Podcasts about rna polymerase

  • 17PODCASTS
  • 26EPISODES
  • 17mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 15, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about rna polymerase

Latest podcast episodes about rna polymerase

Speaking of Mol Bio
Therapeutic nucleic acids – a CDMO's view on mRNA

Speaking of Mol Bio

Play Episode Listen Later Sep 15, 2024 32:04


While some of us knew a good bit about mRNA prior to 2020, we all got a crash course on mRNA technology and its prophylactic and therapeutic potential as a result of the COVID pandemic and subsequent SARS CoV-2 vaccine development. In fact, most of us have now received at least one mRNA vaccine at this point. Our guest for this episode, Dr. Christian Cobaugh, Co-founder and CEO of Vernal Biosciences, was a passionate believer in mRNA medicines well before the pandemic. Join us to hear his story and his passion for this technology. He walks us through the molecular methods by which high-purity mRNAs are now made and purified, as well as going into the lipid nanoparticle technology by which they're commonly delivered. As a contract development and manufacturing provider, we get to learn about the state of the market and what clients of their care about today. As a seasoned expert in this space, Christian talks about the future potential of mRNA technology for applications such as personalized cancer vaccines. If you enjoy hearing smart people talk about interesting topics with a passion, you won't want to miss this episode! Subscribe to get future episodes as they drop and if you like what you're hearing we hope you'll share a review or recommend the series to a colleague.  Download Transcripts: Speaking of Mol Bio Podcast | Thermo Fisher Scientific - US Visit the Invitrogen School of Molecular Biology to access helpful molecular biology resources and educational content, and please share this resource with anyone you know working in molecular biology.

Talking Biotech Podcast
New Drugs that Repair Broken Genes

Talking Biotech Podcast

Play Episode Listen Later May 28, 2022 43:46 Very Popular


Many diseases do not have cures, yet from deleterious mutations in the genome. Many of these are rare disorders that do not benefit from extensive research or drug development. Current therapies mask symptoms more than solve the basis of the disorder. Dietrich Stephan of NewBase describes a novel custom drug design platform that shows amazing potential in animal models. A small oligonucelotide with a specific backbone can bind to its complementary sequence in DNA or RNA, derailing RNA polymerase, or dissociating other regulatory proteins.  The design is highly specific and shows great promise against a myriad of disorders, including Myotonic Dystrophy, Huntington's Disease, and various cancers. This episode features a deep dive into molecular biology, so please do not hesitate to ask questions, it is interesting technology. 

PaperPlayer biorxiv biochemistry
Mass spectrometric based detection of protein nucleotidylation in the RNA polymerase of SARS-CoV-2

PaperPlayer biorxiv biochemistry

Play Episode Listen Later Oct 7, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.07.330324v1?rss=1 Authors: Sussman, M. R., Conti, B. J., Kirchdoerfer, R. N. Abstract: Coronaviruses, like SARS-CoV-2, encode a nucleotidyl transferase in the N-terminal NiRAN domain of the non-structural protein (nsp) 12 protein within the RNA dependent RNA polymerase (RdRP). Though the substrate targets of the viral nucleotidyl transferase are unknown, NiRAN active sites are highly conserved and essential for viral replication. We show, for the first time, the detection and sequence location of GMP-modified amino acids in nidovirus RdRP-associated proteins using heavy isotope-assisted MS and MS/MS peptide sequencing. We identified lys-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of nucleotidylation in vitro that uses a phosphoramide bond to covalently attach with GMP. In SARS-CoV-2 replicase proteins, we demonstrate a unique O-linked GMP attachment on nsp7 ser-1, whose formation required the presence of nsp12. It is clear that additional nucleotidylation sites remain undiscovered, which includes the possibility that nsp12 itself may form a transient GMP adduct in the NiRAN active site that has eluted detection in these initial studies due to instability of the covalent attachment. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients. Copy rights belong to original authors. Visit the link for more info

PaperPlayer biorxiv biophysics
RNA polymerase clamp conformational dynamics: long-lived states and modulation by crowding, cations, and nonspecific DNA binding

PaperPlayer biorxiv biophysics

Play Episode Listen Later Oct 6, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.06.327965v1?rss=1 Authors: Mazumder, A., Wang, A., Uhm, H., Ebright, R. H., Kapanidis, A. N. Abstract: The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Forster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ~ 0.3-0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes >1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation. Copy rights belong to original authors. Visit the link for more info

Thesis Thursday
Ramsey Martz

Thesis Thursday

Play Episode Listen Later Sep 15, 2020 5:06


Hello! My name is Ramsey Martz, and I am a senior at the University of Arizona. I am a Biochemistry…

PaperPlayer biorxiv biochemistry
Kinetic-Mechanistic Evidence for Which E. coli RNA Polymerase-{lambda}PR Open Promoter Complex Initiates and for Stepwise Disruption of Contacts in Bubble Collapse

PaperPlayer biorxiv biochemistry

Play Episode Listen Later Sep 11, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.11.293670v1?rss=1 Authors: Plaskon, D., Henderson, K., Felth, L., Molzahn, C., Evensen, C., Dyke, S., Shkel, I., Record, T. Abstract: In transcription initiation, specific contacts between RNA polymerase (RNAP) and promoter DNA are disrupted as the RNA-DNA hybrid advances into the cleft, resulting in escape of RNAP. From the pattern of large and small rate constants for steps of initiation at {lambda}PR promoter at 19{degrees}C, we proposed that in-cleft interactions are disrupted in extending 3-mer to 5-mer RNA, -10 interactions are disrupted in extending 6-mer to 9-mer, and -35 interactions are disrupted in extending 10-mer to 11-mer, allowing RNAP to escape. Here we test this mechanism and determine enthalpic and entropic activation barriers of all steps from kinetic measurements at 25{degrees}C and 37{degrees}C. Initiation at 37{degrees}C differs significantly from expectations based on lower-temperature results. At low concentration of the second iNTP (UTP), synthesis of full-length RNA at 37{degrees}C is slower than at 25{degrees}C and no transient short RNA intermediates are observed, indicating a UTP-dependent bottleneck step early in the 37{degrees}C mechanism. Analysis reveals that the 37{degrees}C {lambda}PR OC (RPO) cannot initiate and must change conformation to a less-stable initiation complex (IC) capable of binding the iNTP. We find that IC is the primary {lambda}PR OC species below 25{degrees}C, and therefore conclude that IC must be the I3 intermediate in RPO formation. Surprisingly, Arrhenius activation energy barriers to five steps where RNAP-promoter in-cleft and -10 contacts are disrupted are much smaller than for other steps, including a negative barrier for the last of these steps. We interpret these striking effects as enthalpically-favorable, entropically-unfavorable, stepwise bubble collapse accompanying disruption of RNAP contacts. Copy rights belong to original authors. Visit the link for more info

