Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine…
Ludwig-Maximilians-Universität München
Thu, 1 Jan 2009 12:00:00 +0100 https://epub.ub.uni-muenchen.de/11304/1/Bretzel_Gisela.pdf Bretzel, Gisela
Background: Pancreatic infiltration by leucocytes represents a hallmark in acute pancreatitis. Although leucocytes play an active role in the pathophysiology of this disease, the relation between leucocyte activation, microvascular injury and haemorrhage has not been adequately addressed.Methods: We investigated intrapancreatic leucocyte migration, leucocyte extravasation and pancreatic microperfusion in different models of oedematous and necrotising acute pancreatitis in lys-EGFP-ki mice using fluorescent imaging and time-lapse intravital microscopy.Results: In contrast to the current paradigm of leucocyte recruitment, the initial event of leucocyte activation in acute pancreatitis was represented through a dose- and time-dependent occlusion of pancreatic capillaries by intraluminally migrating leucocytes. Intracapillary leucocyte accumulation (ILA) resulted in dense filling of almost all capillaries close to the area of inflammation and preceded transvenular leucocyte extravasation. ILA was also initiated by isolated exposure of the pancreas to interleukin 8 or fMLP, demonstrating the causal role of chemotactic stimuli in the induction of ILA. The onset of intracapillary leucocyte accumulation was strongly inhibited in LFA-1-/- and ICAM-1-/- mice, but not in Mac-1-/- mice. Moreover, prevention of intracapillary leucocyte accumulation led to the development of massive capillary haemorrhages and transformed mild pancreatitis into lethal haemorrhagic disease.Conclusions: ILA represents a novel protective and potentially lifesaving mechanism of haemostasis in acute pancreatitis. This process depends on expression of LFA-1 and ICAM-1 and precedes the classical steps of the leucocyte recruitment cascade.
Aim: To demonstrate that interference microscopy of flat mounted internal limiting membrane specimens clearly delineates cellular proliferations at the vitreomacular interface. Methods: ILM specimens harvested during vitrectomy were fixed in glutaraldehyde 0.05% and paraformaldehyde 2% for 24 h (pH 7.4). In addition to interference microscopy, immunocytochemistry using antibodies against glial fibrillar acidic protein (GFAP) and neurofilament (NF) was performed. After washing in phosphatebuffered saline 0.1 M, the specimens were flat-mounted on glass slides without sectioning, embedding or any other technique of conventional light microscopy. A cover slide and 49,6-diamidino-2-phenylindole (DAPI) medium were added to stain the cell nuclei. Results: Interference microscopy clearly delineates cellular proliferations at the ILM. DAPI stained the cell nuclei. Areas of cellular proliferation can be easily distinguished from ILM areas without cells. Immunocytochemistry can be performed without changing the protocols used in conventional microscopy. Conclusion: Interference microscopy of flat mounted ILM specimens gives new insights into the distribution of cellular proliferations at the vitreomacular interface and allows for determination of the cell density at the ILM. Given that the entire ILM peeled is seen en face, the techniques described offer a more reliable method to investigate the vitreoretinal interface in terms of cellular distribution compared with conventional microscopy.
Thu, 1 Jan 2009 12:00:00 +0100 http://gut.bmj.com/content/58/2/241.full.pdf+html https://epub.ub.uni-muenchen.de/14966/1/comparison_of_CT.pdf Kolligs, Frank T.; Reiser, M.F.; Göke, Burkhard; Seidel, D.; Schirra, Jörg; Diepolder, H.; Wagner, A.C.; Kramer, H.; Geisbüsch, Sarah; Lottes, A.; Nikolaou, Konstantin; Becker, C.R.; Horst, D.; Schäfer, C.; Nagel, D.; Stieber, P.; Graser, Anno
Thu, 1 Jan 2009 12:00:00 +0100 http://jnnp.bmj.com/content/80/4/449.short https://epub.ub.uni-muenchen.de/14974/1/Definite_multiple_system_atrophy_in_a_german_family.pdf Neumann, Manuela; Kretzschmar, Hans A.; Kammal, M.; Schmitt, I.; Wüllner, U. ddc:610, Medizin
Thu, 1 Jan 2009 12:00:00 +0100 http://jnnp.bmj.com/content/80/10/1181.short https://epub.ub.uni-muenchen.de/14987/1/A_variable_neurodegenerative_phenotype.pdf Meisel, A.; Zschenderlein, R.; Endres, M.; Siebert, E.; Lodi, T.; Baruffini, E.; Horvath, Rita; Prüss, H.; Stricker, S. ddc:610, Medizi
Background: Previous cross-sectional studies have shown that job change due to breathing problems at the workplace (respiratory work disability) is common among adults of working age. That research indicated that occupational exposure to gases, dust and fumes was associated with job change due to breathing problems, although causal inferences have been tempered by the cross-sectional nature of previously available data. There is a need for general population-based prospective studies to assess the incidence of respiratory work disability and to delineate better the roles of potential predictors of respiratory work disability.Methods: A prospective general population cohort study was performed in 25 centres in 11 European countries and one centre in the USA. A longitudinal analysis was undertaken of the European Community Respiratory Health Survey including all participants employed at any point since the baseline survey, 6659 subjects randomly sampled and 779 subjects comprising all subjects reporting physician-diagnosed asthma. The main outcome measure was new-onset respiratory work disability, defined as a reported job change during follow-up attributed to breathing problems. Exposure to dusts (biological or mineral), gases or fumes during follow-up was recorded using a job-exposure matrix. Cox proportional hazard regression modelling was used to analyse such exposure as a predictor of time until job change due to breathing problems.Results: The incidence rate of respiratory work disability was 1.2/1000 person-years of observation in the random sample (95% CI 1.0 to 1.5) and 5.7/1000 person-years in the asthma cohort (95% CI 4.1 to 7.8). In the random population sample, as well as in the asthma cohort, high occupational exposure to biological dust, mineral dust or gases or fumes predicted increased risk of respiratory work disability. In the random sample, sex was not associated with increased risk of work disability while, in the asthma cohort, female sex was associated with an increased disability risk (hazard ratio 2.8, 95% CI 1.3 to 5.9).Conclusions: Respiratory work disability is common overall. It is associated with workplace exposures that could be controlled through preventive measures.
