POPULARITY
In 1990, Harvard biologist Stephen Jay Gould posed an intriguing question. What would happen if we were able to re-run the Tape of Life? Would small perturbations to the starting conditions yield radically different outcomes, or would the course of evolution follow a familiar path, differing only in its details? The first worldview sees evolution as an essentially open-ended process of unlimited potential, while the second regards evolution as more predictable. If the latter is true, can we make any generalisations about the manner in which evolution is likely to precede on the largest scale? Which ‘macroevolutionary rules’ – if any – withstand scrutiny and allow us to elevate evolutionary biology from a historical to a predictive science? In his Inaugural Lecture as Professor of Evolutionary Palaeobiology, Matthew Wills considers some possible answers to these questions, drawing upon his own work and the broader field. He explores how most major groups evolve according to a common template and whether there is evidence for actively driven trends in morphological complexity on macroevolutionary scales. He also considers whether there are rules governing the demise of species at mass extinction events, and asks whether evolution in deep time can teach us anything about the likely effects of the current biodiversity crisis.
Melvyn Bragg and his guests discuss the Neanderthals.In 1856, quarry workers in Germany found bones in a cave which seemed to belong to a bear or other large mammal. They were later identified as being from a previously unknown species of hominid similar to a human. The specimen was named Homo neanderthalis after the valley in which the bones were found.This was the first identified remains of a Neanderthal, a species which inhabited parts of Europe and Central Asia from around 400,000 years ago. Often depicted as little more advanced than apes, Neanderthals were in fact sophisticated, highly-evolved hunters capable of making tools and even jewellery.Scholarship has established much about how and where the Neanderthals lived - but the reasons for their disappearance from the planet around 28,000 years ago remain unclear.With: Simon Conway MorrisProfessor of Evolutionary Palaeobiology at the University of CambridgeChris Stringer Research Leader in Human Origins at the Natural History Museum and Visiting Professor at Royal Holloway, University of LondonDanielle SchreveReader in Physical Geography at Royal Holloway, University of LondonProducer: Thomas Morris.
Melvyn Bragg and his guests discuss the Neanderthals.In 1856, quarry workers in Germany found bones in a cave which seemed to belong to a bear or other large mammal. They were later identified as being from a previously unknown species of hominid similar to a human. The specimen was named Homo neanderthalis after the valley in which the bones were found.This was the first identified remains of a Neanderthal, a species which inhabited parts of Europe and Central Asia from around 400,000 years ago. Often depicted as little more advanced than apes, Neanderthals were in fact sophisticated, highly-evolved hunters capable of making tools and even jewellery.Scholarship has established much about how and where the Neanderthals lived - but the reasons for their disappearance from the planet around 28,000 years ago remain unclear.With: Simon Conway MorrisProfessor of Evolutionary Palaeobiology at the University of CambridgeChris Stringer Research Leader in Human Origins at the Natural History Museum and Visiting Professor at Royal Holloway, University of LondonDanielle SchreveReader in Physical Geography at Royal Holloway, University of LondonProducer: Thomas Morris.
Melvyn Bragg and his guests discuss the Neanderthals.In 1856, quarry workers in Germany found bones in a cave which seemed to belong to a bear or other large mammal. They were later identified as being from a previously unknown species of hominid similar to a human. The specimen was named Homo neanderthalis after the valley in which the bones were found.This was the first identified remains of a Neanderthal, a species which inhabited parts of Europe and Central Asia from around 400,000 years ago. Often depicted as little more advanced than apes, Neanderthals were in fact sophisticated, highly-evolved hunters capable of making tools and even jewellery.Scholarship has established much about how and where the Neanderthals lived - but the reasons for their disappearance from the planet around 28,000 years ago remain unclear.With: Simon Conway MorrisProfessor of Evolutionary Palaeobiology at the University of CambridgeChris Stringer Research Leader in Human Origins at the Natural History Museum and Visiting Professor at Royal Holloway, University of LondonDanielle SchreveReader in Physical Geography at Royal Holloway, University of LondonProducer: Thomas Morris.