Thesis Thursday
Marisa Lester

Thesis Thursday

Play Episode Listen Later Sep 10, 2020 4:49


Bridgitte Talks with marisa Lester about Thesis Thursday. Why is it important to students? Why is it important for Listeners?…

PaperPlayer biorxiv biophysics
Residence Time Analysis of RNA Polymerase Transcription Dynamics: A Bayesian Sticky HMM Approach

PaperPlayer biorxiv biophysics

Play Episode Listen Later Jul 29, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.07.28.132373v1?rss=1 Authors: Kilic, Z., Sgouralis, I., Presse, S. Abstract: The time spent by a single RNA polymerase (RNAP) at specific locations along the DNA, termed "residence time", reports on the initiation, elongation and termination stages of transcription. At the single molecule level, this information can be obtained from dual ultra-stable optical trapping experiments, revealing a transcriptional elongation of RNAP interspersed with residence times of variable duration. Successfully discriminating between long and short residence times was used by previous approaches to learn about RNAP's transcription elongation dynamics. Here, we propose an approach based on the Bayesian sticky hidden Markov models that treats all residence times, for an E. Coli RNAP, on an equal footing without a priori discriminating between long and short residence times. In addition, our method has two additional advantages, we provide: full distributions around key point statistics; and directly treat the sequence-dependence of RNAP's elongation rate. By applying our approach to experimental data, we find: no emergent separation between long and short residence times warranted by the data; force dependent average residence time transcription elongation dynamics; limited effects of GreB on average backtracking durations and counts; and a slight drop in the average residence time as a function of applied force in RNaseA's presence. Copy rights belong to original authors. Visit the link for more info

The APsolute RecAP: Biology Edition
The APsolute Recap: Biology Edition - Central Dogma

The APsolute RecAP: Biology Edition

Play Episode Listen Later Apr 3, 2020 7:55


Episode 20 dives into all things transcription and translation with the Central Dogma! Don’t forget that you are what your proteins produce. The mRNA transcript is named after the Latin word for writing (1:50). RNA Polymerase will synthesize mRNA in the 5’-3’ direction, just like DNA polymerase. Do you know Chargaff’s rules? (3:22). The mRNA transcript will need to go through modification as it exits the nuclear pore (3:40). Translation involves mRNA, rRNA and tRNA to form the polypeptide (4:50). Almost all organisms use the same genetic code which supports common ancestry (6:00).The Question of the Day asks (6:48) “Which enzyme copies the viral RNA genome into DNA for the assembly of new viral progeny?”Thank you for listening to The APsolute RecAP: Biology Edition!(AP is a registered trademark of the College Board and is not affiliated with The APsolute RecAP. Copyright 2020 - The APsolute RecAP, LLC. All rights reserved.)Website:www.theapsoluterecap.comEMAIL:TheAPsoluteRecAP@gmail.comFollow Us:INSTAGRAMTWITTER

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
The role of NFE2L2 mutations and the epigenetic regulator UHRF1 in hepatoblastoma

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

Play Episode Listen Later Jan 13, 2016


Hepatoblastoma is a malignant disease of the liver. It accounts for about 1 % of all childhood cancers and is the most common malignant liver tumor in infancy. Hepatoblastoma is assumed to arise from immature liver progenitor cells by aberrant activation of genes important in the embryonic development. Based on its early manifestation it is generally assumed that hepatoblastoma displays a relatively normal genomic background. Whole-exome sequencing performed in our group identified hepatoblastoma as one of the genetically simplest tumors ever described, with recurrent mutations in beta-catenin (CTNNB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Based on this finding we performed targeted genotyping of a large cohort of primary hepatoblastomas, hepatoblastoma cell lines and transitional liver cell tumors and identified CTNNB1 and NFE2L2 to be mutated in 72.5 % and 9.8 % of cases, respectively. CTNNB1 is a key effector molecule of canonical WNT signaling pathway, a pathway that is essential in organogenesis and cellular processes such as cell proliferation, differentiation, survival and apoptosis. However, NFE2L2 is involved in the activation of the cellular antioxidant response to combat the harmful effects such as xenobiotics and oxidative stress. Interestingly, all NFE2L2 mutations were located in or adjacent to the DLG and ETGE motifs of the NFE2L2 protein that are needed to get recognized by the KEAP1/CUL3 complex for proteasomal degradation. Functional analysis showed that cells transfected with mutant NFE2L2 were insensitive to KEAP1-mediated downregulation of NFE2L2 signaling and that depletion of the NFE2L2 via siRNA downregulates the NAD(P)H dehydrogenase (quinine) 1 (NQO1), a target gene of NFE2L2, and inhibits proliferation. In the clinical setting, NQO1 overexpression in tumors was significantly associated with metastasis, vascular invasion, the adverse prognostic C2 gene signature as well as poor outcome. RNA sequencing in our group identified the ubiquitin-like with PHD and ring finger domains 1 (UHRF1), a protein known to preferentially bind to hemi-methylated DNA, to be highly overexpressed in hepatoblastoma tumors. UHRF1 is as a key regulator in the epigenetic crosstalk, by controlling DNA methylation and histone modification. Using immunoprecipitation, we were able to show that UHRF1 binds in concert with DNA methyltransferase 1 (DNMT1) and ubiquitin specific peptidase 7 (USP7) as a trimeric complex to promoter regions of tumor suppressor genes (TSG) relevant in hepatoblastoma, such as hedgehog interacting protein (HHIP), insulin-like growth factor binding protein 3 (IGFBP3), and secreted frizzled-related protein 1 (SFRP1). These genes are epigenetically silenced in hepatoblastoma, as evidenced by heavy DNA methylation and enrichment of the repressive H3K27me3 and H3K9me2 chromatin mark. Interestingly, knockdown of UHRF1 expression via RNA interference resulted in promoter demethylation, but no reactivation of TSG gene expression. Additionally, no effect on tumor cell proliferation was observed after UHRF1 knockdown. Chromatin immunoprecipitation experiments revealed a decrease of the repressive chromatin marks H3K27me3 and H3K9me2 after UHRF1 depletion, but neither a clear shift towards the active H3K4me2 chromatin mark nor enrichment of RNA Polymerase at the TSG loci was observed. Statistical analyses revealed that a high expression of UHRF1 was associated with advanced disease state and a worse overall survival. Taken together our study demonstrates that activation of WNT signaling in concert with activation of the NFE2L2-KEAP1 pathway might be the driving force in the development of liver cancers. Moreover, we defined aberrant NQO1 expression as a marker for adverse course of disease and poor outcome. In addition, we showed that an aberrant expression of the epigenetic regulator UHRF1 and its excessive binding on promoter regions results in methylation of TSGs. This may represent an important mechanism in the initial phases of embryonal tumorigenesis. However, UHRF1 depletion alone was not sufficient to re-induce TSG expression. Therefore, UHRF1 might be more useful as a biomarker for the prognosis of hepatoblastoma than a direct anti-cancer target for hepatoblastoma therapy.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Strukturelle und funktionale Analyse der Effektordomäne des pH-abhängigen Einkomponentensystems CadC in Escherichia coli

