POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Das Einkomponentensystem CadC in Escherichia coli zählt zur Gruppe der ToxR-ähnlichen Transkriptionsregulatoren und aktiviert bei niedrigem pH-Wert die Expression des cadBA-Operons, einem Säure-induzierbaren Lysin-Decarboxylase-System. Transkriptionsregulatoren der ToxR-Familie zeichnen sich durch einen gemeinsamen modularen Aufbau aus und bestehen aus einer periplasmatischen Sensordomäne, einer Transmembranhelix und einer zytoplasmatischen Effektordomäne. Die Signalwahrnehmung, -weiterleitung und -verarbeitung erfolgt bei den ToxR-ähnlichen Transkriptionsregulatoren innerhalb eines einzelnen Proteins. Die molekularen Mechanismen der Reizwahrnehmung durch CadC sind bekannt, die Signalweiterleitung und -verarbeitung im Zytoplasma sind hingegen weitgehend ungeklärt. In CadC ist ein zytoplasmatischer Linker (51 Aminosäuren) essentiell für die Signaltransduktion von der sensorischen Domäne zur DNA-Bindedomäne. Im ersten Teil dieser Arbeit wurde der Mechanismus der Signalweiterleitung von der sensorischen Domäne zur DNA-Bindedomäne untersucht. Mit Hilfe der Kernspinresonanzspektroskopie konnte gezeigt werden, dass die Linkerregion unstrukturiert vorliegt. Im Rahmen einer umfangreichen Mutagenesestudie wurde beobachtet, dass sowohl eine Vielzahl an Aminosäuresubstitutionen (Veränderungen der Ladung, der Rigidität oder der Wahrscheinlichkeit zur Bildung einer α-Helix) als auch die Verlängerung des CadC-Linkers zu keiner funktionellen Beeinträchtigung führte. Jedoch wurde die Signalverarbeitung im Zytoplasma durch Verkürzung des Linkers modifiziert und verursachte ein invertiertes Expressionsprofil des Zieloperons cadBA oder die Entkopplung der Expression vom externen pH. Der Linkerregion in CadC konnte keine Rolle in der Oligomerisierung zugeordnet werden. Unabhängig vom Linker wurde in einer in vivo Interaktionsstudie eine pH-abhängige Interaktion (pH < 6,8) zwischen CadC-Monomeren gezeigt. Im zweiten Teil dieser Arbeit wurde die Röntgenkristallstruktur (2,0 Ångström) und in einem parallelen Ansatz die NMR-Struktur (0,46 backbone RMSD) der zytoplasmatischen Effektordomäne in CadC als erste dreidimensionale Struktur der DNA-Bindedomäne eines ToxR-ähnlichen Regulators aufgeklärt. In der Struktur von CadC1-107 wurde ein „winged Helix-Turn-Helix“-Motiv aus der Familie der OmpR-ähnlichen Transkriptionsregulatoren beobachtet. Im Gegensatz zu der Topologie bereits gelöster OmpR-ähnlichen Regulatoren enthält CadC am Übergang von DNA-Bindedomäne und Linkerregion einen zusätzlichen β-Strang (β-Strang 7), welcher sich stabilisierend auf die DNA-Bindung auswirken könnte. Im dritten Teil dieser Arbeit wurde der DNA-Bindemechanismus von CadC an den cadBA-Promotor untersucht. In in vitro Versuchen zur Bindung von löslichen CadC-Varianten an DNA konnte eine sehr geringe Dissoziationsrate beobachtet werden. Somit ist nicht die Affinität zur DNA sondern die Stimulus-abhängige Interaktion von CadC mit der α-Untereinheit der RNA-Polymerase essentiell für die Aktivierung des cadBA-Operons. Außerdem wurden, basierend auf der Kristallstruktur der DNA-Bindedomäne von CadC Aminosäuresubstitutionen durchgeführt. Die Aminosäure His66 in der Erkennungshelix α3 ist an der Interaktion mit der großen Furche der DNA beteiligt, während die Aminosäuren Lys95 und Arg96 die Interaktion mit der kleinen Furche der DNA vermitteln. Die Ergebnisse dieser Arbeit postulieren ein Modell zur Signalverarbeitung in CadC, in welchem die Signalwahrnehmung im Periplasma zu konformationellen Veränderungen des unstrukturierten CadC-Linkers führt und somit die räumliche Positionierung der DNA-Bindedomänen im CadC-Dimer ermöglicht wird.
