POPULARITY
Viren sind wahre Überlebenskünstler. Dabei sind sie gar keine richtigen Lebewesen, denn sie brauchen immer eine Wirtszelle, um sich zu vermehren. Das kann oft sehr schnell gehen mit teilweise schlimmen Folgen, wie die Corona-Pandemie gezeigt hat. Aber auch ein vermeintlich harmloses Virus, das z.B. eine Mandelentzündung hervorruft, kann zum Herzen gelangen und dort die gefährliche Herzmuskelentzündung auslösen. Gegen Viren helfen Impfungen – schon im Kindesalter. Aber unser „Professor fürs Herz“, Prof. Dr. med. Dieter Ropers, empfiehlt auch einige wichtige Impfungen für ErwachseneUnsere allgemeinen Datenschutzrichtlinien finden Sie unter https://art19.com/privacy. Die Datenschutzrichtlinien für Kalifornien sind unter https://art19.com/privacy#do-not-sell-my-info abrufbar.
Ein Beitrag von Markus Fiedler.Das neuartige Coronavirus ist sehr wahrscheinlich keine irgendwie natürlich entstandene Mutation, sondern ein künstlich hergestelltes Virus aus einem Molekulargenetik-Labor. Das was von Anfang an als böse Verschwörungstheorie abgetan wurde, wird geradezu offensichtlich, wenn man das Erbgut dieses Virus entschlüsselt und sich genauer anschaut. Das Spike-Protein ist verändert. Ausgerechnet das Protein auf der Virusoberfläche, welches die Infektion der Wirtszelle ermöglicht. Das deutet klar auf „Gain of Function“-Forschung hin.Schon im Januar 2020 gab es eine sehr wichtige wissenschaftliche Publikation als Vorveröffentlichung, die auf einen künstlichen Ursprung von Sars-CoV2 hingewiesen hat. Nur seltsamer Weise wurde sie schon nach drei Tagen zurückgezogen. Warum die Autoren die Publikation zurückgezogen haben ist nicht bekannt. Bekannt ist lediglich, dass es zwischenzeitlich eine Konferenz zu der Publikation gab, an der auch der amerikanische Immunologe Anthony Fauci teilnahm.Dr. Fauci und die Leugnung der „Gain of Function“- ForschungDie Wikipedia verkündet zu Fauci:„Fauci ist Berater aller US-Präsidenten und ihrer Regierungen – seit dem Kabinett von Ronald Reagan – auf den Gebieten der Biogefährdung sowie der Infektion mit HIV und anderen Viren. […] Unter Präsident Joe Biden ist Fauci seit dem 20. Januar 2021 Chief Medical Advisor to the President.“ (1)Man könnte sagen, Dr. Fauci ist das amerikanische Gegenstück zu einem Dr. Drosten in Deutschland.... hier weiterlesen: https://apolut.net/sars-cov2-kommt-aus-dem-labor/+++Apolut ist auch als kostenlose App für Android- und iOS-Geräte verfügbar! Über unsere Homepage kommen Sie zu den Stores von Apple und Huawei. Hier der Link: https://apolut.net/app/Die apolut-App steht auch zum Download (als sogenannte Standalone- oder APK-App) auf unserer Homepage zur Verfügung. Mit diesem Link können Sie die App auf Ihr Smartphone herunterladen: https://apolut.net/apolut_app.apk+++Abonnieren Sie jetzt den apolut-Newsletter: https://apolut.net/newsletter/+++Ihnen gefällt unser Programm? Informationen zu Unterstützungsmöglichkeiten finden Sie hier: https://apolut.net/unterstuetzen/+++Unterstützung für apolut kann auch als Kleidung getragen werden! Hier der Link zu unserem Fan-Shop: https://harlekinshop.com/pages/apolut+++Website und Social Media:Website: https://apolut.net/Odysee: https://odysee.com/@apolut:aRumble: https://rumble.com/ApolutInstagram: https://www.instagram.com/apolut_net/Gettr: https://gettr.com/user/apolut_netTelegram: https://t.me/s/apolutFacebook: https://www.facebook.com/apolut/Soundcloud: https://soundcloud.com/apolut See acast.com/privacy for privacy and opt-out information.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
H. pylori kolonisiert die Magenmukosa von etwa 50% der Bevölkerung und ist die Ursache von vielen schweren Erkrankungen, wie z.B. chronischer Gastritis, Magengeschwüren und Magenkrebs. Lange Zeit wurde angenommen, dass das Milieu des Magens aufgrund der dort herrschenden Bedingungen steril sei. H. pylori hat Strategien entwickelt, um dieses Habitat zu besiedeln und stellt den dominierenden Bestandteil der Mikroflora im Magen dar. Eine entscheidende Voraussetzung für die erfolgreiche Kolonisierung ist die genetische Diversität und die damit verbundene Anpassung an die verschiedenen Mikronischen des Magens. Die Pathogenität von H. pylori wird nicht nur durch Toxine vermittelt, sondern resultiert aus der komplexen Interaktion zwischen dem Bakterium, dem Wirt und der Umwelt. Eine wichtige Bedeutung hierbei hat der Austausch von genetischem Material. Während die natürliche Kompetenz eine entscheidende Rolle für die Aufnahme von genetischem Material spielt, wird auch ein konjugativer Mechanismus zum Transfer von DNA diskutiert. Im Rahmen dieser Arbeit wurde erstmals der DNaseI-resistente Transfer der intrinsischen, kryptischen Plasmide pHel4 und pHel12 zwischen H. pylori-Stämmen nachgewiesen. Es konnte gezeigt werden, dass für diesen Mechanismus sowohl die Plasmid-, als auch die chromosomal-kodierten Relaxasen nicht essentiell sind. Möglicherweise wird die Rezirkularisierung der Plasmid-DNA im Rezipienten durch RecA durchgeführt. Um Informationen über die Maschinerie, welche den DNaseI-geschützten Transfer der intrinsischen Plasmide vermittelt zu erhalten, wurden alle in H. pylori P12 identifizierten T4SS mit Hilfe einer Kontraselektionsstrategie sequentiell deletiert und Kokultivierungsexperimente mit den entsprechenden Mutanten durchgeführt. Es konnte gezeigt werden, dass außer dem ComB-System keines der T4SS für den DNA-Transfer zwischen H. pylori-Stämmen essentiell ist. Dieses ist für die Aufnahme von DNA im Rezipienten verantwortlich und spielt auch eine Rolle für den DNA-Export durch den Donor. Das ComB-System stellt somit das entscheidende T4SS für den Transfer von DNA dar und hat eine duale Funktion hinsichtlich Transformation und einem Konjugations-ähnlichen Mechanismus im Donor und Rezipienten. Bemerkenswert ist, dass auch nach Deletion aller T4SS in H. pylori P12 DNA-Transfer stattfindet. Mögliche Kandidaten für einen alternativen DNA-Übertragungsweg, stellen Membranvesikel dar. Darüber hinaus konnte nachgewiesen werden, dass Tfs4 Plasmid-DNA in das umgebende Milieu sekretiert. Durch die Sekretion des Modul-artig aufgebauten kryptischen Plasmids pHel12 kann die Verbreitung von genetischem Material zwischen Stämmen unterstützt werden. Die Unabhängigkeit des DNA-Transfermechanismus von den Relaxasen, sowie die Resistenz gegenüber dem Angriff durch DNaseI lassen einen neuartigen, Konjugations-ähnlichen DNA-Transfermechanismus vermuten, der von der konventionellen Konjugation abgrenzt werden kann. Neben der Charakterisierung der DNA-Transfer-Mechanismen in H. pylori P12 wurden im Rahmen dieser Arbeit auch die kryptischen Plasmide pHel4 und pHel12 und die mögliche Funktion ihrer Genprodukte untersucht. Etwa 50% aller klinischen Isolate enthalten kryptische Plasmide. Ihre Funktion ist bisher allerdings nicht klar. Die Anwesenheit einer mob-Region deutete auf eine konjugative Übertragung der Plasmide hin. Darüber hinaus lässt die Struktur der Plasmide eine Rolle bei der Verbreitung von genetischem Material als Orte des „gene shufflings“ vermuten. Zudem konnten erste Hinweise bezüglich der mit den Plasmiden verbundenen Zytotoxizität bestätigt werden. So beeinflusst die Expression von orf4M aus pHel4 und orf12M aus pHel12 in eukaryotischen Zellen die zelluläre Integrität und führt schließlich zum Zelltod. Die kryptischen Plasmide stellen eine interessante Möglichkeit für H. pylori dar, genetische Information auszutauschen und möglicherweise die Wirtszelle zu beeinflussen.