Background and aims: Interleukin 26 (IL-26), a novel IL-10-like cytokine without a murine homologue, is expressed in T helper 1 (Th1) and Th17 cells. Currently, its function in human disease is completely unknown. The aim of this study was to analyse its role in intestinal inflammation.Methods: Expression studies were performed by reverse transcription-PCR (RT-PCR), quantitative PCR, western blot and immunohistochemistry. Signal transduction was analysed by western blot experiments and ELISA. Cell proliferation was measured by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. IL-26 serum levels were determined by an immunoluminometric assay (ILMA).Results: All examined intestinal epithelial cell (IEC) lines express both IL-26 receptor subunits IL-20R1 and IL-10R2. IL-26 activates extracellular signal-related kinase (ERK)-1/2 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) mitogen-activated protein (MAP) kinases, Akt and signal transducers and activators of transcription (STAT) 1/3. IL-26 stimulation increases the mRNA expression of proinflammatory cytokines but decreases cell proliferation. In inflamed colonic lesions of patients with Crohn's disease, an elevated IL-26 mRNA expression was found that correlated highly with the IL-8 and IL-22 expression. Immunohistochemical analysis demonstrated IL-26 protein expression in colonic T cells including Th17 cells expressing the orphan nuclear receptor RORtextgreekgt, with an increased number of colonic IL-26-expressing cells in active Crohn's disease.Conclusion: Intestinal cells express the functional IL-26 receptor complex. IL-26 modulates IEC proliferation and proinflammatory gene expression and its expression is upregulated in active Crohn's disease, indicating a role for this cytokine system in the innate host cell response during intestinal inflammation. For the first time, IL-26 expression is demonstrated in colonic RORtextgreekgt-expressing Th17 cells in situ, supporting a role for this cell type in the pathogenesis of Crohn's disease.
Thu, 1 Jan 2009 12:00:00 +0100 http://thorax.bmj.com/content/64/11/1007.2.full.html https://epub.ub.uni-muenchen.de/14993/1/Merkel_cell_polyomavirus.pdf Flaig, Michael J.; Puchta, Ursula; Ihrler, Stephan; Andres, Christian
Traditionally, Crohn's disease has been associated with a Th1 cytokine profile, while Th2 cytokines are modulators of ulcerative colitis. This concept has been challenged by the description of tolerising regulatory T cells (Treg) and by proinflammatory Th17 cells, a novel T cell population characterised by the master transcription factor RORtextgreekgt, the surface markers IL23R and CCR6, and by production of the proinflammatory cytokines IL17A, IL17F, IL21, IL22 and IL26, and the chemokine CCL20. Th17 cells differentiate under the influence of IL1textgreekb, IL6, IL21 and IL23. Recent studies indicate that TGFtextgreekb is essential not only for the development of murine Th17 cells but also for differentiation of human Th17 cells. TGFtextgreekb reciprocally regulates the differentiation of inflammatory Th17 cells and suppressive Treg subsets, with the concomitant presence of proinflammatory cytokines favouring Th17 cell differentiation. Several studies demonstrated an important role of Th17 cells in intestinal inflammation, particularly in Crohn's disease. Genome-wide association studies indicate that IL23R and five additional genes involved in Th17 differentiation (IL12B, JAK2, STAT3, CCR6 and TNFSF15) are associated with susceptibility to Crohn's disease and partly also to ulcerative colitis. Taken together, both Th1 and Th17 cells are important mediators of inflammation in Crohn's disease, although activities previously ascribed to IL12 may be mediated by IL23. Anti-IL12/IL23p40 antibody therapy, which targets both Th1 and Th17 cells, is effective in Crohn's disease. However, the complex relationship between Th1 and Th17 cells has not been completely analysed. This will be of great importance to delineate the specific contributions of these cells to Crohn's disease and other autoimmune diseases.
Germany has been an immigration country since the early 1950s. In December 2007, 6.7 million non-German citizens lived in the country. However, the total number of citizens with a migration background is 15–20 million, about 9 million of whom come from countries where sickle cell disease and thalassaemias are frequent. In a country with 82 million inhabitants health authorities are not worried by the presence of probably 1000–1500 sickle cell and 450 transfusion-dependent thalassaemia patients, and therefore no screening or preventive measures have been taken so far on a national scale. There are plans for a pilot project (1 year) to screen all newborns for sickle cell disease in obstetric hospitals in 4–5 cities with more than 20% migrants. Funding and lack of an infrastructure to provide counselling are major problems.
Background: Little is known about the asthma candidate gene neuropeptide S receptor 1 (NPSR1) in relation to environmental exposures, but recent evidences suggest its role as an effect modifier.Objectives: To explore the interaction between NPSR1 polymorphisms and environmental exposures related to farming lifestyle and to study the in vitro effects of lipopolysaccharide (LPS) stimulation on NPSR1 expression levels.Methods: We studied 3113 children from PARSIFAL, a European cross-sectional study on environmental/lifestyle factors and childhood allergy, partly focused on children brought up on a farm. Information on exposures and outcomes was primarily obtained from parental questionnaires. Seven tagging polymorphisms were analysed in a conserved haplotype block of NPSR1. Multivariate logistic regression was used to evaluate a multiplicative model of interaction. NPSR1 protein and messenger RNA (mRNA) levels in monocytes were measured after LPS stimulation by fluorescence activated cell sorting (FACS) and quantitative real-time polymerase chain reaction (PCR).Results: A strong interaction was seen between current regular contact to farm animals and several NPSR1 polymorphisms, particularly rs323922 and rs324377 (p
Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterised by accumulation of activated (myo)fibroblasts and excessive extracellular matrix deposition. The enhanced accumulation of (myo)fibroblasts may be attributed, in part, to the process of transforming growth factor textgreekb1 (TGFtextgreekb1)-induced epithelial--mesenchymal transition (EMT), the phenotypic switching of epithelial to fibroblast-like cells. Although alveolar epithelial type II (ATII) cells have been shown to undergo EMT, the precise mediators and mechanisms remain to be resolved. The objective of this study is to investigate the role of SNAI transcription factors in the process of EMT and in IPF.Methods: Using quantitative reverse transcription-PCR (RT-PCR), immunofluorescence, immunohistochemistry, western blotting, as well as gain- and loss-of-function studies and functional assays, the role of SNAI1 and SNAI2 in TGFtextgreekb1-induced EMT in ATII cells in vitro was assessed; and the expression of SNAI transcription factors was analysed in experimental and human IPF in vivo.Results: TGFtextgreekb1 treatment increased the expression and nuclear accumulation of SNAI1 and SNAI2, in concert with induction of EMT in ATII cells. SNAI overexpression was sufficient to induce EMT, and small interfering RNA (siRNA)-mediated SNAI depletion attenuated TGFtextgreekb1-induced ATII cell migration and EMT. SNAI expression was elevated in experimental and human IPF and localised to hyperplastic ATII cells in vivo.Conclusions: The results demonstrate that TGFtextgreekb1-induced EMT in ATII cells is essentially controlled by the expression and nuclear translocation of SNAI transcription factors. Increased SNAI1 and SNAI2 expression in experimental and human IPF in vivo suggests that SNAI-mediated EMT may contribute to the fibroblast pool in idiopathic pulmonary fibrosis.