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later May 6, 2015


Das Einkomponentensystem CadC in Escherichia coli zählt zur Gruppe der ToxR-ähnlichen Transkriptionsregulatoren und aktiviert bei niedrigem pH-Wert die Expression des cadBA-Operons, einem Säure-induzierbaren Lysin-Decarboxylase-System. Transkriptionsregulatoren der ToxR-Familie zeichnen sich durch einen gemeinsamen modularen Aufbau aus und bestehen aus einer periplasmatischen Sensordomäne, einer Transmembranhelix und einer zytoplasmatischen Effektordomäne. Die Signalwahrnehmung, -weiterleitung und -verarbeitung erfolgt bei den ToxR-ähnlichen Transkriptionsregulatoren innerhalb eines einzelnen Proteins. Die molekularen Mechanismen der Reizwahrnehmung durch CadC sind bekannt, die Signalweiterleitung und -verarbeitung im Zytoplasma sind hingegen weitgehend ungeklärt. In CadC ist ein zytoplasmatischer Linker (51 Aminosäuren) essentiell für die Signaltransduktion von der sensorischen Domäne zur DNA-Bindedomäne. Im ersten Teil dieser Arbeit wurde der Mechanismus der Signalweiterleitung von der sensorischen Domäne zur DNA-Bindedomäne untersucht. Mit Hilfe der Kernspinresonanzspektroskopie konnte gezeigt werden, dass die Linkerregion unstrukturiert vorliegt. Im Rahmen einer umfangreichen Mutagenesestudie wurde beobachtet, dass sowohl eine Vielzahl an Aminosäuresubstitutionen (Veränderungen der Ladung, der Rigidität oder der Wahrscheinlichkeit zur Bildung einer α-Helix) als auch die Verlängerung des CadC-Linkers zu keiner funktionellen Beeinträchtigung führte. Jedoch wurde die Signalverarbeitung im Zytoplasma durch Verkürzung des Linkers modifiziert und verursachte ein invertiertes Expressionsprofil des Zieloperons cadBA oder die Entkopplung der Expression vom externen pH. Der Linkerregion in CadC konnte keine Rolle in der Oligomerisierung zugeordnet werden. Unabhängig vom Linker wurde in einer in vivo Interaktionsstudie eine pH-abhängige Interaktion (pH < 6,8) zwischen CadC-Monomeren gezeigt. Im zweiten Teil dieser Arbeit wurde die Röntgenkristallstruktur (2,0 Ångström) und in einem parallelen Ansatz die NMR-Struktur (0,46 backbone RMSD) der zytoplasmatischen Effektordomäne in CadC als erste dreidimensionale Struktur der DNA-Bindedomäne eines ToxR-ähnlichen Regulators aufgeklärt. In der Struktur von CadC1-107 wurde ein „winged Helix-Turn-Helix“-Motiv aus der Familie der OmpR-ähnlichen Transkriptionsregulatoren beobachtet. Im Gegensatz zu der Topologie bereits gelöster OmpR-ähnlichen Regulatoren enthält CadC am Übergang von DNA-Bindedomäne und Linkerregion einen zusätzlichen β-Strang (β-Strang 7), welcher sich stabilisierend auf die DNA-Bindung auswirken könnte. Im dritten Teil dieser Arbeit wurde der DNA-Bindemechanismus von CadC an den cadBA-Promotor untersucht. In in vitro Versuchen zur Bindung von löslichen CadC-Varianten an DNA konnte eine sehr geringe Dissoziationsrate beobachtet werden. Somit ist nicht die Affinität zur DNA sondern die Stimulus-abhängige Interaktion von CadC mit der α-Untereinheit der RNA-Polymerase essentiell für die Aktivierung des cadBA-Operons. Außerdem wurden, basierend auf der Kristallstruktur der DNA-Bindedomäne von CadC Aminosäuresubstitutionen durchgeführt. Die Aminosäure His66 in der Erkennungshelix α3 ist an der Interaktion mit der großen Furche der DNA beteiligt, während die Aminosäuren Lys95 und Arg96 die Interaktion mit der kleinen Furche der DNA vermitteln. Die Ergebnisse dieser Arbeit postulieren ein Modell zur Signalverarbeitung in CadC, in welchem die Signalwahrnehmung im Periplasma zu konformationellen Veränderungen des unstrukturierten CadC-Linkers führt und somit die räumliche Positionierung der DNA-Bindedomänen im CadC-Dimer ermöglicht wird.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06
Structure and function of human mitochondrial RNA polymerase elongation complex