Willkommen in der Welt der Biologie! Mein Name ist Alia Korth und heute klären wir den Unterschied zwischen Bakterien und Viren. Bakterien bestehen aus einer Zelle, dass heißt, dass Bakterien lebendig sind. Viren hingegen sind nicht lebendig, sie haben keinen Stoffwechsel und können sich nicht eigenständig vermehren. Sie bestehen lediglich aus Erbmaterial, dass von einer Eiweißhülle umgeben ist. Sie brauchen deshalb eine Wirtszelle, um sich zu vermehren. Bakterien wiederum können sich selbstständig teilen. Jeder Mensch beherbergt etwa 1000 verschiedene Arten von Bakterien. Es gibt also auch gute, hilfreiche Bakterien, sie machen nicht zwangsläufig krank. Im Gegenteil, die Bakterien in unserem Körper unterstützen sogar unser Immunsystem und helfen uns so, uns vor gefährlichen Bakterien zu schützen. Sollte sich doch einmal ein krankmachendes Bakterium in unserem Körper durchsetzen, so kann man diese Krankheit meist mit Antibiotika behandeln. Diese legen den Stoffwechsel der Bakterien lahm, wodurch sie absterben. Aus diesem Grund funktionieren Antibiotika auch nicht bei viralen Erkrankungen, wir erinnern uns, Viren haben ja keinen Stoffwechsel. Durch eine falsche, oder unkontrollierte Einnahme von Antibiotika sind in den letzten Jahren jedoch resistente Bakterien entstanden, die sich durch gängige Antibiotika nicht mehr abtöten lassen. Vor Viren kann man sich in der Regel nur durch eine vorbeugende Impfung schützen und im Falle einer Ansteckung die Symptome bekämpfen. Da Viren sehr anpassungsfähig sind, ist es jedoch oftmals nötig, die Impfung regelmäßig zu wiederholen, wie zum Beispiel die Grippeimpfung, die man jedes Jahr erneuern muss. Unterschied verstanden? Nein? Dann schreibt mir einfach eure Fragen per E-Mail an biologie@in2minuten.com. Weitere “in 2 Minuten” Podcasts findet ihr auch im Internet unter www.in2minuten.com. Bis zum nächsten Mal!
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Das Humane-Herpesvirus-8 (HHV-8) gehört zu den Viren, die an der Entstehung von humanen Tumoren beteiligt sind. Die zugrunde liegenden onkogenen molekularen Mechanismen sind weitgehend unbekannt. Mit Hilfe der Arraytransfektion soll eine HHV-8-Expressionsbank auf die Induktion von mit HHV-8 assoziiert bekannten Transkriptionsfaktoren untersucht werden. Dabei wurde ein modulares Reportersystem entwickelt, das die Transkriptionsaktivierung von AP-1, NF?B und p53 in der Arraytransfektion erfassen kann. Durch das Reportersystem konnte mit Hilfe der Arraytransfektion die HHV-8-Thymidinkinase als den Transkriptionsfaktor p53 induzierend ermittelt werden. Die lytisch assoziierte HHV-8-Thymidinkinase konnte in zwei funktionell getrennte Domänen unterteilt werden. Einerseits in die bekannte C-terminale Domäne mit der biochemischen Kinasefunktion und andererseits in eine neu beschriebene N-terminale Domäne. Diese ca. 200 Aminosäuren lange N-terminale Proteindomäne war allein dafür verantwortlich, dass das endogene p53-Proteinlevel erhöht, p53 als Transkriptionsfaktor induziert und p53 an Serin-392 phosphoryliert wurde. Durch das anti-apoptotische HHV-8-Protein "latency-associated nuclear antigen" (LANA) 2 ließ sich die Transkriptionsaktivierung von p53 durch die HHV-8-Thymidinkinase inhibieren, aber nicht vollständig aufheben. Dadurch konnte gezeigt werden, dass die HHV-8-Thymidinkinase-Wirkung durch ein anderes HHV-8-Gen auf molekularer Ebene reguliert wird. Darüber hinaus war die N-terminale Domäne für die Veränderung der Zellmorphologie zu Zellinseln, Verminderung der Zellzahl und wahrscheinlich für die Depolarisation des mitochondrialen Potentials verantwortlich. Zusätzlich konnte in lytisch induzierten BCBL-1-Zellen gezeigt werden, dass das Transkriptionsverhalten der HHV-8-Thymidinkinase durch das viral-replikationsinhibierende Ganciclovir, in Abhängigkeit von der Inkubationsdauer, wahrscheinlich wenig oder gar nicht beeinflusst wird. Es ist daher zu vermuten, dass die HHV-8-Thymidinkinase das durch Ganciclovir nicht transkriptionsinhibierbare HHV-8-Gen ist, das durch die Umgehung viraler und zellulärer anti-apoptotischer molekularer Mechanismen den Zelltod in lytisch induzierten BCBL-1-Zellen auslösen kann. Diese Einflüsse einer Thymidinkinase sind für die humanen Gammaherpesviren einmalig und konnte für das homologe Gen des Epstein-Barr-Virus nicht beobachtet werden. Durch wahrscheinlich unterschiedliche subzelluläre Lokalisierungen wurde die Divergenz in der Funktion zusätzlich aufgezeigt. Die ermittelten Erkenntnisse dieser Arbeit können zur Entwicklung einer anti-viralen Therapie beitragen, die die lytische Vermehrung von HHV-8 begrenzt und somit die Entstehung von HHV-8 abhängigen Tumoren, wie das Kaposi-Sarkom, verhindern könnte. Zusätzlich gibt der Einfluss der HHV-8tk auf die Wirtszelle einen Einblick in die Interaktion des Virus mit dem Wirt und erlaubt wichtige Rückschlüsse auf das Zusammenspiel zellulärer und viraler molekularer Mechanismen für die Grundlagenforschung.