Podcasts about prestalk

  • 2PODCASTS
  • 4EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 1, 1999LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about prestalk

Latest podcast episodes about prestalk

Geowissenschaften - Open Access LMU
Patterns of cell movement within the Dictyostelium slug revealed by cell type-specific, surface labeling of living cells

Geowissenschaften - Open Access LMU

Play Episode Listen Later Jan 1, 1994


There are cells acattered in the rear, prespore region of the Dictyostelium slug that share many of the properties of the prestalk cells and that are therefore called anterior-like cells (ALCs). By placing the gene encoding a cell surface protein under the control of an ALC-specific promoter and immunologically labeling the living cells, we analyze the movement of ALCs within the slug. There is a posterior to anterior cellular flow, and the ALCs change their movement pattern as they enter the prestalk zone. Prestalk cells are periodically shed from the migrating slug. They must be replaced if the correct ratio of prestalk to prespore cells is to be maintained, and we present evidence for the trans-differentiation of prespore into prestalk cells, with ALCs functioning as intermediates in the transition. The slug has, therefore, a surprisingly dynamic structure, both with respect to cellular differentiation and cell movement.

Geowissenschaften - Open Access LMU
Three-dimensional scroll waves organize Dictyostelium slugs

Geowissenschaften - Open Access LMU

Play Episode Listen Later Jan 1, 1992


To test the hypothesis that periodic signals and chemotaxis direct later morphogenesis in Dictyostelium discoideum, we investigated cell behavior and cell movement in slugs. Trails of neutral red-stained prestalk and anterior-like cells were recorded by high-resolution digital image processing. Neutral red-stained anterior-like cells in the prespore zone of slugs move straight forward in the direction of slug migration and, furthermore, show coherent periodic cell movement. In contrast, cells in the prestalk zone move along completely different trajectories. Prestalk cells move perpendicular to the direction of slug migration; that is, they rotate around the tip. The cell movement data show that the chemotactic signal in the slug propagates as a three-dimensional scroll wave in the prestalk zone and as a planar wave in the prespore zone. The different behavior of prestalk and prespore cells is most likely caused by a difference in the oscillatory properties of the two cell types. We provide evidence that the slug stage of Dictyostelium behaves like an excitable system and that a (twisted) scroll wave organizes slug formation and migration.

Geowissenschaften - Open Access LMU
Analysis of optical density wave propagation and cell movement in the cellular slime mould Dictyostelium discoideum

Geowissenschaften - Open Access LMU

Play Episode Listen Later Jan 1, 1991


We have studied optical density wave propagation during aggregation of the cellular slime mould Dictyostelium discoideum in a quantitative manner by digital image analysis. The waves are mostly single ended spiral waves starting from an aggregation center. We can measure a variety of parameters such as oscillation frequency, wave propagation velocity and wave shape. This allows the construction of dispersion curves under a variety of experimental conditions. During later development where the optical density waves are no longer visible we have started to measure movement of fluorescently labelled cells. Our main conclusions from these measurements are that the cells continue to move chemotactically to periodic signlas both in aggregates and in slugs. There is a dramatic difference in the movement pattern of prestalk and prespore cells: Prestalk cells move perpendicular to the long axis of the slug, they are most likely organized by a scroll wave. Prespore cells seem to move almost perpendicular to the prestalk cells, in the direction of the tip. This behaviour is explained on the basis of different relay properties of prespore and prestalk cells.

Biologie - Open Access LMU - Teil 01/02
Cell Sorting daring Pattern Formation in Dictyostelium

Biologie - Open Access LMU - Teil 01/02

Play Episode Listen Later Jan 1, 1981


Formation of the prestalk-prespore pattern in Dictyostelium was investigated in slugs and submerged clumps of cells. Prestalk and prespore cells were identified by staining with vital dyes, which are shown to be stable cell markers. Dissociated slug cells reaggregate and form slugs that contain a prestalk-prespore pattern indistinguishable from the original pattern. The pattern forms by sorting out of stained prestalk cells from unstained prespore cells. Sorting also occurs in clumps of dissociated slug cells submerged in liquid or agar. A pattern arises in 2 h in which a central core of stained cells is surrounded by a periphery of unstained cells. Sorting appears to be due to differential chemotaxis of stained and unstained cells to cAMP since exogenous cAMP (>10−7 M) reverses the normal direction of sorting-out such that stained cells sort to the periphery of the clumps. Isolated portions of slugs regenerate a new prestalk-prespore pattern. Posterior isolates regenerate a pattern within 2 h due to sorting of a population of vitally stained ‘anterior-like’ cells present in posteriors. Anterior-like cells do not sort in intact slugs due to the influence of a diffusible inhibitor secreted by the anterior region. During posterior regeneration this signal is absent and anterior-like cells rapidly acquire the ability to sort. Anterior isolates regenerate a staining pattern more slowly than posterior isolates by a process that requires conversion of stained prestalk cells to unstained prespore cells. The results suggest that pattern formation in Dictyostelium consists of two processes: establishment of appropriate proportions of two cell types and establishment of the pattern itself by a mechanism of sorting-out.