POPULARITY
Scientific Sense ® by Gill Eapen: Prof. Matthias Kling is Professor of Photon Science and Applied Physics at Stanford University and the Director of the Science, Research and Development (SRD) Division at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. Please subscribe to this channel: https://www.youtube.com/c/ScientificSense?sub_confirmation=1 --- Send in a voice message: https://podcasters.spotify.com/pod/show/scientificsense/message Support this podcast: https://podcasters.spotify.com/pod/show/scientificsense/support
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]
Proteins are nature’s machines, performing tasks from transforming sunlight into useable energy to binding oxygen for transport through the body. These functions depend on structural arrangement of atoms within the protein, which was, until recently, only possible to measure statistically, in easily crystallized samples via conventional X-ray diffraction. In the past decade, X-ray Free Electron Lasers (XFELs), a new type of X-ray source, have begun to come online. Using ultra-bright, ultrafast X-ray pulses of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, this technology allows us to measure not only static pictures of protein structure but to record “molecular movies” of proteins in action. Series: "Lawrence Livermore National Lab Science on Saturday" [Science] [Show ID: 33432]