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Erkenntnisse zur funktionalen Zellkernarchitektur wurden bisher überwiegend an fixierten Zellen durch in situ Methoden erlangt. Durch Etablierung eines Lebendzell-Systems sollte überprüft werden, ob es möglich ist, ein einzelnes Transgen auf DNA-Ebene zu visualisieren und es bei seiner transkriptionellen Aktivierung zu beobachten. Das hier entwickelte „Gene Positioning System“ (GePS) nutzt das Lac-Operator/Lac-Repressor-GFP-System („Gene Tag“) als visualisierende Komponente, um das Indikatorgen auf DNA-Ebene sichtbar zu machen. Das Indikatorgen selbst basiert auf der induzierbaren Transkriptionseinheit von HIV-1, die spezifisch durch das virale Protein Tat aktiviert werden kann und die Transkription eines Reportergens (DsRed) kontrolliert. Im transient transfizierten Status konnte das Indikatorgen als Episom durch Bindung des „Gene Tags“ als punktförmiges Signal im Kern detektiert werden. In den etablierten und charakterisierten Zelllinien HeLa-Indi war dies durch Bindung des „Gene Tags“ an 64 Lac-Repressor-Bindungsstellen eines einzelnen Transgens nicht möglich. Die Etablierung der stabilen Zelllinien und die transiente Expression ermöglichten einen direkten Vergleich der Transkription von der integrierten und episomalen HIV-1 LTR. In beiden Fällen konnte eine spezifische Transkriptionsaktivierung durch Tat auf Protein- und RNA-Ebene beobachtet werden. Auch eine Tat-unabhängige Basisaktivität in Form von Volllänge-Transkripten konnte immer nachgewiesen werden, die in verschiedenen Zelllinien und dem episomalen Indikatorgen aber zu keiner nachweisbaren Proteinexpression führte. Die induzierte Expression des Indikatorgens des „GePS“ konnte darüber hinaus in wichtigen HIV-1 Zielzellen (CD4 positive Lymphozyten) gezeigt werden. Des Weiteren konnten Erkenntnisse über die Tat-induzierte, von der HIV-1 LTR ausgehenden Transkription und der Zusammenhang zum Spleißen gewonnen werden. Durch quantitative PCR wurde deutlich, dass sowohl im epsiomalen als auch integrierten Status erst durch die gesteigerte Transkription das Spleißen der Indikatorgen-RNA induziert wird, das Spleißen also co-transkriptionell stattfindet. Tat selbst spielt bei der Rekrutierung von Spleißfaktoren nur eine indirekte Rolle, da durch die transkriptionsdefiziente Mutante Tat(K41A) kein Spleißen initiiert wird. Durch verschiedene methodische Ansätze wurde versucht, die Frage der Chromatinzusammensetzung von nicht replizierenden Episomen in menschlichen Zellen zu beantworten. Weder durch eine Colokalisations-Untersuchung noch eine Chromatin IP konnte jedoch eine spezifische Assoziation des episomalen Indikatorgens mit dem Histon H3 nachgewiesen werden. Eine Bindung von Proteinen an die Episomen konnte am Beispiel von p50, einer Untereinheit des Transkriptionsfaktors NFκB, gezeigt werden. Für die produktive Replikation der Retroviren ist die Integration der proviralen DNA ins Genom der Wirtszelle nötig, jedoch konnte für HIV gezeigt werden, dass nicht integrierte zirkuläre HIV-DNA in sich nicht teilenden Zellen persistiert. Die Ergebnisse dieser Arbeit unterstützen die Vermutung, dass nicht integrierte retrovirale DNA transkribiert werden kann und dadurch die exprimierten Proteine Bedeutung für den Lebenszyklus von HIV und durch ihre Persistenz Einfluss auf die Wirtszellen haben können.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Pseudomonas aeruginosa ist ein bedeutender Erreger nosokomialer Infektionen. Besondere Bedeutung erlangt es im Krankheitsverlauf der Cystischen Fibrose. Hier und bei anderen Erkrankungen kann die Expression verschiedener Virulenzfaktoren zu schweren Verläufen führen. Ein Typ-III-Sekretions-positiver Phänotyp, das heißt der Besitz des ExoS-Regulons, ist dabei von prognostischem Wert hinsichtlich Gewebszerstörung, Krankheitsverlauf und Überleben. Bisher ist jedoch wenig über die Regulation des ExoS-Regulon bekannt. Sinnvoll erscheint eine gegensätzliche Expression mit dem Typ-II-Sekretionssytem, da hier zahlreiche degradierende Enzyme sezerniert werden, die auch den Typ-III-Sekretionsapparat beschädigen könnten, und mit der Biofilmbildung, da für Typ-III-Sekretion ein direkter Zellkontakt zur Wirtszelle notwendig ist. Bekannte Regulatoren von Biofilmbildung und Typ-II-Sekretion sind Quorum Sensing, der Sigmafaktor der Stationären Phase (RpoS) und der AlgU-Antisigmafaktor MucA für die Alginatsynthese. In der vorliegenden Arbeit wurden daher ihre Auswirkungen auf die Typ-III-Sekretion untersucht. Hierbei zeigt sich unter Stimulationsbedingungen für Typ-III-Sekretion in vitro und durch Kokulturversuche mit humanen Zellen, daß P. aeruginosa in einem Biofilm nahezu kein ExoS exprimiert. Im Gegensatz dazu werden im Überstand dieser Kokultur größere Mengen an Exotoxin S durch planktonisch wachsende Bakterien erzeugt. Es ließ sich zeigen, daß das rhl-Quorum-Sensing-System von P. aeruginosa die Expression von ExoS und ExoU hemmen kann. Ebenso vermindert der Sigmafaktor der Stationären Phase RpoS die Expression von exoS ebenfalls stark. Die Mutation des AlgU-Antisigmafaktors MucA führt zu einem Anstieg von ExoS in der stationären Phase. Ein möglicher Regulationsweg durch Quorum Sensing besteht in der Aktivierung von ExsD, einem negativen Regulator des ExoS-Regulons. exsD besitzt in der Promotorregion eine Sequenz, die einer lux-Box, das heißt einer Bindungsstelle für die Regulatorproteine (RhlR, LasR) des Quorum Sensing, entspricht. Diese Ergebnisse zeigen, daß die Typ-III-sezernierten Exotoxine durch die oben genannten Faktoren reguliert werden können. Dadurch könnte die Expression des ExoS-Regulons im wesentlichen auf die exponentielle Phase beschränkt und in der stationären Phase und im Biofilm gehemmt werden. Zum anderen kann die verstärkte Expression von Typ-III-sezernierten Exotoxinen bei Mutation des mucA-Genes zur erhöhten Virulenz von mucoiden Isolaten von P. aeruginosa in vivo beitragen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
HRSV ist eine häufige und weltweit verbreitete Ursache von Infektionen des Respirationstraktes. Es führt zu einer entzündlichen Erkrankung der respiratorischen Schleimhäute mit Mukosaödem, Hypersekretion und Bronchospasmus. Die Übertragung des viralen Erregers erfolgt durch Tröpfcheninfektion oder Kontakt mit kontaminierten Gegenständen. HRSV-Infektionen zeigen die höchste Inzidenz bei Säuglingen, vor allem in den ersten zwei bis sechs Lebensmonaten. Bei 25% bis 40% dieser Säuglinge nimmt die Erkrankung einen schweren Verlauf mit Befall des unteren Respirationstraktes in Form einer HRSV-Bronchiolitis oder -Pneumonie. Bei 0,5% bis 2,0% ist eine stationäre Behandlung im Krankenhaus erforderlich. Die Inzidenz nimmt wegen des zunehmend effektiveren Immunsystems mit dem Alter ab. Erwachsene und ältere Kinder zeigen meist keine Symptome bzw. Symptome einer leichten Erkältung. Reinfektionen im Laufe des Lebens sind häufig. Eine effektive kausale Therapie bei HRSV-Infektionen steht derzeit nicht zur Verfügung. Bei Patienten mit leichtem Krankheitsverlauf ist keine spezielle Behandlung erforderlich, therapiert wird symptomatisch. Aktuell ist keine spezifische Prävention in Form einer aktiven Impfung oder als effektive antivirale Therapie etabliert. Angesichts der hohen Inzidenz von HRSV-Infektionen und -Reinfektionen sowie der enormen gesundheitlichen und wirtschaftlichen Auswirkungen ist ein effektiver Impfstoff gegen HRSV als Forschungsziel vorrangig. Das Genom von HRSV, das zur Ordnung der Mononegavirales gehört, besteht aus einem negativ-orientierten