Melvyn Bragg and guests discuss the Cambrian period when there was an explosion of life on Earth. In the Selkirk Mountains of British Columbia in Canada, there is an outcrop of limestone shot through with a seam of fine dark shale. A sudden mudslide into shallow water some 550 million years ago means that a startling array of wonderful organisms has been preserved within it. Wide eyed creatures with tentacles below and spines on their backs, things like flattened rolls of carpet with a set of teeth at one end, squids with big lobster-like arms. There are thousands of them and they seem to testify to a time when evolution took a leap and life on this planet suddenly went from being small, simple and fairly rare to being large, complex, numerous and dizzyingly diverse. It happened in the Cambrian Period and it's known as the Cambrian Explosion.But if this is the great crucible of life on Earth, what could have caused it? How do the strange creatures relate to life as we see it now? And what does the Cambrian Explosion tell us about the nature of evolution?With Simon Conway Morris, Professor of Evolutionary Palaeobiology, Cambridge University; Richard Corfield, Visiting Senior Lecturer at the Centre for Earth, Planetary, Space and Astronomical Research, Open University; Jane Francis, Professor of Palaeoclimatology, University of Leeds.
Melvyn Bragg and guests discuss the Cambrian period when there was an explosion of life on Earth. In the Selkirk Mountains of British Columbia in Canada, there is an outcrop of limestone shot through with a seam of fine dark shale. A sudden mudslide into shallow water some 550 million years ago means that a startling array of wonderful organisms has been preserved within it. Wide eyed creatures with tentacles below and spines on their backs, things like flattened rolls of carpet with a set of teeth at one end, squids with big lobster-like arms. There are thousands of them and they seem to testify to a time when evolution took a leap and life on this planet suddenly went from being small, simple and fairly rare to being large, complex, numerous and dizzyingly diverse. It happened in the Cambrian Period and it's known as the Cambrian Explosion.But if this is the great crucible of life on Earth, what could have caused it? How do the strange creatures relate to life as we see it now? And what does the Cambrian Explosion tell us about the nature of evolution?With Simon Conway Morris, Professor of Evolutionary Palaeobiology, Cambridge University; Richard Corfield, Visiting Senior Lecturer at the Centre for Earth, Planetary, Space and Astronomical Research, Open University; Jane Francis, Professor of Palaeoclimatology, University of Leeds.
Melvyn Bragg and guests discuss the theories of a grand design in the universe. The late evolutionary biologist Stephen Jay Gould argued that if you re-ran the tape of evolutionary history, an entirely different set of creatures would emerge. Man would not exist because the multitude of random changes that resulted in us would never be repeated exactly the same way. Others disagree, arguing that there is a pattern that points to some kind of direction – even, perhaps, a design, a sense that some things are pre-ordained. Who were the original proponents of the idea of a grand design? Were they deliberately setting out to find a scientific theory that could sit alongside religious faith? On the other hand, can the concept of contingency – or the randomness of evolution - be compatible with a belief in God? With Simon Conway Morris, Professor of Evolutionary Palaeobiology at Cambridge University and author of The Crucible of Creation – the Burgess Shale and the Rise of Animals; Sandy Knapp, botanist at the Natural History Museum; John Brooke, Andreas Idreos Professor of Science and Religion at Oxford University.
Melvyn Bragg and guests discuss the theories of a grand design in the universe. The late evolutionary biologist Stephen Jay Gould argued that if you re-ran the tape of evolutionary history, an entirely different set of creatures would emerge. Man would not exist because the multitude of random changes that resulted in us would never be repeated exactly the same way. Others disagree, arguing that there is a pattern that points to some kind of direction – even, perhaps, a design, a sense that some things are pre-ordained. Who were the original proponents of the idea of a grand design? Were they deliberately setting out to find a scientific theory that could sit alongside religious faith? On the other hand, can the concept of contingency – or the randomness of evolution - be compatible with a belief in God? With Simon Conway Morris, Professor of Evolutionary Palaeobiology at Cambridge University and author of The Crucible of Creation – the Burgess Shale and the Rise of Animals; Sandy Knapp, botanist at the Natural History Museum; John Brooke, Andreas Idreos Professor of Science and Religion at Oxford University.