POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.06.06.137844v1?rss=1 Authors: Bernstein, H. L., Lu, Y.-L., Botterill, J. J., Duffy, A. M., LaFrancois, J. J., Scharfman, H. E. Abstract: Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary cell type, granule cells (GCs), and GABAergic neurons which inhibit GCs. Prior studies suggest that the net effect of MCs is mainly to inhibit GCs, leading one to question why direct excitation of GCs is often missed. We hypothesized that MCs do have excitatory effects, but each GC is only excited weakly, at least under most experimental conditions. To address this hypothesis, MC axons were stimulated optogenetically in slices. A brief optogenetic stimulus to MC axons in the inner molecular layer (IML) led to a short-latency field EPSP (fEPSP) in the IML, suggesting there was a direct excitatory effect on GCs. Population spikes were negligible however, consistent with weak excitation. FEPSPs reflected AMPA/NMDA receptor-mediated EPSPs in GCs. EPSPs reached threshold after GC depolarization or facilitating NMDA receptors. GABAA and GABAB receptor-mediated IPSPs often followed EPSPs. At the network level, an optogenetic stimulus led to a brief, small facilitation of the PP-evoked population spike followed by a longer, greater inhibition. These data are consistent with rapid and selective GC firing by MCs (MC [->] GC) and disynaptic inhibition (MC [->] GABAergic neuron [->] GC). Notably, optogenetic excitation was evoked for both dorsal and ventral MCs, ipsilateral and contralateral MC axons, and two Cre lines. Together the results suggest a way to reconcile past studies and provide new insight into the balance of excitation and inhibition of GCs by MCs. Copy rights belong to original authors. Visit the link for more info
1. Intracellular microelectrodes were used to obtain recordings from neurons in layer II/III of rat frontal cortex. A bipolar electrode positioned in layer IV of the neocortex was used to evoke postsynaptic potentials. Graded series of stimulation were employed to selectively activate different classes of postsynaptic responses. The sensitivity of postsynaptic potentials and iontophoretically applied neurotransmitters to the non-N-methyl-D-asparate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was examined. 2. As reported previously, low-intensity electrical stimulation of cortical layer IV evoked short-latency early excitatory postsynaptic potentials (eEPSPs) in layer II/III neurons. CNQX reversibly antagonized eEPSPs in a dose-dependent manner. Stimulation at intensities just subthreshold for activation of inhibitory postsynaptic potentials (IPSPs) produced long-latency (10 to 40-ms) EPSPs (late EPSPs or 1EPSPs). CNQX was effective in blocking 1EPSPs. 3. With the use of stimulus intensities at or just below threshold for evoking an action potential, complex synaptic potentials consisting of EPSP-IPSP sequences were observed. Both early, Cl(-)-dependent and late, K(+)-dependent IPSPs were reduced by CNQX. This effect was reversible on washing. This disinhibition could lead to enhanced excitability in the presence of CNQX. 4. Iontophoretic application of quisqualate produced a membrane depolarization with superimposed action potentials, whereas NMDA depolarized the membrane potential and evoked bursts of action potentials. At concentrations up to 5 microM, CNQX selectively antagonized quisqualate responses. NMDA responses were reduced by 10 microM CNQX. D-Serine (0.5-2 mM), an agonist at the glycine regulatory site on the NMDA receptor, reversed the CNQX depression of NMDA responses.