Background: Restless legs syndrome (RLS) is associated with common variants in three intronic and intergenic regions in MEIS1, BTBD9, and MAP2K5/LBXCOR1 on chromosomes 2p, 6p and 15q.Methods: Our study investigated these variants in 649 RLS patients and 1230 controls from the Czech Republic (290 cases and 450 controls), Austria (269 cases and 611 controls) and Finland (90 cases and 169 controls). Ten single nucleotide polymorphisms (SNPs) within the three genomic regions were selected according to the results of previous genome-wide scans. Samples were genotyped using Sequenom platforms.Results: We replicated associations for all loci in the combined samples set (rs2300478 in MEIS1, p = 1.26×10-5, odds ratio (OR) = 1.47, rs3923809 in BTBD9, p = 4.11×10-5, OR = 1.58 and rs6494696 in MAP2K5/LBXCOR1, p = 0.04764, OR = 1.27). Analysing only familial cases against all controls, all three loci were significantly associated. Using sporadic cases only, we could confirm the association only with BTBD9.Conclusion: Our study shows that variants in these three loci confer consistent disease risks in patients of European descent. Among the known loci, BTBD9 seems to be the most consistent in its effect on RLS across populations and is also most independent of familial clustering.
Background and aims: The transcription factor nuclear factor kappa B (NF-kB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NFkB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene knock-out studies focused on the role of NF-kB in hepatocytes, whereas the role of NF-kB in Kupffer cells has not yet been investigated in vivo. Here we present a novel approach, which may be suitable for clinical application, to selectively target NF-kB in Kupffer cells and analyse the effects in experimental models of liver injury. Methods: NF-kB inhibiting decoy oligodeoxynucleotides were loaded upon gelatin nanoparticles (D-NPs) and their in vivo distribution was determined by confocal microscopy. Liver damage, NF-kB activity, cytokine levels and apoptotic protein expression were evaluated after lipopolysaccharide (LPS), D-galactosamine (GalN)/LPS, or concanavalin A (ConA) challenge and partial warm ischaemia and subsequent reperfusion, respectively. Results: D-NPs were selectively taken up by Kupffer cells and inhibited NF-kB activation. Inhibition of NF-kB in Kupffer cells improved survival and reduced liver injury after GalN/LPS as well as after ConA challenge. While anti-apoptotic protein expression in liver tissue was not reduced, pro-apoptotic players such as cJun N-terminal kinase (JNK) were inhibited. In contrast, selective inhibition of NF-kB augmented reperfusion injury. Conclusions: NF-kB inhibiting decoy oligodeoxynucleotide- loaded gelatin nanoparticles is a novel tool to selectively inhibit NF-kB activation in Kupffer cells in vivo. Thus, liver injury can be reduced in experimental fulminant hepatitis, but increased at ischaemia–reperfusion.
The outcome of Genome-Wide Association Studies (GWAS) has challenged the field of blood pressure (BP) genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany) to address (i) SNP coverage in 160 BP candidate genes; (ii) the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region+/-10 kb) covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11) to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb) revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P
Alternative mRNA processing mechanisms lead to multiple transcripts (i.e. splice isoforms) of a given gene which may have distinct biological functions. Microarrays like Affymetrix GeneChips measure mRNA expression of genes using sets of nucleotide probes. Until recently probe sets were not designed for transcript specificity. Nevertheless, the re-analysis of established microarray data using newly defined transcript-specific probe sets may provide information about expression levels of specific transcripts. In the present study alignment of probe sequences of the Affymetrix microarray HG-U133A with Ensembl transcript sequences was performed to define transcript-specific probe sets. Out of a total of 247,965 perfect match probes, 95,008 were designated “transcript-specific”, i.e. showing complete sequence alignment, no cross-hybridization, and transcript-, not only gene-specificity. These probes were grouped into 7,941 transcript-specific probe sets and 15,619 gene-specific probe sets, respectively. The former were used to differentiate 445 alternative transcripts of 215 genes. For selected transcripts, predicted by this analysis to be differentially expressed in the human kidney, confirmatory real-time RT-PCR experiments were performed. First, the expression of two specific transcripts of the genes PPM1A (PP2CA_HUMAN and P35813) and PLG (PLMN_HUMAN and Q5TEH5) in human kidneys was determined by the transcript-specific array analysis and confirmed by real-time RT-PCR. Secondly, disease-specific differential expression of single transcripts of PLG and ABCA1 (ABCA1_HUMAN and Q5VYS0_HUMAN) was computed from the available array data sets and confirmed by transcript-specific real-time RT-PCR. Transcript-specific analysis of microarray experiments can be employed to study gene-regulation on the transcript level using conventional microarray data. In this study, predictions based on sufficient probe set size and fold-change are confirmed by independent means.
