Podcasts about dnasei

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 20, 2012LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about dnasei

Medizin - Open Access LMU - Teil 20/22
Multiple pathways of plasmid DNA transfer in Helicobacter pylori

Medizin - Open Access LMU - Teil 20/22

Play Episode Listen Later Sep 20, 2012


Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Charakterisierung der Typ-IV-Sekretionssysteme und der kryptischen Plasmide von Helicobacter pylori hinsichtlich ihrer Beteiligung am DNA-Transfer

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Mar 17, 2011


H. pylori kolonisiert die Magenmukosa von etwa 50% der Bevölkerung und ist die Ursache von vielen schweren Erkrankungen, wie z.B. chronischer Gastritis, Magengeschwüren und Magenkrebs. Lange Zeit wurde angenommen, dass das Milieu des Magens aufgrund der dort herrschenden Bedingungen steril sei. H. pylori hat Strategien entwickelt, um dieses Habitat zu besiedeln und stellt den dominierenden Bestandteil der Mikroflora im Magen dar. Eine entscheidende Voraussetzung für die erfolgreiche Kolonisierung ist die genetische Diversität und die damit verbundene Anpassung an die verschiedenen Mikronischen des Magens. Die Pathogenität von H. pylori wird nicht nur durch Toxine vermittelt, sondern resultiert aus der komplexen Interaktion zwischen dem Bakterium, dem Wirt und der Umwelt. Eine wichtige Bedeutung hierbei hat der Austausch von genetischem Material. Während die natürliche Kompetenz eine entscheidende Rolle für die Aufnahme von genetischem Material spielt, wird auch ein konjugativer Mechanismus zum Transfer von DNA diskutiert. Im Rahmen dieser Arbeit wurde erstmals der DNaseI-resistente Transfer der intrinsischen, kryptischen Plasmide pHel4 und pHel12 zwischen H. pylori-Stämmen nachgewiesen. Es konnte gezeigt werden, dass für diesen Mechanismus sowohl die Plasmid-, als auch die chromosomal-kodierten Relaxasen nicht essentiell sind. Möglicherweise wird die Rezirkularisierung der Plasmid-DNA im Rezipienten durch RecA durchgeführt. Um Informationen über die Maschinerie, welche den DNaseI-geschützten Transfer der intrinsischen Plasmide vermittelt zu erhalten, wurden alle in H. pylori P12 identifizierten T4SS mit Hilfe einer Kontraselektionsstrategie sequentiell deletiert und Kokultivierungsexperimente mit den entsprechenden Mutanten durchgeführt. Es konnte gezeigt werden, dass außer dem ComB-System keines der T4SS für den DNA-Transfer zwischen H. pylori-Stämmen essentiell ist. Dieses ist für die Aufnahme von DNA im Rezipienten verantwortlich und spielt auch eine Rolle für den DNA-Export durch den Donor. Das ComB-System stellt somit das entscheidende T4SS für den Transfer von DNA dar und hat eine duale Funktion hinsichtlich Transformation und einem Konjugations-ähnlichen Mechanismus im Donor und Rezipienten. Bemerkenswert ist, dass auch nach Deletion aller T4SS in H. pylori P12 DNA-Transfer stattfindet. Mögliche Kandidaten für einen alternativen DNA-Übertragungsweg, stellen Membranvesikel dar. Darüber hinaus konnte nachgewiesen werden, dass Tfs4 Plasmid-DNA in das umgebende Milieu sekretiert. Durch die Sekretion des Modul-artig aufgebauten kryptischen Plasmids pHel12 kann die Verbreitung von genetischem Material zwischen Stämmen unterstützt werden. Die Unabhängigkeit des DNA-Transfermechanismus von den Relaxasen, sowie die Resistenz gegenüber dem Angriff durch DNaseI lassen einen neuartigen, Konjugations-ähnlichen DNA-Transfermechanismus vermuten, der von der konventionellen Konjugation abgrenzt werden kann. Neben der Charakterisierung der DNA-Transfer-Mechanismen in H. pylori P12 wurden im Rahmen dieser Arbeit auch die kryptischen Plasmide pHel4 und pHel12 und die mögliche Funktion ihrer Genprodukte untersucht. Etwa 50% aller klinischen Isolate enthalten kryptische Plasmide. Ihre Funktion ist bisher allerdings nicht klar. Die Anwesenheit einer mob-Region deutete auf eine konjugative Übertragung der Plasmide hin. Darüber hinaus lässt die Struktur der Plasmide eine Rolle bei der Verbreitung von genetischem Material als Orte des „gene shufflings“ vermuten. Zudem konnten erste Hinweise bezüglich der mit den Plasmiden verbundenen Zytotoxizität bestätigt werden. So beeinflusst die Expression von orf4M aus pHel4 und orf12M aus pHel12 in eukaryotischen Zellen die zelluläre Integrität und führt schließlich zum Zelltod. Die kryptischen Plasmide stellen eine interessante Möglichkeit für H. pylori dar, genetische Information auszutauschen und möglicherweise die Wirtszelle zu beeinflussen.

Medizin - Open Access LMU - Teil 13/22
CadC-mediated activation of the cadBA promoter in Escherichia coli

Medizin - Open Access LMU - Teil 13/22

Play Episode Listen Later Jan 1, 2005


The transcriptional activator CadC in Escherichia coli, a member of the ToxR-like proteins, activates transcription of the cadBA operon encoding the lysine decarboxylase CadA and the lysine-cadaverine antiporter CadB. cadBA is induced under conditions of acidic external pH and exogenous lysine; anoxic conditions raise the expression level up to 10 times. To characterize the binding mechanism of CadC, procedures for the purification of this membrane-integrated protein and its reconstitution into proteoliposomes were established. The binding sites of CadC upstream of the cadBA promoter region were determined by in vitro DNaseI protection analysis. Two regions were protected during DNaseI digestion, one from - 144 to - 112 bp, designated Cad1, and another one from - 89 to - 59 bp, designated Cad2. Binding of purified CadC to Cad1 and Cad2 was further characterized by DNA-binding assays, indicating that CadC was able to bind to both DNA fragments. Genetic analysis with promoter-lacZ fusions confirmed that both sites, Cad1 and Cad2, are essential for activation of cadBA transcription. Moreover, these experiments revealed that binding of H-NS upstream of the CadC-binding sites is necessary for repression of cadBA expression at neutral pH and under aerobic conditions. Based on these results, a model for transcriptional regulation of the cadBA operon is proposed, according to which H-NS is involved in the formation of a repression complex under non-inducing conditions. This complex is dissolved by binding of CadC to Cad1 under inducing conditions. Upon binding of CadC to Cad2 cadBA expression is activated. Copyright (C) 2005 S. Karger AG, Basel.