RNA-Einzelstrang mit einer Länge von 15 222 Nukleotiden (beim A2-Stamm) und kodiert für zehn subgenomische mRNAs in der Reihenfolge 3’-leader, NS1, NS2, N, P, M, SH, G, F, M2(1+2), L, trailer-5’, die zur Expression von elf viralen Proteinen führen: fünf RNP-assoziierte Proteine, das sind das Nukleoprotein N, das Phosphoprotein P, die große katalytische Untereinheit L der RNA-Polymerase und der Transkriptionselongationsfaktor M2-1 sowie das nicht essentielle M2-2-Protein; vier Hüllproteine, dazu zählen das nicht-glykosylierte Matrixprotein M und drei Oberflächenproteine, im Einzelnen das Fusionsprotein F, das Anheftungsprotein G und das kleine hydrophobe Protein SH; zwei Nicht-Strukturproteine NS1 und NS2. NS1 und NS2 zeichnen die Pneumoviren vor allen anderen Viren der Ordnung der Mononegavirales aus. Beide NS-Proteine sind im Virion nur in Spuren nachweisbar, während sie in infizierten Zellen akkumulieren. Die beiden für die Proteine NS1 und NS2 kodierenden, nichtüberlappenden Gene liegen am 3‘-Ende des Genoms direkt im Anschluss an die leader-Region. NS1 und NS2 stimmen in den vier carboxyterminalen Aminosäuren überein, ansonsten weisen sie keine Sequenzähnlichkeiten auf. Das NS1-Gen hat eine Länge von 552 nt und kodiert für ein leicht saures Protein von 139 AS und 15,7 kD. Das NS2-Gen ist 503 nt lang und kodiert für ein basisches Protein von 124 AS und 14,7 kD. Die für die Ordnung der Mononegavirales charakteristische progressive Attenuation der Transkription sowie die Genlokalisation von NS1 und NS2 am 3‘-Ende lassen auf die höchste Transkriptionsrate für NS1- und NS2-mRNA unter den zehn HSRV-mRNA schließen, was auf eine bedeutende Rolle der NS1- und NS2-Proteine in infizierten Zellen hindeutet. NS1 und NS2 antagonisieren im Zusammenwirken die durch alpha-IFN und beta-IFN induzierte antivirale Antwort des Wirtsorganismus. Hierfür ist eine Koexpression beider NS-Proteine unbedingt erforderlich, ein NS-Protein allein zeigt keine derartige Aktivität. Der Mechanismus, mit dem HRSV die IFN-Antwort des Wirtsorganismus umgeht, ist unklar. In dieser Arbeit wurde die Funktion der NS-Proteine von klinischen HRSV-Isolaten aus fünf bis fünfzehn Monate alten Kindern untersucht. Durch die Anzucht der klinischen HRSV-Isolate in HEp-2-Zellkultur unter identischen Bedingungen wurden zunächst patientenabhängige Faktoren ausgeschaltet und damit die Grundlage für die Vergleichbarkeit der Wachstumseigenschaften der Isolate geschaffen. In den daraufhin erstellten Wachstumskurven konnten deutlich voneinander abweichende Wachstumverhalten der Isolate aufgezeigt werden. Der Befund, dass 3/4 der Bronchiolitis hervorrufenden HRS-Viren hohe infektiöse Titer (>106 infektiöse Viruspartikel/ ml an Tag 3) erreichten, während dies nur bei 1/3 der Bronchitis verursachenden Viren zu beobachten war, könnte auf eine Korrelation zwischen Wachstum in vitro und Pathogenität in vivo hindeuten. Um dies zu belegen, müsste eine größere Zahl von klinischen Isolaten analysiert werden. Die beiden Nicht-Strukturproteine versetzen HRSV in die Lage, die antivirale IFN-Antwort der Wirtszelle zu umgehen. Durch Behandlung von Virus-infizierten Zellkulturen mit IFN ließ sich nachweisen, dass alle klinischen HRSV-Isolate die Eigenschaft der IFN-Resistenz gleichermaßen besitzen und erst durch unphysiologisch hohe IFN Dosen eine wesentliche Inhibierung der Virusreplikation erreicht werden kann. Die in gleicher Weise ausgeprägte α-IFN-Resistenz bei den in Virulenz und Wachstumsgeschwindigkeit unterschiedlichen Viren deutete bereits darauf hin, dass diese Resistenz essentiell für alle klinischen RSV-Isolate ist, und dass zusätzliche Faktoren für das Maß der Aggressivität der Erreger verantwortlich sind. Mittels Nukleotid- und Aminosäuresequenzanalysen von NS1 und NS2 konnte dies weitgehend bestätigt werden. Anhand von RNA aus den HRSV-Isolaten wurde mit Hilfe des Enzyms Reverse Transkriptase cDNA von NS1 und NS2 synthetisiert, die nach dem Prinzip der PCR in vitro amplifiziert wurde. In anschließenden Klonierungsarbeiten wurden aus dem Vektor pBluescript II SK (–) und NS1-DNA bzw. NS1+NS2-DNA als Insert Plasmide konstruiert, in denen die Gensequenzen von NS1 und NS2 ermittelt und rechnergestützt in die entsprechenden Aminosäuresequenzen translatiert wurden. Die Analyse der NS-Sequenzen zeigte eine überraschend hohe Konservierung. Die Isolate waren einschließlich des Long-Stamms diesbezüglich untereinander sehr ähnlich. Diese Beobachtung stimmt mit der IFN-Resistenz überein und zeigt die Bedeutung der NS-Proteine. Die Ergebnisse dieser Arbeit deuten darauf hin, dass Abweichungen in den Sequenzen der übrigen Gene sowie patientenbezogene Faktoren wie Abwehrlage und anatomische Beschaffenheit des Respirationstraktes als Grund für die Unterschiede im Schweregrad der HRSV-Infektion eine Rolle spielen. Angesichts der stabilen Koexpression beider Nicht-Strukturproteine und des dadurch bedingten effektiven IFN-Escape sichern die Gene NS1 und NS2 die Überlebensfähigkeit von HRSV in vivo und stellen ebenso geeignete wie interessante Angriffspunkte in der Entwicklung eines attenuierten Lebendimpfstoffs dar.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Yersinien sind auf Grund ihres spezifischen Typ III-Proteinsekretionssystems (TTSS) in der Lage, nach Anlagerung an Zellen bakterielle Virulenzproteine in das Innere der Wirtszelle zu translozieren. Dies führt zu einer Zellparalyse und bei Makrophagen zum Zelltod. Eines der translozierten Virulenzproteine ist YopP/J, das die Signalwege der mitogenaktivierten Proteinkinasen (MAPK) sowie des Transkriptionsfaktors NF-kB in der Wirtszelle inhibiert. Es wird angenommen, dass YopP/J zur Familie der Cystein-Proteasen zählt. Es zeigt Homologien zu AvrRXV/AvrBst von Xanthomonas campestris, welches eine dem apoptotischen Zelltod vergleichbare sogenannte „Hypersensitive Reaktion (HR)“ bei Pflanzen auslösen kann. Die Bakterien der enteropathogenen Spezies Yersinia enterocolitica, welche nach oraler Aufnahme im terminalen Ileum durch M-Zellen in die Lymphfollikel der Peyerschen Plagues wandern, werden anhand ihrer Oberflächen-(O)- und Geißel-(H)-Antigene in verschiedene Serotypen unterteilt. Unsere Studien haben gezeigt, dass sich einzelne Y. enterocolitica-Serotypen in der Apoptoseinduktion bei Makrophagen unterscheiden. In der vorliegenden Arbeit wurde den Mechanismen der Apoptoseinduktion durch die verschiedenen Y. enterocolitica-Serotypen nachgegangen. Zunächst konnte YopP für die unterschiedlichen Apoptose-Effekte verantwortlich gemacht werden. Durch DNA-Austausch und der anschließenden Modifikation einzelner Aminosäuren zwischen YopP von Y. enterocolitica-Serotyp