In this study the predictive value of the combined dexamethasone/CRH test (DEX/CRH test) for acute antidepressant response was investigated. In 114 depressed inpatients suffering from unipolar or bipolar depression (sample 1) the DEX/CRH test was performed at admission and shortly before discharge. During their stay in the hospital patients received different antidepressant treatment regimens. At admission, the rate of nonsuppression (basal cortisol levels >75.3 nmol/l) was 24.6% and was not related to the later therapeutic response. Moreover, 45 out of 114 (39.5%) patients showed an enhancement of HPA axis function at discharge in spite of clinical improvement. In a second sample, 40 depressed patients were treated either with reboxetine or mirtazapine for 5 weeks. The DEX/CRH test was performed before, after 1 week, and after 5 weeks of pharmacotherapy. Attenuation of HPA axis activity after 1 week was associated with a more pronounced alleviation of depressive symptoms after 5-week mirtazapine treatment, whereas downregulation of HPA system activity after 5 weeks was related to clinical response to reboxetine. However, early improvement of HPA axis dysregulation was not necessarily followed by a beneficial treatment outcome. Taken together, performance of a single DEX/CRH test does not predict the therapeutic response. The best predictor for response seems to be an early attenuation of HPA axis activity within 1 or 2 weeks. However, early improvement of HPA system dysfunction is not a sufficient condition for a favourable response. Since a substantial part of depressive patients display a persistence of HPA axis hyperactivity at discharge, downregulation of HPA system function is not a necessary condition for acute clinical improvement either. Our data underline the importance of HPA axis dysregulation for treatment outcome in major depression, although restoration of HPA system dysfunction seems to be neither a necessary nor a sufficient determinant for acute treatment response.
The widely used atypical antipsychotic clozapine is a potent competitive antagonist at 5-HT(3) receptors which may contribute to its unique psychopharmacological profile. Clozapine binds to 5-HT(3) receptors of various species. However, the structural requirements of the respective binding site for clozapine remain to be determined. Differences in the primary sequences within the 5-HT(3A) receptor gene in schizophrenic patients may result in an alteration of the antipsychotic potency and/or the side effect profile of clozapine. To determine these structural requirements we constructed chimeras with different 5-HT(3A) receptor sequences of murine and human origin and expressed these mutants in human embryonic kidney (HEK) 293 cells. Clozapine antagonises recombinant mouse 5-HT(3A) receptors with higher potency compared to recombinant human 5-HT(3A) receptors. 5-HT activation curves and clozapine inhibition curves yielded the parameters EC(50) and IC(50) for all receptors tested in the range of 0.6 - 2.7 microM and 1.5 - 83.3 nM, respectively. The use of the Cheng-Prusoff equation to calculate the dissociation constant K(b) values for clozapine revealed that an extracellular sequence (length 86 aa) close to the transmembrane domain M1 strongly determines the binding affinity of clozapine. K(b) values of clozapine were significantly lower (0.3-1.1 nM) for receptors containing the murine sequence and higher when compared with receptors containing the respective human sequence (5.8-13.4 nM). Thus, individual differences in the primary sequence of 5-HT(3) receptors may be crucial for the antipsychotic potency and/or the side effect profile of clozapine.
Control of gammaherpesvirus infections requires a complex, well orchestrated immune response regulated by positive and negative co-signaling molecules. While the impact of co-stimulatory molecules has been addressed in various studies, the role of co-inhibitory receptors has not been tested. The ITIM-bearing CEACAM1 is an inhibitory receptor expressed by a variety of immune cells, including B, T and NK cells. Using Ceacam1(-/-) mice, we analyzed the in vivo function of CEACAM1 during acute and latent murine gammaherpesvirus 68 (MHV-68) infection. During acute lytic replication, we observed lower virus titers in the lungs of Ceacam1(-/-) mice than in WT mice. In contrast, during latency amplification, Ceacam1(-/-) mice displayed increased splenomegaly and a higher latent viral load in the spleen. Analysis of the immune response revealed increased virus-specific antibody levels in Ceacam1(-/-) mice, while the magnitude of the T cell-mediated antiviral immune response was reduced. These findings suggest that inhibitory receptors can modulate the efficacy of immune responses against gammaherpesvirus infections.
Immature dendritic cells (DC) represent potential clinical tools for tolerogenic cellular immunotherapy in both transplantation and autoimmunity. A major drawback in vivo is their potential to mature during infections or inflammation, which would convert their tolerogenicity into immunogenicity. The generation of immature DC from human bone marrow (BM) by low doses of GM-CSF (lowGM) in the absence of IL-4 under GMP conditions create DC resistant to maturation, detected by surface marker expression and primary stimulation by allogeneic T cells. This resistence could not be observed for BM-derived DC generated with high doses of GM-CSF plus IL-4 (highGM/4), although both DC types induced primary allogeneic T cell anergy in vitro. The estabishment of the anergic state requires two subsequent stimulations by immature DC. Anergy induction was more profound with lowGM-DC due to their maturation resistance. Together, we show the generation of immature, maturation-resistant lowGM-DC for potential clinical use in transplant rejection and propose a two-step-model of T cell anergy induction by immature DC.
In synucleinopathies, including Parkinson's disease, partially ubiquitylated alpha-synuclein species phosphorylated on serine 129 (P(S129)-alpha-synuclein) accumulate abnormally. Parkin, an ubiquitin-protein ligase that is dysfunctional in autosomal recessive parkinsonism, protects against alpha-synuclein-mediated toxicity in various models.We analyzed the effects of Parkin deficiency in a mouse model of synucleinopathy to explore the possibility that Parkin and alpha-synuclein act in the same biochemical pathway. Whether or not Parkin was present, these mice developed an age-dependent neurodegenerative disorder preceded by a progressive decline in performance in tasks predictive of sensorimotor dysfunction. The symptoms were accompanied by the deposition of P(S129)-alpha-synuclein but not P(S87)-alpha-synuclein in neuronal cell bodies and neuritic processes throughout the brainstem and the spinal cord; activation of caspase 9 was observed in 5% of the P(S129)-alpha-synuclein-positive neurons. As in Lewy bodies, ubiquitin-immunoreactivity, albeit less abundant, was invariably co-localized with P(S129)-alpha-synuclein. During late disease stages, the disease-specific neuropathological features revealed by ubiquitin- and P(S129)-alpha-synuclein-specific antibodies were similar in mice with or without Parkin. However, the proportion of P(S129)-alpha-synuclein-immunoreactive neuronal cell bodies and neurites co-stained for ubiquitin was lower in the absence than in the presence of Parkin, suggesting less advanced synucleinopathy. Moreover, sensorimotor impairment and manifestation of the neurodegenerative phenotype due to overproduction of human alpha-synuclein were significantly delayed in Parkin-deficient mice.These findings raise the possibility that effective compensatory mechanisms modulate the phenotypic expression of disease in parkin-related parkinsonism.
