POPULARITY
La ruptura del núcleo celular puede favorecer la diseminacion de células tumorales. Es lo que se demostró en una investigación en Francia, al estudiar el fenómeno de la ruptura del núcleo celular, que que sucede cuando las células se comprimen. Esta ruptura deteriora su ADN y puede favorecer la diseminación de las células tumorales. Un hallazgo que arroja luz en este campo. Los resultados fueron publicados en la revista CELL. Cuando las células se multiplican y migran, éstas pueden comprimirse y su núcleo celular se fractura o se rompe. Este fenómeno puede provocar que su ADN se deteriore. La compresión de ciertas células puede ser tal que se produce una ruptura de su núcleo, provocando un deterioro del ADN. Esto puede favorecer la penetración de una enzima destructora, la TREX1. Este proceso podría explicar el origen de la multiplicación de las células tumorales en los conductos mamarios. Núcleo celular: proteger su ADN El núcleo de una célula tiene una función crucial: proteger el ADN y permitir que se utilice correctamente. Pero puede deformarse o incluso fracturarse temporalmente si la propia célula se comprime y se deforma, por ejemplo, durante la migración o la proliferación. Esta compresión provoca entonces daños en el ADN. Las consecuencias pueden ser el envejecimiento acelerado de las células sanas pero también la adquisición de propiedades invasivas por parte de las células tumorales de cáncer de mama. Esto es lo que acaba de demostrar un equipo de investigación del CNRS,el centro nacional francés de la investigación científica, el Instituto Curie y el Inserm, es decir, que esta ruptura del núcleo celular también puede favorecer la diseminación de células cancerígenas en los tumores de mama. Estos hallazgos podrían dar pistas para inhibir ciertos procesos y luchar mejor contra el cáncer. Aquí puede consultar la investigación. Los resultados de estas investigaciones científicas fueron publicados en la prestigiosa revista CELL. Entrevistada: Sonia Agüera Gonzalez, inmunóloga y segunda autora del estudio publicado en CELL. Otros temas relacionados con la investigación en el cáncer: Carmen Garrido, gran premio Ruban Rose por su investigación en el cáncer de pecho Proyecto In Vivo: cápsulas para hablar con humor de la investigación en cáncer
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.05.216739v1?rss=1 Authors: Kosicki, M., Allen, F., Bradley, A. Abstract: Repair of Cas9-induced double-stranded breaks results primarily in formation of small indels, but can also cause potentially harmful large deletions. While mechanisms leading to the creation of small indels are relatively well understood, very little is known about the origins of large deletions. Using a novel library of clonal mouse embryonic stem cells bona fide deficient for 32 DNA repair genes, we have shown that large deletion frequency increases in cells impaired for non-homologous end joining and decreases in cells deficient for the central resection gene Nbn and the microhomology-mediated end joining gene Polq. Across deficient clones, increase in large deletion frequency was closely correlated with the increase in the extent of microhomology and the size of small indels, implying a continuity of repair processes across different genomic scales. Furthermore, by targeting diverse genomic sites, we identified examples of repair processes that were highly locus-specific, discovering a novel role for exonuclease Trex1. Finally, we present evidence that indel sizes increase with the overall efficiency of Cas9 mutagenesis. These findings may have impact on both basic research and clinical use of CRISPR-Cas9, in particular in conjunction with repair pathway modulation. Copy rights belong to original authors. Visit the link for more info
Pesquisadores do programa de células-tronco da Universidade da Califórnia em San Diego usaram uma doença rara, a Síndrome de Aicardi Goutieres (AGS), para investigar os mecanismos fundamentais do cérebro. Usando organóides corticais, ou cérebros, em um disco, eles monitoraram o neurodesenvolvimento enquanto descobriram novas informações sobre a correlação entre retrotransposão e neuroinflamação. Series: "O Canal de Células-Tronco" [Health and Medicine] [Spanish Language] [Show ID: 32916]
Investigadores en el Programa de Células Madre en UC San Diego han utilizado un raro desorden, Aicardi Goutieres (AGS), para explorar mecanismos fundamentales del cerebro. Utilizando organoides corticales, o cerebros en una placa, han seguido el neurodesarrollo a medida que encontraban nueva información sobre la relación entre los retrotransposones y la neuroinflamación. Series: "El Canal de Células Madre" [Health and Medicine] [Spanish Language] [Show ID: 32917]
Pesquisadores do programa de células-tronco da Universidade da Califórnia em San Diego usaram uma doença rara, a Síndrome de Aicardi Goutieres (AGS), para investigar os mecanismos fundamentais do cérebro. Usando organóides corticais, ou cérebros, em um disco, eles monitoraram o neurodesenvolvimento enquanto descobriram novas informações sobre a correlação entre retrotransposão e neuroinflamação. Series: "O Canal de Células-Tronco" [Health and Medicine] [Spanish Language] [Show ID: 32916]
Investigadores en el Programa de Células Madre en UC San Diego han utilizado un raro desorden, Aicardi Goutieres (AGS), para explorar mecanismos fundamentales del cerebro. Utilizando organoides corticales, o cerebros en una placa, han seguido el neurodesarrollo a medida que encontraban nueva información sobre la relación entre los retrotransposones y la neuroinflamación. Series: "El Canal de Células Madre" [Health and Medicine] [Spanish Language] [Show ID: 32917]
Researchers at the UC San Diego Stem Cell Program have used a rare disorder, Aicardi Goutieres (AGS), to explore fundamental brain mechanisms. By utilizing cortical organoids, or brains in a dish, they have tracked neurodevelopment while discovering new information about the relationship between retrotransposons and neuroinflammation. Series: "UCTV Prime" [Health and Medicine] [Show ID: 32743]
Researchers at the UC San Diego Stem Cell Program have used a rare disorder, Aicardi Goutieres (AGS), to explore fundamental brain mechanisms. By utilizing cortical organoids, or brains in a dish, they have tracked neurodevelopment while discovering new information about the relationship between retrotransposons and neuroinflammation. Series: "UCTV Prime" [Health and Medicine] [Show ID: 32743]
Researchers at the UC San Diego Stem Cell Program have used a rare disorder, Aicardi Goutieres (AGS), to explore fundamental brain mechanisms. By utilizing cortical organoids, or brains in a dish, they have tracked neurodevelopment while discovering new information about the relationship between retrotransposons and neuroinflammation. Series: "UCTV Prime" [Health and Medicine] [Show ID: 32743]
Researchers at the UC San Diego Stem Cell Program have used a rare disorder, Aicardi Goutieres (AGS), to explore fundamental brain mechanisms. By utilizing cortical organoids, or brains in a dish, they have tracked neurodevelopment while discovering new information about the relationship between retrotransposons and neuroinflammation. Series: "UCTV Prime" [Health and Medicine] [Show ID: 32743]