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Mar 24, 2014


Mitochondria are often described as molecular power stations of the cell as they generate most of the energy that drives cellular processes. Mitochondria are eukaryotic organelles with bacterial origin that contain an extra-nuclear source of genetic information. Although most mitochondrial proteins are encoded in the nucleus, the mitochondrial genome still encodes key components of the oxidative phosphorylation machinery that is the major source for cellular adenosine 5’-triphosphate (ATP). The mitochondrial genome is transcribed by a singlesubunit DNA-dependent RNA polymerase (RNAP) that is distantly related to the RNAP of bacteriophage T7. Unlike its T7 homolog, mitochondrial RNA polymerase (mtRNAP) relies on two transcription factors, TFAM and TFB2M, to initiate transcription. The previously solved structure of free mtRNAP has revealed a unique pentatricopeptide repeat (PPR) domain, a N-terminal domain (NTD) that resembles the promoter-binding domain of T7 RNAP and a C-terminal catalytic domain (CTD) that is highly conserved in T7 RNAP. The CTD adopts the canonical right-hand fold of polymerases of the pol A family, in which its ‘thumb’, ‘palm’ and ‘fingers’ subdomains flank the active center. Since the structure represents an inactive “clenched” conformation with a partially closed active center, only limited functional insights into the mitochondrial transcription cycle have been possible so far. This work reports the first crystal structure of the functional human mtRNAP elongation complex, determined at 2.65 Å resolution. The structure reveals a 9-base pair DNA-RNA hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related T7 RNAP indicate conserved mechanisms for substrate binding and nucleotide incorporation, but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without NTD refolding. The intercalating hairpin that melts DNA during mtRNAP and T7 RNAP initiation additionally promotes separation of RNA from DNA during mtRNAP elongation. The structure of the mtRNAP elongation complex (this work) and free mtRNAP (previously published) demonstrate that mtRNAP represents an evolutionary intermediate between singlesubunit and multisubunit polymerases. Furthermore, it illustrates the adaption of a phage-like RNAP to a new role in mitochondrial gene expression.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06

Tue, 21 Jan 2014 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/17390/ https://edoc.ub.uni-muenchen.de/17390/1/Engel_Christoph.pdf Engel, Christoph ddc:540, ddc:500, Fakultät für Chemie und Pharmazie

structure christoph engel chemie fakult pharmazie ddc:500 rna polymerase ddc:540 transcription regulation
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Thu, 12 Dec 2013 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/16565/ https://edoc.ub.uni-muenchen.de/16565/1/Schueller_Roland.pdf Schueller, Roland ddc:570, ddc:500, Fakultät für Biologie

code biologie fakult ddc:500 ddc:570 rna polymerase
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
Die Verteilung transkribierender RNA-Polymerase I auf ribosomaler DNA

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19

Play Episode Listen Later Jul 11, 2013


Thu, 11 Jul 2013 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/15919/ https://edoc.ub.uni-muenchen.de/15919/1/Orban_Mathias.pdf Orban, Mathias ddc:610, ddc:600, Medizinische Fakultä

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
RNA polymerase I domain architecture and basis of rRNA cleavage

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Jan 25, 2012


Wed, 25 Jan 2012 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/14677/ https://edoc.ub.uni-muenchen.de/14677/1/Jennebach_Stefan.pdf Jennebach, Stefan ddc:540, ddc:500, Fakultät für Chemie und Pharmazie

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Molecular Basis of Rrn3-regulated RNA Polymerase I Initiation

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Dec 5, 2011


Eukaryotic nuclear transcription is carried out by three different Polymerases (Pol), Pol I, Pol II and Pol III. Among these, Pol I is dedicated to transcription of the rRNA, which is the first step of ribosome biogenesis, and cell growth is regulated during Pol I transcription initiation by the conserved factor Rrn3/TIF-IA in yeast/human. A wealth of structural information is available on Pol II and its general transcription factors (GTFs). Recently, also the architectures of Pol I and Pol III have been described by electron microscopy and the additional subunits that are specific to Pol I and Pol III have been identified as orthologs of the Pol II transcription factors TFIIF and TFIIE. Nevertheless, we still lack information about the architecture of the Pol I initiation complex and structural data is missing explaining the regulation of Pol I initiation mediated by its central transcription initiation factor Rrn3. The Rrn3 structure solved in this study reveals a unique HEAT repeat fold and indicates dimerization of Rrn3 in solution. However, the Rrn3-dimer is disrupted upon Pol I binding. The Rrn3 structure further displays a surface serine patch. Phosphorylation of this patch represses human Pol I transcription (Mayer et al, 2005; Mayer et al, 2004), and a phospho-mimetic patch mutation prevents Rrn3 binding to Pol I in vitro, and reduces S. cerevisiae cell growth and Pol I gene occupancy in vivo. This demonstrates a conserved regulation mechanism of the Pol I-Rrn3 interaction. Crosslinking indicates that Rrn3 does not only interact with Pol I subunits A43/14, but the interface further extends past the RNA exit tunnel and dock domain to AC40/19. The corresponding region of Pol II binds the Mediator head (Soutourina et al., 2011) that co-operates with TFIIB (Baek et al, 2006). Consistent with this, the Rrn3 binding partner, core factor subunit Rrn7, is predicted to be a TFIIB homologue. Taken together, our results provide the molecular basis of Rrn3-regulated Pol I initiation and cell growth and indicate a universally conserved architecture of eukaryotic transcription initiation complexes.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Molecular basis of RNA polymerase III transcription repression by Maf1 & Structure of human mitochondrial RNA polymerase