O8 und Y. enterocolitica-Serotyp O9 konnte Arginin (R) an Position 143 als essentielle AS der Effektordomäne von YopPO8 definiert werden. YopP von Y. enterocolitica-Serotyp O9 und Y. enterocolitica-Serotyp O3 besitzt an dieser AS-Position Serin (S). YopPO8 vermittelt deutlich stärker Apoptose als YopPO9 und YopPO3. Der erhöhten Apoptoseinduktion durch YopPO8 geht eine effiziente Unterdrückung der NF-kB-Aktivierung vorraus. Die Inhibition des antiapoptotischen NF-kB-Signalwegs durch YopP scheint Voraussetzung für die Apoptoseinduktion durch Yersinia zu sein. Des weiteren wurde in dieser Arbeit mit Hilfe des Hefe-2-Hybrid-Systems nach neuen unbekannten intrazellulären YopP-Interaktionspartner gesucht. Aus einer Maus-Milz-cDNA-Genbank konnten 22 potentielle YopP-Interaktionspartner isoliert werden. In in vitro-Bindungsstudien konnte bis zum jetzigen Zeitpunkt eine Interaktion von YopP mit vier Proteinen (PP2Ac, FWD2, eEf1bb, Smad1) bestätigt werden. Weiterführende Bindungs- und Funktionsanalysen werden noch durchgeführt. Die möglichen Auswirkungen dieser Interaktionen werden diskutiert. Die durchgeführten Studien erbrachten zudem Hinweise auf eine Modifikation von YopP in der Wirtszelle. Darüberhinaus konnte mit Hilfe des Hefe-2-Hybrid-Systems der Interaktionsbereich von YopP mit seinem Zielprotein IKKb eingeschränkt werden. Die durchgeführten Bindungsanalysen mit IKKb-Deletionsmutationen weisen auf eine Bindung von YopP an den IKKb-N-Terminus hin. Das Ergebniss wurde durch in vitro-Bindungsstudien bestätigt. Unter anderem scheint Alanin an IKKb-Position 120 die Interaktion mit YopP zu bestimmen. So konnten im Rahmen dieser Doktorarbeit unterschiedliche Aspekte der Wechselwirkung von Y. enterocolitica YopP mit der Wirtszelle und Wirtszellproteinen analysiert werden. Diese Studien tragen zum besseren Verständnis der Immunmodulation durch pathogene Bakterien bei.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Among the Paramyxoviridae, only members of the subfamily Pneumovirinae like Respiratory Syncytial Virus (RSV) encode two nonstructural proteins, NS1 and NS2. These two proteins cooperatively mediate type I interferon resistance and prevent induction of interferon in infected cells. Interactions of NS1 and NS2 proteins in every combination were shown by using the yeast-two-hybrid system. Therfore, NS1 and NS2 are able to form homo- and hetero(oligo)mers in infected cells. Although RSV replicates exclusively in the cytoplasm, NS-Proteins are localized in the cytoplasm as well as in the nucleus. Expression of an enlarged NS1 fusion protein, EGFP-NS1-BRSV N, resulted in the same nuclear and cytosolic localisation indicating that nuclear localisation is not due to diffusion but rather to an active transport. Thus, NS-Proteins should have particular functions in the nucleus of infected cells. Furthermore, yeast-two-hybrid screening of a lung cDNA expression library using NS1 of bovine RSV (BRSV) as a bait, identified cDNA clones encoding several nuclear proteins and one cytosolic protein. BRSV NS2 protein and NS-Proteins from other pneumoviruses (HRSV, PVM) were also able to interact with the identified cellular proteins in yeast. The isolated cDNAs encode the nuclear proteins CDK4BP (p34SEI-1 or TRIP-Br1), RanBP16, MM-1, DEAD Box Helicase p68 and the cytosolic β-COPI. Specific interactions were determined by mutational analysis of BRSV NS1 in yeast. Co-immunoprecipitation from lysates of eukaryotic cells confirmed the interaction of both BRSV NS-Proteins with the cellular proteins. The interaction of MM-1 and p68 with both NS-Proteins was also shown in GST pull down assay in vitro. Engineered BRSV encoding a truncated p68 showed accelerated replication in MDBK and Vero cells, whereas growth of NS1/NS2 deletion mutants expressing the truncated p68 was unaffected. This indicates that the presence of NS-Proteins is a prerequisite for the acceleration of BRSV growth by truncated p68. Furthermore, replication of BRSV was attenuated on HeLa cells in which expression of p68 was knocked down by specific siRNA, whereas replication of the unrelated Rabies virus was not. Thus, p68 is a nuclear target protein for the NS-Proteins and supports BRSV replication in vitro. Growth and division of host cells is necessary for optimal BRSV replication and like p68, most of the identified nuclear protein interactors are related to regulation of the cell cycle and cell division, respectively. Therefore, NS-Proteins appear to influence the cell cycle for optimal replication of BRSV by targeting such proteins. Hence, with the yeast-two-hybrid system, the first cellular interaction partners were identified indicating new functions of NS-Proteins in the viral replication cycle.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Yersinia enterocolitica produzieren Pathogenitätsfaktoren, die es ihnen ermöglichen, an die Zellen des Wirtes zu adhärieren, diese zu invadieren und protektive Immunantwort des Wirtes zu modifizieren. Dazu gehören die Yersinia outer proteins (YOP), die durch den Typ III Sekretionsweg über die Bakterienmembran in die Wirtszelle transloziert werden. Diese Sekretion wird durch das Chaperon SycE unterstützt. SycE bindet an YopE, verhindert die Degradation, stabilisiert die Faltung des Proteins und leitet es an die Sekretionspore. Mittels Reporterfusionstechnologie mit GFP und BFP sollte durch einen Fluorescence Resonance Energy Transfer (FRET), bei dem die Fluoreszenzenergie von BFP strahlenlos auf GFP übertragen wird wenn beide Proteine in einer Distanz von 1-10 nm liegen, die Interaktion der beiden Proteine intrazellulär dargestellt werden. Es wurden verschieden lange Yop-Fragmente mit dem Reprotergen gfp und SycE mit BFP fusioniert. Ferner sollte mit Hilfe der Reportergene gfp und luc die Produktion von YopE und SycE in vitro verfolgt werden. Zusammenfassend ist die Darstellung der Interaktion mittels FRET schwierig, da mikroskopisch eine erwartete Grünfluoreszenz gezeigt werden konnte, die Negativkontrollen aber durch die Eigenschaften der Reporterproteine nicht eindeutig negativ waren. Desweiteren zeigt sich eine hohe Ausbleichrate von BFP, ferner überlappt sich das Emissionsspektrum von BFP und GFP in einem grossen Bereich, sodass es unabhängig von einem möglichen FRET von BFP zum Auftreten einer entsprechenden Grünfluoreszenz aufgrund der Anregung durch die Lichtquelle kommen kann. Im zweiten Teil zeigt sich, dass die Produktion von YopE und SycE kontinuierlich stattfindet und mit dem Beginn der in vitro Stimulation produziert werden, mit einem Verhältnis deutlich zugunsten von SycE. Diese Ergebnisse sprechen für ein Modell der