POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.04.10.536202v1?rss=1 Authors: Gonzalez-Novo, R., Zamora Carreras, H., De Lope-Planelles, A., Lopez-Menendez, H., Roda-Navarro, p., Monroy, F., Wang, L., Toseland, C. P., Redondo-Munoz, J. Abstract: The interplay between cells and their surrounding microenvironment drives multiple cellular functions, including migration, proliferation, and cell fate transitions. The nucleus is a mechanosensitive organelle that adapts external mechanical and biochemical signals provided by the environment into nuclear changes with functional consequences for cell biology. However, the morphological and functional changes of the nucleus induced by 3D extracellular signals remain unclear. Here, we demonstrated that cells derived from 3D conditions show an aberrant nuclear morphology and mislocalization of lamin B1 from the nuclear periphery. We found that actin polymerization and protein kinase C (PKC) activity mediate the abnormal distribution of lamin B1 in 3D conditions-derived cells. Further experiments indicated that these cells show altered chromatin compaction, gene transcription and cellular functions such as cell viability and migration. By combining biomechanical techniques, such as force compression and single-nucleus analysis by atomic force microscopy, optical tweezers, and super-resolution microscopy, we have determined that the nucleus from 3D conditions-derived cells show a different mechanical behaviour and biophysical signature than the nucleus from control cells. Together, our work substantiates novel insights into how the extracellular environment alters the cell biology by promoting consistent changes in the chromatin, morphology, lamin B1 distribution, and the mechanical response of the nucleus. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
When cellular reducing enzymes fail to shield the cell from increased amounts of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, DNA and proteins are damaged and cellular transcription networks are activated. This condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing agents. Redox sensitive genes, like the zinc finger transcription factor early growth response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C (PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but rather worsen their outcome. Here, we review the currently available data on Egr-1 related signal transduction cascades in response to oxidative stress in the progression of epidemiologically significant diseases. Knowing the molecular pathways behind the pathology will greatly enhance our ability to identify possible targets for the development of new therapeutic strategies.
Objective: Ursodeoxycholic acid (UDCA) exerts anticholestatic effects in part by protein kinase C (PKC)-dependent mechanisms. Its taurine conjugate, TUDCA, is a cPKCa agonist. We tested whether protein kinase A (PKA) might contribute to the anticholestatic action of TUDCA via cooperative cPKCa-/PKA-dependent mechanisms in taurolithocholic acid (TLCA)-induced cholestasis. Methods: In perfused rat liver, bile flow was determined gravimetrically, organic anion secretion spectrophotometrically, lactate dehydrogenase (LDH) release enzymatically, cAMP response-element binding protein (CREB) phosphorylation by immunoblotting, and cAMP by immunoassay. PKC/PKA inhibitors were tested radiochemically. In vitro phosphorylation of the conjugate export pump, Mrp2/Abcc2, was studied in rat hepatocytes and human Hep-G2 hepatoma cells. Results: In livers treated with TLCA (10 mmol/l)+TUDCA (25 mmol/l), combined inhibition of cPKC by the cPKCselective inhibitor Go¨6976 (100 nmol/l) or the nonselective PKC inhibitor staurosporine (10 nmol/l) and of PKA by H89 (100 nmol/l) reduced bile flow by 36% (p,0.05) and 48% (p,0.01), and secretion of the Mrp2/ Abcc2 substrate, 2,4-dinitrophenyl-S-glutathione, by 31% (p,0.05) and 41% (p,0.01), respectively; bile flow was unaffected in control livers or livers treated with TUDCA only or TLCA+taurocholic acid. Inhibition of cPKC or PKA alone did not affect the anticholestatic action of TUDCA. Hepatic cAMP levels and CREB phosphorylation as readout of PKA activity were unaffected by the bile acids tested, suggesting a permissive effect of PKA for the anticholestatic action of TUDCA. Rat and human hepatocellular Mrp2 were phosphorylated by phorbol ester pretreatment and recombinant cPKCa, nPKCe, and PKA, respectively, in a staurosporine-sensitive manner. Conclusion: UDCA conjugates exert their anticholestatic action in bile acid-induced cholestasis in part via cooperative post-translational cPKCa-/PKA-dependent mechanisms. Hepatocellular Mrp2 may be one target of bile acid-induced kinase activation.