CGD is an immunodeficiency caused by deletions or mutations in genes that encode subunits of the leukocyte NADPH oxidase complex. Normally, assembly of the NADPH oxidase complex in phagosomes of certain phagocytic cells leads to a "respiratory burst", essential for the clearance of phagocytosed micro-organisms. CGD patients lack this mechanism, which leads to life-threatening infections and granuloma formation. However, a clear picture of the clinical course of CGD is hampered by its low prevalence (approximately 1:250,000). Therefore, extensive clinical data from 429 European patients were collected and analyzed. Of these patients 351 were males and 78 were females. X-linked (XL) CGD (gp91(phox) deficient) accounted for 67% of the cases, autosomal recessive (AR) inheritance for 33%. AR-CGD was diagnosed later in life, and the mean survival time was significantly better in AR patients (49.6 years) than in XL CGD (37.8 years), suggesting a milder disease course in AR patients. The disease manifested itself most frequently in the lungs (66% of patients), skin (53%), lymph nodes (50%), gastrointestinal tract (48%) and liver (32%). The most frequently cultured micro-organisms per episode were Staphylococcus aureus (30%), Aspergillus spp. (26%), and Salmonella spp. (16%). Surprisingly, Pseudomonas spp. (2%) and Burkholderia cepacia (
Atherosclerosis is the primary cause of coronary artery disease (CAD). There is increasing recognition that lesion composition rather than size determines the acute complications of atherosclerotic disease. Low serum adiponectin levels were reported to be associated with coronary artery disease and future incidence of acute coronary syndrome (ACS). The impact of adiponectin on lesion composition still remains to be determined. We measured serum adiponectin levels in 303 patients with stable typical or atypical chest pain, who underwent dual-source multi-slice CT-angiography to exclude coronary artery stenosis. Atherosclerotic plaques were classified as calcified, mixed or non-calcified. In bivariate analysis adiponectin levels were inversely correlated with total coronary plaque burden (r = -0.21, p = 0.0004), mixed (r = -0.20, p = 0.0007) and non-calcified plaques (r = -0.18, p = 0.003). No correlation was seen with calcified plaques (r = -0.05, p = 0.39). In a fully adjusted multivariate model adiponectin levels remained predictive of total plaque burden (estimate: -0.036, 95%CI: -0.052 to -0.020, p
[18F]Fluoro-3,4-dihydroxyphenyl-l-alanine (FDOPA) was one of the first successful tracers for molecular imaging by positron emission tomography (PET), and has proven immensely valuable for studies of Parkinson’s disease. Following intravenous FDOPA injection, the decarboxylated metabolite [18F] fluorodopamine is formed and trapped within terminals of the nigrostriatal dopamine neurons; reduction in the simple ratio between striatum and cerebellum is indicative of nigrostriatal degeneration. However, the kinetic analysis of dynamic FDOPA-PET recordings is formidably complex due to the entry into brain of the plasma metabolite O-methyl-FDOPA and due to the eventual washout of decarboxylated metabolites. Linear graphical analysis relative to a reference tissue input function is popular and convenient for routine clinical studies in which serial arterial blood samples are unavailable. This simplified approach has facilitated longitudinal studies in large patient cohorts. Linear graphical analysis relative to the metabolite-corrected arterial FDOPA input yields a more physiological index of FDOPA utilization, the net blood-brain clearance. Using a constrained compartmental model, FDOPA-PET recordings can be used to calculate the relative activity of the enzyme DOPA decarboxylase in living brain. We have extended this approach so as to obtain an index of steady-state trapping of [18F]fluorodopamine in synaptic vesicles. Although simple methods of image analysis are sufficient for the purposes of routine clinical studies, the more complex approaches have revealed hidden aspects of brain dopamine in personality, healthy aging, and in the pathophysiologies of Parkinson’s disease and schizophrenia.
Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage. Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry. Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage. Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage.
In neuromyelitis optica (NMO), the monoclonal B-cell antibody rituximab is a therapeutic option. Little is known about the course of NMO and the safety of rituximab during pregnancy. In this study, we report the clinical course of a patient with NMO after application of rituximab 1 week before inadvertent conception. Mother and child did not experience any adverse event, and the postpartum development of the baby was completely normal up to 15 months. Clinical course of NMO was stable during the entire pregnancy. This case illustrates a favorable outcome in a pregnant NMO patient and her child after therapy with rituximab.
The authors outline the process for developing the International Classification of Functioning, Disability, and Health (ICF) Core Sets for traumatic brain injury (TBI). ICF Core Sets are selections of categories of the ICF that identify relevant categories of patients affected by specific diseases. Comprehensive and brief ICF Core Sets for TBI should become useful for clinical practice and for research. The final definition of the ICF Core Sets for TBI will be determined at an ICF Core Sets Consensus Conference, which will integrate evidence from preliminary studies. The development of ICF Core Sets is an inclusive and open process and rehabilitation professionals are invited to participate.
The goal of this pilot study was to evaluate the effect of a trigger point–specific physiotherapy on headache frequency, intensity, and duration in children with episodic or chronic tension-type headache. Patients were recruited from the special headache outpatient clinic. A total of 9 girls (mean age 13.1 years; range, 5-15 years) with the diagnosis of tension-type headache participated in the pilot study from May to September 2006 and received trigger point–specific physiotherapy twice a week by a trained physiotherapist. After an average number of 6.5 therapeutic sessions, the headache frequency had been reduced by 67.7%, intensity by 74.3%, and duration by 77.3%. No side effects were noted during the treatment. These preliminary findings suggest a role for active trigger points in children with tension-type headache. Trigger point–specific physiotherapy seems to be an effective therapy in these children. Further prospective and controlled studies in a larger cohort are warranted.