A method for the determination of relaxed silicate liquid molar volume and expansivity at temperatures just above the glass transition is discussed. The method involves the comparison of heat capacity and molar expansivity in the glass transition region. Glassy and liquid heat-capacity data are obtained using differential scanning calorimetry, and glassy thermal expansion data are obtained using scanning dilatometry. The molar expansivity of the liquid is calculated by a fictive temperature normalization of the relaxation behavior of both the heat capacity and the molar expansivity in the glass transition region, with the normalized heat capacity curve being used to extend the dilatometric data into the liquid temperature range. This comparison is based upon the assumed equivalence of the parameters describing the relaxation of volume and enthalpy. The molar expansivity of relaxed sodium trisilicate (Na2Si3O7) has been determined in this manner at temperatures above the glass transition temperature. This low-temperature determination of liquid molar expansivity has been tested against high-temperature liquid expansivity data obtained from high temperature Pt double bob Archimedean buoyancy measurements. The low-temperature molar expansivity (26.43±0.83xl0~4 cm3 mole"lβC_1 at 540°C) determined in this manner agrees within error with the high-temperature molar expansivity (23.29±1.39xl0~4 cm3 mole^ºC1 at 1400°C). This dilatometric/calorimetric method of liquid molar expansivity determination greatly increases the temperature range accessible for thermal expansion measurements. A weighted linear fit to the combined low and high temperature volume data gives a molar expansivity of 23.0010.25x10^ cm3 mole^ºC"1. The volume-temperature relationship thus derived reproduces the measured volumes from both dilatometry and densitometry with a RMSD value of 0.033 cm3 mole"1 or 0.14%. This represents a substantial increase in precision, which is especially important for liquids whose high liquidus temperatures restrict the temperature range accessible to liquid volume determinations.
The densities of 12 melts in the Na2O-FeO-Fe2O3-SiO2 system have been determined in equilibrium with air, in the temperature range of 1000–1500°C, using the double bob, Archimedean technique. Ferrous iron determinations of 100–200 mg samples, “dip” quenched from high temperature, indicate that all the melts investigated were highly oxidized under these experimental conditions. 57Fe Mössbauer spectra of glasses obtained by drop quenching 80 mg melt samples from loop equilibration runs yield Fe3+/Fe2+ data equivalent to that for the densitometry (dip) samples for all but the most viscous melt, and confirm that all but one melt equilibrated with air during the densitometry measurements. Melt densities range from 2.17 to 2.88 g/cm3 with a mean standard deviation (from replicate experiments) of 0.36%. Least squares regression of the density data at 1300, 1400 and 1500°C, was calculated, both excluding and including excess volume terms (herein named linear and nonlinear fits, respectively) and the root mean squared deviation (RMSD) of each regression was compared with the total experimental error. The partial molar volumes computed for linear fits for Na2O and SiO2 are similar to those previously reported for melts in the Na2O-Al2O3-SiO2 system (Steinet al., 1986). The partial molar volumes of Fe2O3 obtained in these linear fits are equal to those obtained by Shiraishi et al. (1978) in the FeO-Fe2O3-SiO2 system but 5 to 10% lower than reported by Mo et al. (1982) in multicomponent melts. The partial molar volume exhibited by Fe3+ in this system is representative of the partial molar volume of tetrahedrally coordinated Fe3+ in silicate melts.