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Jul 26, 2011


Topic I Molecular basis of RNA polymerase III transcription repression by Maf1 RNA polymerase III (RNAP III) is a conserved 17-subunit enzyme that transcribes genes encoding short untranslated RNAs such as transfer RNAs (tRNAs) and 5S ribosomal RNA (rRNA). These genes are essential and involved in fundamental processes like protein biogenesis; hence RNAP III activity needs to be tightly regulated. RNAP III is repressed upon stress and this is regulated by Maf1, a protein conserved from yeast to humans. Many stress pathways were shown to converge on Maf1 and result in its phosphorylation, followed by its nuclear import and eventual repression of RNAP III activity. However, the molecular mechanisms of this repression activity were not known at the beginning of these studies. This work establishes the mechanism of RNAP III specific transcription repression by Maf1. The crystal structure of Maf1 was solved. It has a globular fold with surface accessible NLS sequences, which sheds new light on already published results and explains how stress-induced phopshorylation leads to import of Maf1 into the nucleus. Additionally, cryo EM studies and competition assays show that Maf1 binds RNAP III at its clamp domain and thereby induces structural rearrangements of RNAP III, which inhibits the interaction with Brf1, a subunit of the transcription initiation factor TFIIIB. This specifically impairs recruitment of RNAP III to its promoters and implies that Maf1 is a repressor of transcription initiation. Competition and transcription assays show that Maf1 also binds RNAP III that is engaged in transcription, leaving RNAP III activity intact but preventing re-initiation. Topic II Structure of human mitochondrial RNA polymerase The nuclear-encoded human mitochondrial RNAP (mitoRNAP) transcribes the mitochondrial genome, which encodes rRNA, tRNAs and mRNAs. MitoRNAP is a single subunit (ss) polymerase, related to T7 bacteriophage and chloroplast polymerases. All share a conserved C-terminal core, whereas the N-terminal parts of mitoRNAP do not show any homology to other ss RNAPs. Unlike phage RNAPs, which are self-sufficient, human mitoRNAP needs two essential transcription factors for initiation, TFAM and TFB2M. Both of these factors are likely to control the major steps of transcription initiation, promoter binding and melting. Thus human mitoRNAP has evolved a different mechanism for transcription initiation and exhibits a unique transcription system. Structural studies thus far concentrated on the nuclear enzymes or phage RNAPs, whereas the structure of mitochondrial RNA polymerase remained unknown. The structural organization of human mitoRNAP and the molecular mechanisms of promoter recognition, binding and melting were subject of interest in these studies. In this work the crystal structure of human mitoRNAP was solved at 2.4 Å resolution and reveals a T7-like C-terminal catalytic domain, a N-terminal domain that remotely resembles the T7 promoter-binding domain (PBD), a novel pentatricopeptide repeat (PPR) domain, and a flexible N-terminal extension. MitoRNAP specific adaptions in the N-terminus include the sequestering of one of the key promoter binding elements in T7 RNAP, the AT-rich recognition loop, by the PPR domain. This sequestration and repositioning of the N-terminal domain explain the need for the additional initiation factor TFAM. The highly conserved active site within the C-terminal core was observed to bind a sulphate ion, a well known phosphate mimic, and thereby suggests conserved substrate binding and selection mechanisms between ss RNAPs. However, conformational changes of the active site were observed due to a movement of the adjacent fingers subdomain. The structure reveals a clenching of the active site by a repositioned fingers subdomain and an alternative position of the intercalating -hairpin. This explains why the conserved transcription factor TFB2M is required for promoter melting and initiation. A model of the mitochondrial initiation complex was build to further explore the initiation mechanism, and to rationalize the available biochemical and genetic data. The structure of mitoRNAP shows how this enzyme uses mechanisms for transcription initiation that differ from those used by phage and cellular RNAPs, and which may have enabled regulation of mitochondrial gene transcription and adaptation of mitochondrial function to changes in the environment.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Evolution of two modes of intrinsic RNA polymerase transcript cleavage

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later May 11, 2011


Wed, 11 May 2011 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/13694/ https://edoc.ub.uni-muenchen.de/13694/1/Ruan_Wenjie.pdf Ruan, Wenjie ddc:540, ddc:500, Fakultät für Chemie und Pharmazie

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Cryo-electron microscopic studies of RNA polymerase complexes

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Mar 21, 2011


Related RNA polymerases (RNAPs) carry out gene transcription all three domains of life. This thesis deals with the structure determination of RNAPs and their functional complexes from different species. Protein complexes were preserved in their native state in aqueous solution, imaged by cryo- transmission electron microscopy and structural models were obtained using the single particle reconstruction method. New and physiologically relevant insights into RNAPs subunit architecture, the general transcription mechanism and its regulation were gained. The structure of an archaeal RNA polymerase identified similarities to its eukaryotic counterpart, RNA polymerase II. The conservation of the overall enzyme architecture as well as the close resemblance of structural elements and functional surfaces needed for basic transcription mechanisms underlines the evolutionary relationship between archaeal and eukaryotic RNAPs. The comprehensive study of RNA polymerase III and its regulation by Maf1 gave profound insights into the molecular basis of how eukaryotic transcription is shutdown under stress conditions to ensure cell survival. Maf1 binds RNAP III at its clamp domain and rearranges a specific subcomplex needed for interaction with the initiation factor Brf1. This specifically impairs binding of RNAP III to its promoters and inhibits transcription initiation. Furthermore, it was demonstrated that Maf1 binds to RNAP III that is already engaged in transcription elongation, thus leaving activity intact but preventing re-initiation. Taken altogether, these results converge on the essential mechanism of RNAP III-specific transcription repression by Maf1.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06

Fri, 16 Jul 2010 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/12666/ https://edoc.ub.uni-muenchen.de/12666/1/Geiger_Sebastian.pdf Geiger, Sebastian ddc:540, ddc:500, Fakultät für Chemie und Pharmazie

Meet the Microbiologist
MTS2 - Seth Darst - RNA polymerase

Meet the Microbiologist

Play Episode Listen Later Sep 9, 2008 14:15


Seth Darst is a professor of Molecular Biophysics at the Rockefeller University in New York city, where his research centers on RNA polymerase, the enzyme at the heart of a cell’s ability to make protein from a set of DNA instructions. In this interview, I talk with Dr. Darst about how he got his start in research, whether computers will eventually be able to predict complex protein structures, and why eager young scientists shouldn’t miss their chance at postdoctoral training.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Synthesis of ribosomal RNA by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. In this thesis a reproducible large-scale purification protocol for Pol I from S. cerevisiae could be developed. Crystals were obtained, diffraction to < 4 Å could be recorded, however, the enormously complex non-crystallographic symmetry impeded structure solution. Switching to cryo-electron microscopy, the structure of the complete 14-subunit enzyme could be solved to 12 Å resolution, a homology model for the core enzyme could be generated, and the crystal structure of the subcomplex A14/43 could be solved. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor, and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3’-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2, and apparently enables rRNA proofreading and 3’-end trimming.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Charakterisierung der transkriptionellen Aktivierung des cadBA-Operons durch den Transmembranregulator CadC aus Escherichia coli