Age-related macular degeneration (AMD) is a prevalent cause of blindness in Western societies. Variants in the genes encoding complement factor H (CFH), complement component 3 (C3) and age-related maculopathy susceptibility 2 (ARMS2) have repeatedly been shown to confer significant risks for AMD; however, their role in disease progression and thus their potential relevance for interventional therapeutic approaches remains unknown. Here, we analyzed association between variants in CFH, C3 and ARMS2 and disease progression of geographic atrophy (GA) due to AMD. A quantitative phenotype of disease progression was computed based on longitudinal observations by fundus autofluorescence imaging. In a subset of 99 cases with pure bilateral GA, variants in CFH (Y402H), C3 (R102G), and ARMS2 (A69S) are associated with disease (P = 1.6x10(-9), 3.2x10(-3), and P = 2.6x10(-12), respectively) when compared to 612 unrelated healthy control individuals. In cases, median progression rate of GA over a mean follow-up period of 3.0 years was 1.61 mm(2)/year with high concordance between fellow eyes. No association between the progression rate and any of the genetic risk variants at the three loci was observed (P>0.13). This study confirms that variants at CFH, C3, and ARMS2 confer significant risks for GA due to AMD. In contrast, our data indicate no association of these variants with disease progression which may have important implications for future treatment strategies. Other, as yet unknown susceptibilities may influence disease progression.
The vomeronasal system (VNS) mediates pheromonal communication in mammals. From the vomeronasal organ, two populations of sensory neurons, expressing either Galphai2 or Galphao proteins, send projections that end in glomeruli distributed either at the rostral or caudal half of the accessory olfactory bulb (AOB), respectively. Neurons at the AOB contact glomeruli of a single subpopulation. The dichotomic segregation of AOB glomeruli has been described in opossums, rodents and rabbits, while Primates and Laurasiatheres present the Galphai2-pathway only, or none at all (such as apes, some bats and aquatic species). We studied the AOB of the Madagascan lesser tenrec Echinops telfairi (Afrotheria: Afrosoricida) and found that Galphai2 and Galphao proteins are expressed in rostral and caudal glomeruli, respectively. However, the segregation of vomeronasal glomeruli at the AOB is not exclusive, as both pathways contained some glomeruli transposed into the adjoining subdomain. Moreover, some glomeruli seem to contain intermingled afferences from both pathways. Both the transposition and heterogeneity of vomeronasal afferences are features, to our knowledge, never reported before. The organization of AOB glomeruli suggests that synaptic integration might occur at the glomerular layer. Whether intrinsic AOB neurons may make synaptic contact with axon terminals of both subpopulations is an interesting possibility that would expand our understanding about the integration of vomeronasal pathways.
Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p
Objective: To systematically evaluate the feasibility and methodology to carry out wireless capsule endoscopy (WCE) in children
Background: Almost half of global child deaths due to acute lower respiratory infections (ALRIs) occur in sub-Saharan Africa, where three-quarters of the population cook with solid fuels. This study aims to quantify the impact of fuel type and cooking practices on childhood ALRI mortality in Africa, and to explore implications for public health interventions. Methods: Early-release World Health Survey data for the year 2003 were pooled for 16 African countries. Among 32 620 children born during the last 10 years, 1455 (4.46%) were reported to have died prior to their fifth birthday. Survival analysis was used to examine the impact of different cooking-related parameters on ALRI mortality, defined as cough accompanied by rapid breathing or chest indrawing based on maternal recall of symptoms prior to death. Results: Solid fuel use increases the risk of ALRI mortality with an adjusted hazard ratio of 2.35 (95% CI 1.22 to 4.52); this association grows stronger with increasing outcome specificity. Differences between households burning solid fuels on a well-ventilated stove and households relying on cleaner fuels are limited. In contrast, cooking with solid fuels in the absence of a chimney or hood is associated with an adjusted hazard ratio of 2.68 (1.38 to 5.23). Outdoor cooking is less harmful than indoor cooking but, overall, stove ventilation emerges as a more significant determinant of ALRI mortality. Conclusions: This study shows substantial differences in ALRI mortality risk among African children in relation to cooking practices, and suggests that stove ventilation may be an important means of reducing indoor air pollution.
Background: Clinical subtypes of mild cognitive impairment (MCI) may represent different underlying aetiologies. Methods: This European, multicentre, memory clinic based study (DESCRIPA) of non-demented subjects investigated whether MCI subtypes have different brain correlates on MRI and whether the relation between subtypes and brain pathology is modified by age. Using visual rating scales, medial temporal lobe atrophy (MTA) (0–4) and white matter hyperintensities (WMH) (0–30) were assessed. Results: Severity of MTA differed between MCI subtypes (p,0.001), increasing from a mean of 0.8 (SD 0.7) in subjective complaints (n=77) to 1.3 (0.8) in nonamnestic MCI (n=93), and from 1.4 (0.9) in single domain amnestic MCI (n=70) to 1.7 (0.9) in multiple domain amnestic MCI (n=89). The association between MCI subtype and MTA was modified by age and mainly present in subjects .70 years of age. Severity of WMH did not differ between MCI subtypes (p=0.21). However, the combination of MTA and WMH differed between MCI subtypes (p=0.02) Conclusion: We conclude that MCI subtypes may have different brain substrates, especially in older subjects. Isolated MTA was mainly associated with amnestic MCI subtypes, suggesting AD as the underlying cause. In nonamnestic MCI, the relatively higher prevalence of MTA in combination with WMH may suggest a different pathophysiological origin.
Objective: The aim of the current prospective study was to analyse the validity of MRI based diagnosis of brainstem gliomas which was verified by stereotactic biopsy and follow-up evaluation as well as to assess prognostic factors and risk profile. Methods: Between 1998 and 2007, all consecutive adult patients with radiologically suspected brainstem glioma were included. The MRI based diagnosis of the lesions was made independently by an experienced neuroradiologist. Histopathological evaluation was performed in all patients from paraffin embedded specimens obtained by multimodal image guided stereotactic serial biopsy technique. Histopathological results were compared with prior radiological assessment. Length of survival was estimated with the Kaplan–Meier method and prognostic factors were calculated using the Cox model. Results: 46 adult patients were included. Histological evaluation revealed pilocytic astrocytoma (n=2), WHO grade II glioma (n=14), malignant glioma (n=12), metastasis (n=7), lymphoma (n=5), cavernoma (n=1), inflammatory disease (n=2) or no tumour/ gliosis (n=3). Perioperative morbidity was 2.5% (n=1). There was no permanent morbidity and no mortality. All patients with ‘‘no tumour’’ or ‘‘inflammatory disease’’ survived. Patients with low grade glioma and malignant glioma showed a 1 year survival rate of 75% and 25%, respectively; the 1 year survival rate for patients with lymphoma or metastasis was 30%. In the subgroup with a verified brainstem glioma, negative predictors for length of survival were higher tumour grade (p=0.002) and Karnofsky performance score (70 (p=0.004). Conclusion: Intra-axial brainstem lesions with a radiological pattern of glioma represent a very heterogeneous tumour group with completely different outcomes. Radiological features alone are not reliable for diagnostic classification. Stereotactic biopsy is a safe method to obtain a valid tissue diagnosis, which is indispensible for treatment decision.