Chaperon-induzierten, posttranslationalen Sekretion von YopE. Gleichzeitig ist durch die hohe Stabilität von GFP die fluoreszenzmikoskopische Bestimmung der Produktionskinetiken von YopE-GFP und anderen Proteinen begrenzt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die vorliegende Arbeit hatte zum Ziel, (i) die regulatorische Funktion bestimmter integraler Membranproteine im Dictyostelium Zytoskelett und (ii) die biochemische Interaktion einer Kinase eines infektiösen Bakteriums mit Aktin aus der Wirtszelle genauer zu analysieren. (i) Die ubiquitären Mitglieder der CD36/LIMPII-Familie sind integrale Membranproteine, die als Lipidrezeptoren und Zelladhäsionsproteine in der Plasmamembran oder - mit bisher unbekannter Funktion - in Membranen endosomaler Vesikel vorkommen. In Dictyostelium discoideum führte die Inaktivierung eines lysosomalen Membranproteins aus dieser Gruppe zur Suppression des Phänotyps einer Profilin-minus Mutante. Im Zuge der vollständigen Sequenzierung des D. discoideum-Genoms konnte festgestellt werden, daß es neben diesem DdLmpA noch die beiden weiteren homologen Proteine DdLmpB und DdLmpC gibt. Da der Mechanismus der Suppression des Profilin-minus Phänotyps ungeklärt ist, wurden die beiden Isoformen im Rahmen der vorliegenden Arbeit genauer charakterisiert. Sowohl für DdLmpB wie auch für DdLmpC konnte die familientypische Membran-Topologie einer Haarnadelstruktur nachgewiesen werden. Dabei weist die zentrale, lumenale Domäne beider Proteine zahlreiche Glykosylierungen auf. Durch Immunofluoreszenz und Saccharosegradienten wurde die Lokalisation der drei Isoformen an endolysosomalen Vesikeln nachgewiesen. Es stellte sich dabei heraus, daß die drei DdLmp-Proteine in unterschiedlichen Vesikelpopulationen auftraten. Auch “pulse-chase“-Experimente mit TRITC-Dextran und nachfolgender Markierung der Vesikel mit DdLmp-spezifischen Antikörpern ergaben unterscheidbare Zeitmuster für die Rekrutierung der Membranproteine in Vesikeln. Die für DdLmpA oft beobachtete Kolokalisation mit Makropinosomen konnte z.B. für DdLmpB und DdLmpC nur selten festgestellt werden. Nach zahlreichen Versuchen und der Konstruktion von verschiedenen Vektoren konnte am Ende der praktischen Arbeiten eine DdLmpB-minus Mutante im Wildtyp-Hintergrund isoliert werden. (ii) Im zweiten Teil der Arbeit wurde die in der Literatur beschriebene Interaktion zwischen Aktin und der Kinase YopO, die durch Yersinia enterocolitica als Effektorprotein in die Wirtszelle transloziert wird, biochemisch genauer untersucht. Es konnte festgestellt werden, daß G-Aktin und nicht F-Aktin für die Aktiverung der YopO-Kinase verantwortlich ist. Dabei tritt Nichtmuskel-Aktin im Vergleich zum Muskel-Aktin als ein deutlich besserer Aktivator von YopO auf. Obwohl die aktivierte Kinase in vivo das Aktin-Zytoskelett beeinflußt, ist Aktin offensichtlich kein Substrat von YopO. Mittels Fluoreszenzspektroskopie konnte gezeigt werden, daß sowohl die native Kinase YopO als auch das durch Punktmutation inaktivierte YopO K269A die Polymerisierungskinetik von Aktin behindern. Für eine mutmaßliche Aktin-Binderegion von 20 Aminosäuren aus dem C-terminalen Ende konnte hingegen kein Effekt beobachtet werden. Der Einfluß von aktinbindenden Proteinen, aktinmodifizierenden Substanzen und YopO-bindenden GTPasen auf die Aktivierung der Kinase durch Aktin deutet darauf hin, dass die Aktivität der Kinase in der Wirtszelle nicht nur durch Aktin alleine, sondern auch durch weitere Zytoskelett-Komponenten reguliert wird.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Neisseria meningitidis, ein Gram negatives pathogenes Bakterium ist eine der Ursachen für schwere Septikämie und Meningokokkenmeningitis. Nach Besiedelung des menschlichen Nasopharynx und Übertritt in die Blutbahn besteht ein zentraler Schritt in der Pathogenese der durch N. meningitidis verursachten bakteriellen Meningitis in der Interaktion der Bakterien mit Zellen der Blut-Hirn-Schranke. Die Schwere der Erkrankung scheint direkt mit der Produktion proinflammatorischer Zytokine, Chemokine und Wachstumsfaktoren zu korrelieren. Daher wurde in der vorliegenden Studie mit Hilfe eines Zellkulturmodells die Freisetzung von Tumornekrosefaktor alpha (TNF-a), Interleukin-1b (IL-1b), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Monocyten-attrahierendem Protein-1 (MCP-1) und transformierendem Wachstumsfaktor beta (TGF-b) durch Gehirnendothelzellen nach Infektion mit Meningokokken analysiert. Mit ELISA und RT-PCR wurde die Freisetzung von Zytokinen und die Transkription der Zytokin-codierenden Gene von humanen Gehirnendothelzellen (HBMEC) nach Infektion mit dem Meningokokkenstamm MC58* und seiner unbekapselten isogenen Mutante MC58 siaD der Serogruppe B nachgewiesen. In Übereinstimmung mit der Zytokinfreisetzung wurde dabei ein typisches Genexpressionsmuster festgestellt. Beide Bakterienstämme beeinflußten die Transkription der Gene, die für IL-6 und IL-8 kodieren, wobei die Transkription bei den Zellen, die mit dem unbekapselten Stamm infiziert wurden, früher nachzuweisen war. Die Transkription des TNF-a Gens wurde nur nach der Infektion mit der unbekapselten Mutante nachgewiesen. Für IL-1b und MCP-1 wurde keine verstärkte Transkription festgestellt, wogegen das Gen, welches für TGF-b codiert, von infizierten wie uninfizierten Zellen gleichermaßen exprimiert wurde. Neben den intakten Bakterien führte auch die Stimulation mit Außenmembranproteinen zu einer Induktion der Zytokinfreisetzung. Die Verhinderung der Internalisierung der Bakterien in die Zellen bzw. die Blockade des a5b1 Integrin Rezeptors reduzierte die Freisetzung von IL-8 und TNF-a, nicht jedoch die Freisetzung von IL-6. Während durch die IL-6 oder IL-8 Prästimulation der HBMEC keine Veränderung des Invasionsverhaltens der Meningokokken beobachtet werden konnte, führte eine Prästimulation mit TNF-a zu einer deutlich gesteigerten Invasion der Bakterien in die Zellen. Diese Ergebnisse machen deutlich, daß der Entzündungsprozeß im Gehirn eine komplexe Interaktion zwischen Bakterium und Wirtszelle erfordert. Dabei spielen die Gehirnendothelzellen offensichtlich eine wichtige Rolle in der interzellulären Kommunikation der beteiligten Zellen, indem sie Zytokine als Immunmodulatoren freisetzen, die ihrerseits zu veränderter Expression von Adhäsionsmolekülen führen könnten.