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jan 13, 2006


Das Cad-System von Escherichia coli gehört zu den pH-induzierbaren Aminosäure-Decarboxylase- Systemen. Der Aktivator des Cad-Systems ist der membrangebundene Transkriptionsregulator CadC. CadC ist gleichzeitig Sensor für die Umweltreize pH und Lysin, und Effektorprotein, das die Expression des cadBA-Operons induziert. Im Rahmen dieser Arbeit wurden der molekulare Mechanismus der transkriptionellen Aktivierung des cadBA-Operons durch CadC und verschiedene Modelle für die Aktivierung eines membranintegrierten Transkriptionsaktivators untersucht. Im Rahmen dieser Arbeit konnten durch Footprint-Analysen innerhalb der regulatorischen Region des cadBA-Operons die zwei CadC-Bindestellen Cad1 (erstreckt sich von bp -150 bis -112, relativ zum Transkriptionsstart des cadBA-Operons) und Cad2 (bp -89 bis -59) identifiziert werden. DNA-Bindeexperimente in vitro zeigten, dass CadC mit einer höheren Affinität an Cad1 als an Cad2 bindet. Die Affinität von CadC zu Cad1 und Cad2 wurde durch unterschiedliche pH-Werte oder durch Lysin und Cadaverin nicht signifikant beeinflusst. Die Analyse der Bindestellen Cad1 und Cad2 in vivo ergab, dass das Vorhandensein beider Bindestellen für die Induktion der cadBA-Expression durch Lysin und einen niedrigen externen pH-Wert essentiell ist. Desweiteren wurde die Repression des cadBA-Operons unter nicht-induzierenden Bedingungen durch den globalen Repressor H-NS untersucht. Deletionsanalysen der regulatorischen Region des cadBA-Operons indizierten zwei H-NS-Bindestellen stromaufwärts der CadC-Bindestellen. Rechner-gestützte Sequenzanalysen legten die Existenz von zwei weiteren H-NS-Bindestellen nahe, die mit den CadC-Bindestellen und der -35/-10-Region von PCad überlappen. In hns- Deletionsstämmen war die cadBA-Expression sowohl unter induzierenden als auch unter nicht-induzierenden Bedingungen signifikant erhöht. Für die Aktivierung des cadBA-Operons war CadC essentiell. Biochemische und molekularbiologische Untersuchungen zum Oligomerisationszustand von CadC indizierten, dass CadC Tetramere ausbildet. Die periplasmatische Domäne war für die Oligomerisierung von CadC essentiell. Die Tetramere traten sowohl unter induzierenden als auch unter nicht-induzierenden Bedingungen auf. Daher scheint eine Aktivierung von CadC durch eine Oligomerisierung von CadC-Monomeren, die durch Umgebungsbedingungen wie den pH-Wert und die Lysin-Konzentration moduliert wird, unwahrscheinlich. Basierend auf den oben angeführten Daten wurde ein Modell für die transkriptionelle Aktivierung des cadBA-Operons entwickelt. Demzufolge bildet H-NS unter nicht-induzierenden Bedingungen innerhalb der regulatorischen Region des cadBA-Operons einen Repressionskomplex. Unter induzierenden Bedingungen bindet CadC als Tetramer zunächst an die Bindestelle Cad1, wodurch die anschließende Bindung an Cad2 erleichtert und stabilisiert wird. Durch die Bindung von CadC wird der H-NS vermittelte Repressionskomplex aufgelöst, wodurch eine Interaktion der RNA-Polymerase mit der -35/-10-Region von PCad und die cadBA-Transkription ermöglicht werden. Verschiedene membranintegrierte Transkriptionsfaktoren in eukaryontischen Zellen werden durch eine Regulierte Proteolyse (RP) aktiviert. Biochemische und molekularbiologische Untersuchungen zum molekularen Mechanismus des membran-integrierten Transkriptionsaktivators CadC ergaben bisher keine Hinweise darauf, dass CadC unter induzierenden Bedingungen durch einen Mechanismus ähnlich den der Regulierten Proteolyse aktiviert wird. Um die Funktion der Transmembrandomäne und der periplasmatischen Domäne für die Aktivierung von CadC genauer zu analysieren, wurden verschiedene C-terminal verkürzte CadC-Derivate hinsichtlich ihrer Funktionalität untersucht. Dabei zeigte sich, dass eine Membranassoziation oder -integration von CadC für die Induktion der cadBA-Expression notwendig war. Desweiteren war die periplasmatische Domäne für die CadC-Aktivierung essentiell. In Zusammenarbeit mit dem Department für Physik der LMU München wurde ein in silico Modell für die Regulation der cadBA-Expression erstellt. Zur Überprüfung des Modells wurde die Expression des Cad-Systems während einer simulierten Magen-Passage in vivo analysiert. Die experimentellen Daten stimmten mit dem Modell sehr gut überein. Das Modell ist also in der Lage, die in vivo-Daten zu abzubilden. Ein weiterer Aspekt dieser Arbeit war die Untersuchung der genauen physiologischen Funktion des Cad-Systems. Es konnte nachgewiesen werden, dass das Cad-System eine wichtige Funktion für die Säureresistenz von E. coli bei extremen Säurestress bei pH-Werten

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Analyse der Funktion der NS-Proteine von klinischen HRSV-Isolaten