Objective: To measure functional gait improvements of robotic-assisted locomotion training in children with cerebral palsy (CP). Design: Single-case experimental A-B design. Settings: Rehabilitation Centre Affoltern am Albis, Children’s University Hospital Zurich, Switzerland (inpatient group) and Neurology Department of the Dr von Haunersches Children’s Hospital Munich, Germany (outpatient group). Participants: 22 children (mean age 8.6 years, range 4.6–11.7) with CP and a Gross Motor Function Classification System level II to IV. Interventions: 3 to 5 sessions of 45–60 minutes/week during a 3–5-week period of driven gait orthosis training. Main outcome measures: 10-metre walk test (10MWT), 6-minute walk test (6MinWT), Gross Motor Function Measure (GMFM-66) dimension D (standing) and dimension E (walking), and Functional Ambulation Categories (FAC). Results: The mean (SD) maximum gait speed (0.78 (0.57) to 0.91 (0.61) m/s; p,0.01) as well as the mean (SD) dimension D of the GMFM-66 (40.3% (31.3%) to 46.6% (28.7%); p,0.05) improved significantly after the intervention period. The mean (SD) 6MinWT (176.3 (141.8) to 199.5 (157.7) m), the mean FAC (2.6 (1.7) to 3.0 (1.6)) and the mean (SD) dimension E of the GMFM- 66 (29.5% (30.3%) to 31.6% (29.2%)) also showed an increase, but did not reach a statistically significant level. Conclusion: These results suggest that children with CP benefit from robotic-assisted gait training in improving functional gait parameters.
Thu, 1 Jan 2009 12:00:00 +0100 http://gut.bmj.com/content/58/7/902.full.pdf+html https://epub.ub.uni-muenchen.de/15752/1/GLP-1.pdf Göke, Burkhard; Beuers, Ulrich
Background: The comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for rheumatoid arthritis (RA) is a selection of 96 categories from the ICF, representing relevant aspects in the functioning of patients with RA. Objectives: To study the responsiveness of the ICF Core Set for RA in rheumatological practice. Methods: A total of 46 patients with RA (72% women, mean (SD) age 53.6 (12.6) years, disease duration 6.3 (8.0) years) were interviewed at baseline and again after 6 months treatment with a disease-modifying antirheumatic drug (DMARD), applying the ICF Core Set for RA with qualifiers for problems on a modified three-point scale (no problem, mild/moderate, severe/complete). Patient-reported outcomes included Modified Health Assessment Questionnaire (MHAQ) and Short-Form 36 (SF-36) health survey, and disease activity was calculated. Responsiveness was measured as change in qualifiers in ICF categories, and was also compared with change in patient-reported outcomes. Results: After 6 months of DMARD treatment, improvement by at least one qualifier was seen in 20% of patients (averaged across all ICF categories), 71% experienced no change and 9% experienced worsening symptoms. Findings were similar across the different aspects of functioning. Mainly moderate effect sizes were seen for 6-month changes in the ICF Core Set for RA, especially in patients with improved health status, with similar effect size for disease activity. The components in the ICF Core Set for RA were only weakly associated with patient-reported outcomes and disease activity. Conclusions: The ICF Core Set for RA demonstrated moderate responsiveness in this real-life setting of patients where minor changes occurred during treatment with DMARDs.
Background: Recent evidence suggests that distinction of subsets of rheumatoid arthritis (RA) depending on anticyclic citrullinated peptide antibody (anti-CCP) status may be helpful in distinguishing distinct aetiopathologies and in predicting the course of disease. HLA-DRB1 shared epitope (SE) and peptidylarginine deiminase type 4 (PADI4) genotype, both of which have been implicated in anti-CCP generation, are assumed to be associated with RA. Objectives: To elucidate whether PADI4 affects the clinical characteristics of RA, and whether it would modulate the effect of anti-CCPs on clinical course. The combined effect of SE and PADI4 on autoantibody profile was also analysed. Methods: 373 patients with RA were studied. SE, padi4_94C.T, rheumatoid factor, anti-CCPs and antinuclear antibodies (ANAs) were determined. Disease severity was characterised by cumulative therapy intensity classified into ordinal categories (CTI-1 to CTI-3) and by Steinbrocker score. Results: CTI was significantly associated with disease duration, erosive disease, disease activity score (DAS) 28 and anti-CCPs. The association of anti-CCPs with CTI was considerably influenced by padi4_94C.T genotype (C/C: ORadj=0.93, padj=0.92; C/T: ORadj=2.92, padj=0.093; T/T: ORadj=15.3, padj=0.002). Carriage of padi4_94T exhibited a significant trend towards higher Steinbrocker scores in univariate and multivariate analyses. An association of padi4_94C.T with ANAs was observed, with noteworthy differences depending on SE status (SE2: ORadj=6.20, padj,0.04; SE+: ORadj=0.36, padj=0.02) and significant heterogeneity between the two SE strata (p=0.006). Conclusions: PADI4 genotype in combination with anti- CCPs and SE modulates clinical and serological characteristics of RA.
Background: cJun terminal kinase (JNK) is constitutively activated in most hepatocellular carcinomas (HCCs), yet its exact role in carcinogenesis remains controversial. While tumour necrosis factor (TNF)-related apoptosisinducing ligand (TRAIL) is known as a major mediator of acquired immune tumour surveillance, and is currently being tested in clinical trials as a novel cancer therapy, the resistance of many tumours to TRAIL and concerns about its toxicity in vivo represent obstacles to its clinical application. In this study we investigated whether JNK activity in HCC could contribute to the resistance to apoptosis in these tumours. Methods: The effect of JNK/Jun inhibition on receptormediated apoptosis was analysed by pharmacological inhibition or RNA interference in cancer cells and nontumour cells isolated from human liver or transgenic mice lacking a phosphorylation site for Jun. Results: JNK inhibition caused cell cycle arrest, enhanced caspase recruitment, and greatly sensitised HCC cells but not normal hepatocytes to TRAIL. TRAILinduced activation of JNK could be effectively interrupted by administration of the JNK inhibitor SP600125. Conclusions: Expression and TRAIL-dependent feedback activation of JNK likely represent a mechanism by which cancer cells escape TRAIL-mediated tumour surveillance. JNK inhibition might represent a novel strategy for specifically sensitising HCC cells to TRAIL thus opening promising therapeutic perspectives for safe and effective use of TRAIL in cancer treatment.