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Caliciviren sind kleine, unbehüllte Viren mit einem RNA-Genom positiver Polarität. Die Vertreter der Familie Caliciviridae sind Erreger wichtiger, zum Teil sehr unterschiedlicher Erkrankungen bei Mensch und Tier. Das Feline Calicivirus (FCV) gilt als einer der Haupterreger des Katzenschnupfenkomplexes. Das FCV ist für Replikationsstudien an Caliciviren besonders gut geeignet, da es sich effizient in Zellkultursystemen vermehrt. Da der Replikationszyklus nur zum Teil aufgeklärt ist, wurden in der vorliegenden Arbeit zwei Nichtstrukturproteine des FCV, das Vpg und die RNA-abhängige RNA-Polymerase (3D-Polymerase), näher charakterisiert. Die 3D-Polymerase ist für die Replikation der viralen RNA zuständig. Das Vpg ist ein viruskodiertes Protein, welches kovalent an den 5'-Terminus der genomischen und subgenomischen RNA gebunden ist. Gegen beide Proteine wurden zunächst erfolgreich polyklonale Antikörper generiert. Untersuchungen zur Expressionskinetik ergaben, dass die 3D-Polymerase in einer frühen Phase des Replikationszyklus exprimiert wird. Sie tritt auch beim FCV-Isolat KS20 nur in Verbindung mit der 3C-Protease als sogenanntes 3CD-Vorläuferprotein auf, freie Polymerase ist nicht nachweisbar. Im Gegensatz zur 3D-Polymerase liegt das Vpg-Protein in einer späteren Phase des Replikationszyklus des FCV in freier Form vor. Es wurden für das FCV-Isolat KS20 zwei mögliche Vorläuferproteine von etwa 43 bis 45 kDa und von 25 kDa detektiert, deren Funktion unklar ist. Die 3D-Polymerase und das Vpg wurden nur im Zytopasma der Wirtszelle lokalisiert. Beide induzieren keine neutralisierenden Antikörper. Ferner beschäftigte sich diese Arbei mit der Hypothese, dass das Vpg bei der Transkription der viralen RNA eine Rolle spielt und möglicherweise als Primer für die 3D-Polymerase dient. Zum anderen wurde untersucht, ob das Vpg an der Enkapsidierung der genomischen und subgenomischen RNA in die viralen Partikel beteiligt ist. Zum Nachweis potentieller Wechselwirkungen zwischen den einzelnen Proteinen wurde eine Co-Immunopräzipitation durchgeführt. Bei keinem der untersuchten Proteinpaare konnte eine Interaktion festgestellt werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Pflanzenzelle enthält ein integriertes, kompartimentiertes genetisches System, mit den Subgenomen im Zellkern, in den Mitochondrien und den Plastiden, das aus Endocytobioseereignissen mit prokaryotischen Zellen hervorgegangen ist. Im Laufe der Evolution der eukaryotischen Zelle wurden die genetischen Potentiale der symbiontischen Partnerzellen vermischt. Dabei ging ein Teil genetischer Information verloren, ein anderer wurde aus den Organellen in den Kern transferiert, und außerdem wurde neue Information hinzugewonnen. Dies ging einher mit der Einbettung von Mitochondrien und Plastiden in die Signaltransduktionsketten und Regelkreise der Wirtszelle. Heute interagieren die Subgenome auf vielen Ebenen; ihre Expression wird in der Pflanzenzelle koordiniert in Raum, Zeit und Quantität reguliert. Die Interdependenz der Subgenome hatte ihre Koevolution zur Folge, so daß die genetischen Kompartimente der Zelle nicht mehr ohne weiteres zwischen Arten ausgetauscht werden können. Kombinationen von artfremden Organellen können zu Entwicklungsstörungen führen, wie sie sowohl von "kompartimentellen" (Genom/Plastom-) Hybriden als auch von Cybriden beschrieben worden sind (Bastardbleichheit, Bastardscheckung). In dieser Arbeit wurden reziproke Cybriden der Arten Atropa belladonna und Nicotiana tabacum auf molekulare Determinanten von Genom/Plastom-Inkompatibilität untersucht. Die Cybriden sind je nach Kombination elterlicher Organellen entweder albinotisch [Kern von Atropa, Plastide vom Tabak; Ab(Nt)-Cybride] oder gleichen dem Wildtyp [Kern von Tabak; Plastide von Atropa, Nt(Ab)-Cybride]. 1. Als Voraussetzung für einen Sequenzvergleich der plastidären Chromosomen beider Solanaceen-Arten wurde das Plastidenchromosom von Atropa komplett sequenziert. Der Vergleich der (Atropa)-Sequenz mit der bekannten des Chromosoms aus dem Tabak und anschließende molekularbiologische Untersuchungen führten zur Identifizierung von zwei potenziellen Ursachen für die Defekte im albinotischen Material. 2. Die Ab(Nt)-Cybride zeigt eine gestörte Akkumulation von Transkripten für eine Reihe von Operonen. Das resultierende aberrante Transkriptmuster ähnelte verblüffend dem von Tabakpflanzen mit Defizienz der plastidenkodierten RNA-Polymerase (PEP). Möglicherweise ist in der Cybride die Interaktion des PEP-Apoenzyms mit einem oder mehreren der kernkodierten Sigmafaktoren gestört. Tatsächlich unterscheiden sich die für eine Untereinheit der PEP kodierenden (plastidären) rpoC2-Gene von Tabak und Atropa durch eine Insertion/Deletion an einer Stelle im Molekül, die mit Sigmafaktoren interagieren kann. Transformation der Plastiden der Ab(Nt)-Cybride mit dem rpoC2-Gen aus Tabak führte in der Tat zu einer partiellen Reversion zum WT und macht Transkriptionsdefekte als eines von offenbar mehreren Determinanten für die Genom/Plastom-Inkompatibilität in Artbastarden wahrscheinlich. 3. Neben der Transkription ist im albinotischen Material auch die RNA-Edierung gestört. Die plastidären Editotypen beider Solanaceen ähneln einander, doch gibt es für beide Arten spezifische Edierungsstellen. Von den fünf tabakspezifischen Stellen in der Ab(Nt)-Cybride werden vier nicht ediert. Offensichtlich besitzt der Atropa-Kern nicht die notwendigen Kernfaktoren zur Prozessierung dieser Stellen. Da Edierung generell hochkonservierte und funktionell wichtige Aminosäurepositionen betrifft, trägt der Ausfall der Edierung sehr wahrscheinlich ebenfalls zum beobachteten Defekt in der Plastidenentwicklung bei. 4. Auf der anderen Seite werden die Stellen der grünen Nt(Ab)-Cybride, bemerkenswerterweise auch Atropa-spezifische, heterolog vom Tabakkern ediert. Der erstmalige Befund von heterologem Edieren stellte sich als Folge der Allotetraploidie von Tabak heraus. Untersuchungen dieser Stellen in den diploiden Eltern des allotetraploiden Tabaks, N. tomentosiformis als Nachkomme des Vaters und N. sylvestris als Nachkomme der Mutter, zeigten, daß der Tabak die Fähigkeit zur heterologen Edierung von Atropa-spezifischen Stellen wohl vom Vater ererbt hat. Dies wurde auch durch einen transplastomischen Ansatz bestätigt. In diesen Experimenten wurde die intronnahe ndhA-Edierungsstelle aus Spinat, die es auch in N. tomentosiformis gibt, nicht aber in N. sylvestris, in Tabak über ballistische Transformation eingebracht. 5. Über Konstruktionen, die entweder der gespleißen oder ungespleißten ndhA-mRNA inklusive der Edierungsstelle entsprachen, konnte gezeigt werden, daß die Edierung an dieser Stelle immer erst nach dem Spleißen erfolgt. Dies ist der erste Nachweis einer strikten kinetischen Verknüpfung von RNA-Edierung mit einem anderen mRNA-Reifungsschritt in Plastiden. Er zeigt an, daß das ndhA-Intron phylogenetisch älter als die ndhA-Edierungsstelle ist. Mechanistische Implikationen dieses Befundes werden diskutiert.