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Mar 10, 2005


HRSV ist eine häufige und weltweit verbreitete Ursache von Infektionen des Respirationstraktes. Es führt zu einer entzündlichen Erkrankung der respiratorischen Schleimhäute mit Mukosaödem, Hypersekretion und Bronchospasmus. Die Übertragung des viralen Erregers erfolgt durch Tröpfcheninfektion oder Kontakt mit kontaminierten Gegenständen. HRSV-Infektionen zeigen die höchste Inzidenz bei Säuglingen, vor allem in den ersten zwei bis sechs Lebensmonaten. Bei 25% bis 40% dieser Säuglinge nimmt die Erkrankung einen schweren Verlauf mit Befall des unteren Respirationstraktes in Form einer HRSV-Bronchiolitis oder -Pneumonie. Bei 0,5% bis 2,0% ist eine stationäre Behandlung im Krankenhaus erforderlich. Die Inzidenz nimmt wegen des zunehmend effektiveren Immunsystems mit dem Alter ab. Erwachsene und ältere Kinder zeigen meist keine Symptome bzw. Symptome einer leichten Erkältung. Reinfektionen im Laufe des Lebens sind häufig. Eine effektive kausale Therapie bei HRSV-Infektionen steht derzeit nicht zur Verfügung. Bei Patienten mit leichtem Krankheitsverlauf ist keine spezielle Behandlung erforderlich, therapiert wird symptomatisch. Aktuell ist keine spezifische Prävention in Form einer aktiven Impfung oder als effektive antivirale Therapie etabliert. Angesichts der hohen Inzidenz von HRSV-Infektionen und -Reinfektionen sowie der enormen gesundheitlichen und wirtschaftlichen Auswirkungen ist ein effektiver Impfstoff gegen HRSV als Forschungsziel vorrangig. Das Genom von HRSV, das zur Ordnung der Mononegavirales gehört, besteht aus einem negativ-orientierten RNA-Einzelstrang mit einer Länge von 15 222 Nukleotiden (beim A2-Stamm) und kodiert für zehn subgenomische mRNAs in der Reihenfolge 3’-leader, NS1, NS2, N, P, M, SH, G, F, M2(1+2), L, trailer-5’, die zur Expression von elf viralen Proteinen führen: fünf RNP-assoziierte Proteine, das sind das Nukleoprotein N, das Phosphoprotein P, die große katalytische Untereinheit L der RNA-Polymerase und der Transkriptionselongationsfaktor M2-1 sowie das nicht essentielle M2-2-Protein; vier Hüllproteine, dazu zählen das nicht-glykosylierte Matrixprotein M und drei Oberflächenproteine, im Einzelnen das Fusionsprotein F, das Anheftungsprotein G und das kleine hydrophobe Protein SH; zwei Nicht-Strukturproteine NS1 und NS2. NS1 und NS2 zeichnen die Pneumoviren vor allen anderen Viren der Ordnung der Mononegavirales aus. Beide NS-Proteine sind im Virion nur in Spuren nachweisbar, während sie in infizierten Zellen akkumulieren. Die beiden für die Proteine NS1 und NS2 kodierenden, nichtüberlappenden Gene liegen am 3‘-Ende des Genoms direkt im Anschluss an die leader-Region. NS1 und NS2 stimmen in den vier carboxyterminalen Aminosäuren überein, ansonsten weisen sie keine Sequenzähnlichkeiten auf. Das NS1-Gen hat eine Länge von 552 nt und kodiert für ein leicht saures Protein von 139 AS und 15,7 kD. Das NS2-Gen ist 503 nt lang und kodiert für ein basisches Protein von 124 AS und 14,7 kD. Die für die Ordnung der Mononegavirales charakteristische progressive Attenuation der Transkription sowie die Genlokalisation von NS1 und NS2 am 3‘-Ende lassen auf die höchste Transkriptionsrate für NS1- und NS2-mRNA unter den zehn HSRV-mRNA schließen, was auf eine bedeutende Rolle der NS1- und NS2-Proteine in infizierten Zellen hindeutet. NS1 und NS2 antagonisieren im Zusammenwirken die durch alpha-IFN und beta-IFN induzierte antivirale Antwort des Wirtsorganismus. Hierfür ist eine Koexpression beider NS-Proteine unbedingt erforderlich, ein NS-Protein allein zeigt keine derartige Aktivität. Der Mechanismus, mit dem HRSV die IFN-Antwort des Wirtsorganismus umgeht, ist unklar. In dieser Arbeit wurde die Funktion der NS-Proteine von klinischen HRSV-Isolaten aus fünf bis fünfzehn Monate alten Kindern untersucht. Durch die Anzucht der klinischen HRSV-Isolate in HEp-2-Zellkultur unter identischen Bedingungen wurden zunächst patientenabhängige Faktoren ausgeschaltet und damit die Grundlage für die Vergleichbarkeit der Wachstumseigenschaften der Isolate geschaffen. In den daraufhin erstellten Wachstumskurven konnten deutlich voneinander abweichende Wachstumverhalten der Isolate aufgezeigt werden. Der Befund, dass 3/4 der Bronchiolitis hervorrufenden HRS-Viren hohe infektiöse Titer (>106 infektiöse Viruspartikel/ ml an Tag 3) erreichten, während dies nur bei 1/3 der Bronchitis verursachenden Viren zu beobachten war, könnte auf eine Korrelation zwischen Wachstum in vitro und Pathogenität in vivo hindeuten. Um dies zu belegen, müsste eine größere Zahl von klinischen Isolaten analysiert werden. Die beiden Nicht-Strukturproteine versetzen HRSV in die Lage, die antivirale IFN-Antwort der Wirtszelle zu umgehen. Durch Behandlung von Virus-infizierten Zellkulturen mit IFN ließ sich nachweisen, dass alle klinischen HRSV-Isolate die Eigenschaft der IFN-Resistenz gleichermaßen besitzen und erst durch unphysiologisch hohe IFN Dosen eine wesentliche Inhibierung der Virusreplikation erreicht werden kann. Die in gleicher Weise ausgeprägte α-IFN-Resistenz bei den in Virulenz und Wachstumsgeschwindigkeit unterschiedlichen Viren deutete bereits darauf hin, dass diese Resistenz essentiell für alle klinischen RSV-Isolate ist, und dass zusätzliche Faktoren für das Maß der Aggressivität der Erreger verantwortlich sind. Mittels Nukleotid- und Aminosäuresequenzanalysen von NS1 und NS2 konnte dies weitgehend bestätigt werden. Anhand von RNA aus den HRSV-Isolaten wurde mit Hilfe des Enzyms Reverse Transkriptase cDNA von NS1 und NS2 synthetisiert, die nach dem Prinzip der PCR in vitro amplifiziert wurde. In anschließenden Klonierungsarbeiten wurden aus dem Vektor pBluescript II SK (–) und NS1-DNA bzw. NS1+NS2-DNA als Insert Plasmide konstruiert, in denen die Gensequenzen von NS1 und NS2 ermittelt und rechnergestützt in die entsprechenden Aminosäuresequenzen translatiert wurden. Die Analyse der NS-Sequenzen zeigte eine überraschend hohe Konservierung. Die Isolate waren einschließlich des Long-Stamms diesbezüglich untereinander sehr ähnlich. Diese Beobachtung stimmt mit der IFN-Resistenz überein und zeigt die Bedeutung der NS-Proteine. Die Ergebnisse dieser Arbeit deuten darauf hin, dass Abweichungen in den Sequenzen der übrigen Gene sowie patientenbezogene Faktoren wie Abwehrlage und anatomische Beschaffenheit des Respirationstraktes als Grund für die Unterschiede im Schweregrad der HRSV-Infektion eine Rolle spielen. Angesichts der stabilen Koexpression beider Nicht-Strukturproteine und des dadurch bedingten effektiven IFN-Escape sichern die Gene NS1 und NS2 die Überlebensfähigkeit von HRSV in vivo und stellen ebenso geeignete wie interessante Angriffspunkte in der Entwicklung eines attenuierten Lebendimpfstoffs dar.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
UV-B-Induzierte Genexpression bei der Buche Fagus sylvatica L.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Mar 20, 2000