Human peritoneal mesothelial cells (HMC) contribute to the activation and control of inflammatory processes in the peritoneum by their potential to produce various inflammatory mediators. The present study was designed to assess the effect of glucose, the osmotic active compound in most commercially available peritoneal dialysis fluids, on the synthesis of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured HMC. The MCP-1 concentration in the cell supernatants was determined by enzyme-linked immunosorbent assay and the MCP-1 mRNA expression was examined using Northern blot analysis. Incubation of HMC with glucose (30-120 mM) resulted in a time- and concentration-dependent increase in MCP-1 protein secretion and mRNA expression. After 24 h the MCP-1 synthesis was increased from 2.8 +/- 0.46 to 4.2 +/- 0.32 ng/10(5) cells (n = 5, p < 0.05) in HMC treated with 60 mM glucose. In contrast, osmotic control media containing either the metabolically inert monosaccharide mannitol or NaCl did not influence MCP-1 production. The stimulating effect of high glucose on MCP-1 expression in HMC was mimicked by activation of protein kinase C (PKC) with the phorbol ester PMA (20 nM). Coincubation of the cells with glucose and the specific PKC inhibitor Ro 31-8220 completely blunted glucose-mediated MCP-1 expression. In summary, our results indicate that glucose induces MCP-1 synthesis by a PKC-dependent pathway. Since osmotic control media did not increase MCP-1 release, it is suggested that the effect of glucose is mainly related to metabolism and not to hyperosmolarity. These data may in part explain elevated steady-state levels of MCP-1 found in the dialysis effluent of continuous ambulatory peritoneal dialysis patients. Copyright 2001 S. Karger AG. Basel.
Matrix metalloproteinase 9 (MMP-9), also known as 92-kD type IV collagenase/gelatinase, is believed to play a critical role in tumor invasion and metastasis. Here, we report that MMP-9 was constitutively released from the human promyelocytic cell line HL-60 as determined by zymographic analysis. Tumor necrosis factor-alpha (TNF-alpha) enhanced the enzyme release threefold to fourfold and the protein kinase C (PKC) activator and differentiation inducer 12-O-tetradecanoylphorbol-13- acetate (TPA) eightfold to ninefold. Gelatinase induction by TNF-alpha and TPA was inhibited by actinomycin D or cycloheximide, indicating that de novo protein synthesis was required. Neutralizing monoclonal antibodies to TNF-alpha (anti-TNF-alpha) decreased the basal MMP-9 release of these cells. In addition, these antibodies also significantly interfered with the TPA-induced enzyme release. Agents that inhibit TNF-alpha expression in HL-60 cells, such as pentoxifylline and dexamethasone, completely abrogated both the constitutive and TPA-evoked MMP-9 release. Diethyldithiocarbamate, which is known to stimulate TNF-alpha production in HL-60 cells, exerted a positive effect on MMP-9 release in untreated cells but was inhibitory in TPA-treated HL-60 cells. The PKC inhibitor staurosporine at low concentrations (100 ng/mL) caused a significant augmentation of MMP-9 release in untreated cultures that was blocked by the addition of anti-TNF-alpha. High concentrations (2 mumol/L) of staurosporine completely abolished the extracellular enzyme activity both in untreated and TPA-stimulated cells. These results suggest, that TNF- alpha is required for basal and PKC-mediated MMP-9 release in HL-60 leukemia cells. Thus, MMP-9 secretion may be regulated by TNF-alpha not only in a paracrine but also in an autocrine fashion. This may potentiate the matrix degradative capacity of immature leukemic cells in the processes of bone marrow egress and the evasion of these cells into peripheral tissue.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Cu2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4β-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the 1 subunit was expressed in combination with 2/δ, β and/or γ subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. β subunit moderated the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the 1 subunit, while the β subunit may play a mild modulatory role.