Thu, 1 Jan 2009 12:00:00 +0100 http://ard.bmj.com/content/68/4/456.full.pdf https://epub.ub.uni-muenchen.de/15757/1/guidelines_for_initiation.pdf Steinfeld, S.; Settas, L.; van Riel, P.; Navarro, F.; Matucci-Cerinic, M.; Krüger, Klaus; Graninger, W.; Combe, B.; Choy, E.; Ostergaard, M.; Van Vollenhoven, R.; Emery, P.
Background: The 22q13 deletion syndrome (Phelan– McDermid syndrome) is characterised by a global developmental delay, absent or delayed speech, generalised hypotonia, autistic behaviour and characteristic phenotypic features. Intranasal insulin has been shown to improve declarative memory in healthy adult subjects and in patients with Alzheimer disease. Aims: To assess if intranasal insulin is also able to improve the developmental delay in children with 22q13 deletion syndrome. Methods: We performed exploratory clinical trials in six children with 22q13 deletion syndrome who received intranasal insulin over a period of 1 year. Short-term (during the first 6 weeks) and long-term effects (after 12 months of treatment) on motor skills, cognitive functions, or autonomous functions, speech and communication, emotional state, social behaviour, behavioural disorders, independence in daily living and education were assessed. Results: The children showed marked short-term improvements in gross and fine motor activities, cognitive functions and educational level. Positive long-term effects were found for fine and gross motor activities, nonverbal communication, cognitive functions and autonomy. Possible side effects were found in one patient who displayed changes in balance, extreme sensitivity to touch and general loss of interest. One patient complained of intermittent nose bleeding. Conclusions: We conclude that long-term administration of intranasal insulin may benefit motor development, cognitive functions and spontaneous activity in children with 22q13 deletion syndrome.
Thu, 1 Jan 2009 12:00:00 +0100 https://epub.ub.uni-muenchen.de/16330/1/10_1159_000188082.pdf Zerr, Inga; Wirsing von König, Carl-Heinz; Willkommen, Hannelore; Strobel, Johanna; Schottstedt, Volkmar; Schlenkrich, Uwe; Nuebling, Micha; Kretzschmar, Hans; Heiden, Margarethe; Gröner, Albrecht; Dewitz, Christian von; Burger, Reinhard; Blümel, Johannes; Beekes, Michael; Seitz, Rainer
Dosage compensation in male Drosophila relies on the X chromosome-specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called ``high-affinity sites'' ( HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on noncoding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.
Kindler Syndrome (KS), characterized by transient skin blistering followed by abnormal pigmentation, skin atrophy, and skin cancer, is caused by mutations in the FERMT1 gene. Although a few KS patients have been reported to also develop ulcerative colitis (UC), a causal link to the FERMT1 gene mutation is unknown. The FERMT1 gene product belongs to a family of focal adhesion proteins (Kindlin-1, -2, -3) that bind several beta integrin cytoplasmic domains. Here, we show that deleting Kindlin-1 in mice gives rise to skin atrophy and an intestinal epithelial dysfunction with similarities to human UC. This intestinal dysfunction results in perinatal lethality and is triggered by defective intestinal epithelial cell integrin activation, leading to detachment of this barrier followed by a destructive inflammatory response.
The early systemic production of interferon (IFN)-alphabeta is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-alphabeta response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-alphabeta mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-alphabeta production, almost exclusively in splenic mDCs. Using knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate that the Ad-induced IFN-alphabeta response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-alphabeta and IL-6 in vivo by distinct pathways and confirm that IFN-alphabeta positively regulates the IL-6 response. Finally, by measuring TNF-alpha responses to LPS in Ad-infected wild type and IFN-alphabetaR(-/-) mice, we show that IFN-alphabeta is the key mediator of Ad-induced hypersensitivity to LPS. These findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also produce a robust early IFN-alphabeta response, which is responsible for the bulk of IFN-alphabeta production induced by adenovirus in vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-alphabeta induction mechanisms and suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of adenoviral disease.
The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16) to 10(-21)). We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype (metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.
Background: CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods: Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results: In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion: CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision.
High levels of serum IgE are considered markers of parasite and helminth exposure. In addition, they are associated with allergic disorders, play a key role in anti-tumoral defence, and are crucial mediators of autoimmune diseases. Total IgE is a strongly heritable trait. In a genome-wide association study (GWAS), we tested 353,569 SNPs for association with serum IgE levels in 1,530 individuals from the population-based KORA S3/F3 study. Replication was performed in four independent population-based study samples (total n = 9,769 individuals). Functional variants in the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) on chromosome 1q23 (rs2251746 and rs2427837) were strongly associated with total IgE levels in all cohorts with P values of 1.85 x 10(-20) and 7.08 x 10(-19) in a combined analysis, and in a post-hoc analysis showed additional associations with allergic sensitization (P = 7.78 x 10(-4) and P = 1.95 x 10(-3)). The ``top'' SNP significantly influenced the cell surface expression of FCER1A on basophils, and genome-wide expression profiles indicated an interesting novel regulatory mechanism of FCER1A expression via GATA-2. Polymorphisms within the RAD50 gene on chromosome 5q31 were consistently associated with IgE levels (P values 6.28 x 10(-7) -4.46 x 10(-8)) and increased the risk for atopic eczema and asthma. Furthermore, STAT6 was confirmed as susceptibility locus modulating IgE levels. In this first GWAS on total IgE FCER1A was identified and replicated as new susceptibility locus at which common genetic variation influences serum IgE levels. In addition, variants within the RAD50 gene might represent additional factors within cytokine gene cluster on chromosome 5q31, emphasizing the need for further investigations in this intriguing region. Our data furthermore confirm association of STAT6 variation with serum IgE levels.
Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group.