Ziel dieser Arbeit war es, Veränderungen innerhalb weniger Stunden nach UV-B-Exposition auf Protein- und Transkriptionsebene bei 10-wöchigen Buchensämlingen Fagus sylvatica L. zu analysieren. Dazu wurden Buchensamen unter standardisierten Bedingungen angezogen und von dem Zeitpunkt der Keimung an unter einem UV-B/PAR-Verhältnis exponiert, das den natürlichen Umweltbedingungen sehr ähnlich ist. Die UV-B-Exposition der 10-wöchigen Buchensämlinge erfolgte in einer UV-B-Pflanzenkammer, die das Lichtspektrum des Sonnenlichts simulierte. Die in einer Zeitkinetik geernteten Primärblätter dienten als Ausgangsmaterial für die Daten in der vorliegenden Arbeit. Die 2D-PAGE der löslichen Gesamtproteine und in vitro translatierten Proteine wurde stets zweifach durchgeführt und jeweils die Gele mit der besten Auflösung als Einzelbestimmung ausgewertet. Die Untersuchungen auf Ebene des löslichen Gesamtproteins der Buche Fagus sylvatica L. erfolgten mittels einer Zeitkinetik über 1 Woche, wobei täglich 1 mal geerntet wurde. Die 2DPAGE Analyse ergab über die gesamte Zeitkinetik betrachtet 1 UV-B-induziertes Protein gegenüber der Starklicht-Kontrolle: Protein 28 (17 kDa; pI 6,8). Die 2D-Analysen auf löslicher Gesamtproteinebene stimmten mit den Daten auf in vitro Translationsebene überein, wobei die Effekte auf Transkriptionsebene wesentlich stärker waren. Insbesondere nach 3 und 6 h UV-B-Exposition konnten auf Transkriptebene eine 60%-ige und 90%-ige Reprimierung gezeigt werden. Diese Reprimierung war transient und auf Proteinebene in geringerem Ausmaß zeitlich verzögert nachzuweisen. Diese Daten gaben Hinweise dafür, daß bei der Buche Fagus sylvatica L. infolge UV-B-Exposition eine Regulation auf Transkriptionsebene stattgefunden hat und die drastische Reprimierung der Transkripte verschiedener Gene nur transient war. Da diese Effekte auf Proteinebene wesentlich schwächer waren, deutete das darauf hin, daß sich die Buchensämlinge innerhalb weniger Stunden an die UV-B-Exposition adaptierten. Auf in vitro Translationsebene gab es bei der Buche Fagus sylvatica L. 18 mRNAs, die unter Berücksichtigung der UV-B- und Starklicht-Tagesgänge direkt dem UV-B-Effekt zugeordnet werden konnten. Es wurde belegt, daß infolge erhöhter UV-B-Exposition 10 Transkripte neu vorhanden waren und die Transkripte von 8 Proteinen nicht mehr nachgewiesen werden konnten. Diesen charakteristischen Veränderungen unterlagen überwiegend saure und basische Proteine. Die Effekte waren zu unterschiedlichen Zeitpunkten der Kinetik zu sehen (7 h, 10 h, 18 h, 28 h und 31 h nach Versuchsbeginn). Die DDRT-PCR wurde eingesetzt, um UV-B-vermittelte Antworten auf Genebene in Buchenblättern zu identifizieren. Bei den isolierten cDNAs wurden geringe Homologien verschiedener Buchenklone in der TIGR-Arabidopsis thaliana-EST-Datenbank gefunden: UV-Breprimierte Buchenklone zeigten Ähnlichkeiten zur Peroxidase, zur „DNA directed RNA-Polymerase alpha chain“ und zu einem „ara-3, ras-related GTP-binding protein“. Durch UV-B-Exposition induzierte Buchenklone wiesen Homologien zu dem „ABI-3“, zu dem „phytochrome regulated gene“ und zur Squalen-Synthase auf. Die Sequenzen dieser Buchenklone wurden zum ersten Mal beschrieben. Erstmals wurde ein ribosomaler Klon L37 bei der Buche beschrieben. Die L37 mRNA wurde aufgrund erhöhter UV-B-Exposition transient induziert. Bei erhöhter Ozon-Behandlung erreichte das Transkript dieses Klons zwei zeitlich voneinander getrennte Maxima; das zweite Maximum (am 3. Tag der Behandlung, 1,6-fache Induktion) ging mit sichtbaren Ozon- Schäden an den jungen Seitentrieben der Buche einher. Die Funktion dieses Proteins ist bisher noch unbekannt. Für eine direkte Zuordnung der isolierten Klone zu den Proteinspots auf der 2D-PAGE müßte eine Sequenzierung der Proteinspots erfolgen. Die Menge der Proteinspots für eine Proteinsequenzierung war jedoch nicht ausreichend. Über die TIGR-Arabidopsis thaliana-EST-Datenbank wurde erstmalig ein nach UV-BExposition induzierter Buchenklon isoliert, der hohe Homologien zum „nascent polypeptide associated complex alpha chain“ aufwies. Dieses Transkript wurde bereits nach 3 h UV-BExposition transient induziert. Der durch Ozon-Exposition reprimierende Effekt wurde durch die kombinierte UV-B/Ozon-Exposition aufgehoben. Die UV-B-vermittelte Induktion dieser zwei Buchenklone unterstützten die auf der 2D-PAGE Analyse resultierende Hypothese, daß die Regulation nach UV-B-Exposition vor allem auf Transkriptionsebene stattzufinden scheint. Die Daten der vorliegenden Arbeit ergaben folgende Schlußfolgerungen: Das Differentielle Display wurde eingesetzt, um infolge UV-B-Exposition differentielle cDNAs in Buchenblättern zu klonieren. Mittels der durchgeführten Northern-Blots wurde gezeigt, daß die Veränderungen auf Transkriptebene durch erhöhte UV-B-Exposition bedingt waren. Die vorliegenden Daten belegten, daß 6 verschiedene Transkripte infolge UV-B-Exposition transient induziert wurden. Diese überwiegenden transienten Veränderungen wurden ebenso durch die Untersuchungen mittels 2D-PAGE auf löslicher Gesamtprotein- und Transkriptebene bestätigt. Das bedeutet, daß innerhalb kurzer Zeit eine Anpassung der Buche an die veränderten Umweltbedingungen erfolgte. Möglicherweise kann dies durch die Anzucht der Buchensämlinge unter UV-B und Schwachlicht begründet werden. Diese Bedingungen sind jedoch umweltrelevant, da die Pflanze in jungen Jahren unter schattigen Lichtbedingungen heranwächst. In der vorliegenden Arbeit wurden infolge abiotischer Streßbehandlung (erhöhtes UV-B) erstmals 2 eindeutig transient induzierte differentielle Buchenklone isoliert: der ribosomale Klon L37 und der „nascent polypeptide associated complex alpha chain“ Klon. Die durchgeführten Northern-Blot Analysen zeigten, daß sich diese 2 Klone als Kandidaten für Molekulare Marker zum Nachweis frühzeitiger UV-B-vermittelter Änderungen auf Transkriptebene bei Fagus sylvatica L. eignen.