1. Intracellular recordings were obtained from neurons in layer II/III of rat frontal cortex. Single-electrode current- and voltage-clamp techniques were employed to compare the sensitivity of excitatory postsynaptic potentials (EPSPs) and iontophoretically evoked responses to N-methyl-D-aspartate (NMDA) to the selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-2-APV). The voltage dependence of the amplitudes of the EPSPs before and after pharmacologic changes in the neuron's current-voltage relationship was also examined. 2. NMDA depolarized the membrane potential, increased the neuron's apparent input resistance (RN), and evoked bursts of action potentials. The NMDA-induced membrane current (INMDA) gradually increased with depolarization from -80 to -40 mV. The relationship between INMDA and membrane potential displayed a region of negative slope conductance in the potential range between -70 and -40 mV which was sufficient to explain the apparent increase in RN and the burst discharges during the NMDA-induced depolarization. 3. Short-latency EPSPs (eEPSPs) were evoked by low-intensity electrical stimulation of cortical layer IV. Changes in the eEPSP waveform following membrane depolarization and hyperpolarization resembled those of NMDA-mediated responses. However, the eEPSP was insensitive to D-2-APV applied at concentrations (up to 20 microM) that blocked NMDA responses. 4. EPSPs with latencies between 10 and 40 ms [late EPSPs (lEPSPs)] were evoked by electrical stimulation using intensities just subthreshold to the activation of IPSPs. The amplitude of the lEPSP increased with hyperpolarization and decreased with depolarization. 5. The lidocaine derivative QX-314, injected intracellularly, suppressed sodium-dependent action potentials and depolarizing inward rectification. Simultaneously, the amplitude of the eEPSP significantly decreased with depolarization. Neither the amplitude of a long-latency EPSP nor the amplitude of inhibitory postsynaptic potentials (IPSPs) was significantly affected by QX-314. 6. Cesium ions (0.5-2.0 mM) added to the bathing solution reduced or blocked hyperpolarizing inward rectification. Under these conditions, the amplitude of the eEPSP increased with hyperpolarization. The amplitude of the lEPSP was unaltered or enhanced. 7. The lEPSP was reversibly blocked by D-2-APV (5-20 microM), although the voltage-dependence of its amplitude did not resemble the action of NMDA on neocortical neurons.
1. To investigate excitatory postsynaptic potentials (EPSPs), intracellular recordings were performed in layer II/III neurons of the rat medial frontal cortex. The average resting membrane potential of the neurons was more than -75 mV and their average input resistance was greater than 20 M omega. The amplitudes of the action potentials evoked by injection of depolarizing current pulses were greater than 100 mV. The electrophysiological properties of the neurons recorded were similar to those of regular-spiking pyramidal cells. 2. Current-voltage relationships, determined by injecting inward and outward current pulses, displayed considerable inward rectification in both the depolarizing and hyperpolarizing directions. The steady-state input resistance increased with depolarization and decreased with hyperpolarization, concomitant with increases and decreases, respectively, in the membrane time constant. 3. Postsynaptic potentials were evoked by electrical stimulation via a bipolar electrode positioned in layer IV of the neocortex. Stimulus-response relationships, determined by gradually increasing the stimulus intensity, were consistent among the population of neurons examined. A short-latency EPSP [early EPSP (eEPSP)] was the response with the lowest threshold. Amplitudes of the eEPSP ranged from 4 to 8 mV. Following a hyperpolarization of the membrane potential, the amplitude of the eEPSP decreased. Upon depolarization, a slight increase in amplitude and duration was observed, accompanied by a significant increase in time to peak. 4. The membrane current underlying the eEPSP (eEPSC) was measured using the single-electrode voltage-clamp method. The amplitude of the eEPSC was apparently independent of the membrane potential in 8 of 12 neurons tested. In the other 4 neurons, the amplitude of the eEPSC increased with hyperpolarization and decreased with depolarization. 5. Higher stimulus intensities evoked, in addition to the eEPSP, a delayed EPSP [late EPSP (lEPSP)] in greater than 90% of the neurons tested. The amplitude of the lEPSP ranged from 12 to 20 mV, and the latency varied between 20 and 60 ms. The amplitude of the lEPSP varied with membrane potential, decreasing with depolarization and increasing following hyperpolarization. The membrane current underlying the lEPSP (lEPSC) displayed a similar voltage dependence. 6. At stimulus intensities that led to the activation of inhibitory postsynaptic potentials (IPSPs), the lEPSP was no longer observed.
1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation. 2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus). 3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization. 4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen.