by Been Kim, a staff research scientist at Google Brain, and an ICLR 2022 Invited Speaker. Been, whose research has historically been focused on interpretability in machine learning, delivered the keynote Beyond interpretability: developing a language to shape our relationships with AI, which explores the need to study AI machines as scientific objects, in isolation and with humans, which will provide principles for tools, but also is necessary to take our working relationship with AI to the next level.  Before we dig into Been's talk, she characterizes where we are as an industry and community with interpretability, and what the current state of the art is for interpretability techniques. We explore how the Gestalt principles appear in neural networks, Been's choice to characterize communication with machines as a language as opposed to a set of principles or foundational understanding, and much much more. The complete show notes for this episode can be found at twimlai.com/go/571

    Advances in Neural Compression with Auke Wiggers - #570

    Play Episode Listen Later May 2, 2022 37:09


    Today we're joined by Auke Wiggers, an AI research scientist at Qualcomm. In our conversation with Auke, we discuss his team's recent research on data compression using generative models. We discuss the relationship between historical compression research and the current trend of neural compression, and the benefit of neural codecs, which learn to compress data from examples. We also explore the performance evaluation process and the recent developments that show that these models can operate in real-time on a mobile device. Finally, we discuss another ICLR paper, “Transformer-based transform coding”, that proposes a vision transformer-based architecture for image and video coding, and some of his team's other accepted works at the conference.  The complete show notes for this episode can be found at twimlai.com/go/570

    Mixture-of-Experts and Trends in Large-Scale Language Modeling with Irwan Bello - #569

    Play Episode Listen Later Apr 25, 2022 45:22


    Today we're joined by Irwan Bello, formerly a research scientist at Google Brain, and now on the founding team at a stealth AI startup. We begin our conversation with an exploration of Irwan's recent paper, Designing Effective Sparse Expert Models, which acts as a design guide for building sparse large language model architectures. We discuss mixture of experts as a technique, the scalability of this method, and it's applicability beyond NLP tasks the data sets this experiment was benchmarked against. We also explore Irwan's interest in the research areas of alignment and retrieval, talking through interesting lines of work for each area including instruction tuning and direct alignment. The complete show notes for this episode can be found at twimlai.com/go/569

    Daring to DAIR: Distributed AI Research with Timnit Gebru - #568

    Play Episode Listen Later Apr 18, 2022 51:31


    Today we're joined by friend of the show Timnit Gebru, the founder and executive director of DAIR, the Distributed Artificial Intelligence Research Institute. In our conversation with Timnit, we discuss her journey to create DAIR, their goals and some of the challenges shes faced along the way. We start is the obvious place, Timnit being “resignated” from Google after writing and publishing a paper detailing the dangers of large language models, the fallout from that paper and her firing, and the eventual founding of DAIR. We discuss the importance of the “distributed” nature of the institute, how they're going about figuring out what is in scope and out of scope for the institute's research charter, and what building an institution means to her. We also explore the importance of independent alternatives to traditional research structures, if we should be pessimistic about the impact of internal ethics and responsible AI teams in industry due to the overwhelming power they wield, examples she looks to of what not to do when building out the institute, and much much more! The complete show notes for this episode can be found at twimlai.com/go/568

    Hierarchical and Continual RL with Doina Precup - #567

    Play Episode Listen Later Apr 11, 2022 49:44


    Today we're joined by Doina Precup, a research team lead at DeepMind Montreal, and a professor at McGill University. In our conversation with Doina, we discuss her recent research interests, including her work in hierarchical reinforcement learning, with the goal being agents learning abstract representations, especially over time. We also explore her work on reward specification for RL agents, where she hypothesizes that a reward signal in a complex environment could lead an agent to develop attributes of intuitive intelligence. We also dig into quite a few of her papers, including On the Expressivity of Markov Reward, which won a NeruIPS 2021 outstanding paper award. Finally, we discuss the analogy between hierarchical RL and CNNs, her work in continual RL, and her thoughts on the evolution of RL in the recent past and present, and the biggest challenges facing the field going forward. The complete show notes for this episode can be found at twimlai.com/go/567

    Open-Source Drug Discovery with DeepChem with Bharath Ramsundar - #566

    Play Episode Listen Later Apr 4, 2022 29:11


    Today we're joined by Bharath Ramsundar, founder and CEO of Deep Forest Sciences. In our conversation with Bharath, we explore his work on the DeepChem, an open-source library for drug discovery, materials science, quantum chemistry, and biology tools. We discuss the challenges that biotech and pharmaceutical companies are facing as they attempt to incorporate AI into the drug discovery process, where the innovation frontier is, and what the promise is for AI in this field in the near term. We also dig into the origins of DeepChem and the problems it's solving for practitioners, the capabilities that are enabled when using this library as opposed to others, and MoleculeNET, a dataset and benchmark focused on molecular design that lives within the DeepChem suite. The complete show notes for this episode can be found at twimlai.com/go/566

    Claim This Week in Machine Learning & Artificial Intelligence (AI) Podcast

    In order to claim this podcast we'll send an email to with a verification link. Simply click the link and you will be able to edit tags, request a refresh, and other features to take control of your podcast page!

    Claim Cancel