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Die enterpathogenen Yersinia-Spezies unterlaufen die primären Abwehrmechanismen des Wirtes durch Einflußnahme auf Signaltransduktionskaskaden. Diese Subversion wird von einem 70 kDa Virulenzplasmid vermittelt, welches für ein Typ III Sekretion/Translokationsssystem und einige Virulenzfaktoren, sogenannte Yops (Yersinia outer proteins) kodiert. Die sechs bisher bekannten Effektor-Yops gelangen über das Sekretionssystem ins Zytoplasma von Makrophagen und Granulozyten, was in diesen zu einer Inhibition von Phagozytose, oxidative burst und Zytokinfreisetzung sowie zur Induktion der Apoptose führt. Ziel dieser Arbeit war es, die zellulären Angriffsproteine der Effektor-Yops YopM und YopO zu identifizieren. Als Methode diente das Yeast Two- Hybrid System. Es stellte sich heraus, dass YopM für diese Methode aufgrund seiner transskriptionsaktivierenden Eigenschaft nicht verwendbar ist. Dies und die Beobachtung, dass YopM in den Zellkern lokalisiert wird (77) deuten darauf hin, dass YopM möglicherweise als Transkriptionsfaktor in der Wirtszelle wirken könnte. Für YopO erbrachte die Two-Hybrid Untersuchung 31 positiv interagierende Klone, die als Rac1 (17 Klone, davon 4 unabhängige), Snk i.p. (11 Klone, davon 6 unabhängige) und Mus musculus spindlin (3 Klone) identifiziert werden konnten. Rac1 gehört zur Familie der Rho-GTPasen zu denen u.a. auch die Proteine RhoA und Cdc42 gehören. Diese kleinen G-Proteine sind in komplexer und in noch unvollkommen verstandener Weise an der Regulation vielfältiger Zellfunktionen beteiligt. Es konnte gezeigt werden, dass YopO neben Rac1 auch mit RhoA, nicht jedoch mit Cdc42 im Yeast Two-Hybrid System interagiert. Für YpkA, dem zu YopO homologen Protein aus Y. pseudotuberculosis zeigte sich das gleiche Interaktionsverhalten. Durch Koimmunopräzipitation konnten die Ergebnisse der Yeast Two-Hybrid Untersuchung mit einer zweiten, unabhängigen Methode bestätigt werden. Aus dem Zellysat von mit Yersinien infizierten humanen COS-Zellen, ließen sich RhoA und Rac1, nicht aber Cdc42 mit Hilfe von Anti-YpkA-Antikörpern koimmunopräzipitieren. In dieser Arbeit konnte mit zwei unabhängigen Methoden eine bis dahin unbekannte Affinität zwischen YpkA/YopO mit RhoA und Rac1 gezeigt werden. Es kann somit davon ausgegangen werden, dass RhoA und Rac1 die intrazellulären Angriffspunkte der Effektor- Yops YpkA bzw. YopO darstellen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Epithelzellen spielen im Immunsystem eine wichtige Rolle als Vermittler zwischen äußerem Milieu und darunterliegender Mukosa. Epithelzellen treten als Erste mit potentiellen Pathogenen in Kontakt: durch die Sekretion von Zytokinen als Warnsignale an umliegende Zellen können sie eine Entzündungsreaktion einleiten. Yersinia enterocolitica ist ein enteropathogener, vorwiegend extrazellulär lokalisierter Erreger, der eine akute Enterokolitis, Sepsis und immunologische Folgeerkrankungen verursacht. Die Rolle der intestinalen Epithelzellen bei der Infektion mit Y. enterocolitica ist bisher nicht ausreichend erörtert. Ziel dieser Arbeit war zum einen die Untersuchung des von Epithelzellen initiierten Zytokin-Netzwerks während der frühen Phase der Y. enterocolitica- Infektion. Hierzu wurden HeLa-Zell-Monolayer mit verschiedenen Y. enterocolitica- Stämmen infiziert und mittels Reverser Transkriptions (RT)-PCR zunächst wichtige Zytokine identifiziert. Die Kinetik der Zytokin-Produktion wurde durch semiquantitative RT-PCR analysiert sowie die intra- oder extrazelluläre Lokalisation der Zytokine mittels ELISA quantitativ erfasst. Die Stimulation von epithelialen Zellen mit rekombinanten humanen Zytokinen lieferte weitere Informationen über die Funktion der einzelnen Zytokine. Zum anderen wurden die Mechanismen der Wirt-Pathogen- Interaktion analysiert, die das Zytokin-Netzwerk während der initialen Phase der Y. enterocolitica-Infektion auslösen. Die Auswirkungen der Hemmung der bakteriellen Invasion (durch PI3-Kinase-Inhibitoren) sowie der bakteriellen Proteinsynthese (mittels Antibiotika) wurden untersucht. Durch die Infektion von Epithelzellen mit verschiedenen bakteriellen Mutantenstämmen gelang es, die Bedeutung des chromosomal kodierten Oberflächenproteins Yersinia Invasin zu charakterisieren. Folgende Ergebnisse wurden im Rahmen dieser Arbeit erzielt: 1. Y. enterocolitica pYV– induziert eine Stunde nach Infektion von HeLa-Zellen die de novo-Synthese von IL-8-, IL-1a-, MCP-1-, IL-1b-, GM-CSF- und TNF-a- mRNA. Y. enterocolitica pVY+ hemmt durch bestimmte Yersinia outer proteins die de novo-Synthese aller untersuchten Zytokine in HeLa-Zellen. 2. Die Zytokin-mRNA-Produktion in HeLa-Zellen nach Y. enterocolitica pYV–-Infektion erreicht nach 3 h ihr Maximum, um 5–6 h nach Infektion wieder auf Normalwerte abzufallen. IL-8 wird hierbei als Erstes und in den größten Mengen produziert. Diese pro-inflammatorische Zytokin-Antwort ist wahrscheinlich verantwortlich für den histopathologisch beobachteten massiven Einstrom von Immunzellen in infizierte Peyer’sche Plaques, was deren Zerstörung zur Folge hat. 3. Nur IL-8, MCP-1 und GM-CSF werden von HeLa-Zellen sekretiert, IL-1a und IL-1b verbleiben intrazellulär. IL-1a stimuliert bei HeLa-Zellen eine proinflammatorische Zytokin-Antwort, nicht jedoch IL-8, MCP-1 oder GM-CSF. Dies spricht für eine spezielle Rolle von IL-1: es könnte als ‚Verstärker-Zytokin’ dienen, das erst im späteren Verlauf der Infektion, nach Lyse der infizierten Zellen, freigesetzt wird und eine erneute Zytokin-Produktion verursacht. 4. Die Zytokin-Induktion nach Y. enterocolitica-Infektion von HeLa-Zellen ist wahrscheinlich nicht LPS-vermittelt. 5. Auch nach Hemmung der bakteriellen Invasion durch Wortmannin, einem PI3- Kinase-Inhibitor, beobachtet man die gleichen Zytokin-Antwort: schon die Adhäsion der Bakterien an die Wirtszelle genügt, um eine inflammatorische Zytokin- Reaktion auszulösen. 6. Wir zeigten, dass die Zytokin-Induktion durch die Bindung von Yersinia Invasin an b1-Integrine der Wirtszelle vermittelt wird: Eine Invasin-defiziente Y. enterocolitica- Mutante löst (ebenso wie ein nicht-invasiver E. coli-Stamm) keine Zytokin- Reaktion in HeLa-Zellen aus. Der Transfer des Invasin-Gens in E. coli hingegen vermittelt diesem die Fähigkeit, eine inflammatorische Zytokin-Antwort auszulösen. 7. Die Invasin-induzierte Zytokin-Antwort nach Y. enterocolitica pYV– ist unabhängig von bakterieller Proteinbiosynthese oder einem intakten Typ III-Sekretionssystem: auch Gentamicin- oder Hitze-getötete Yersinien induzieren eine inflammatorische Zytokin-Antwort wie metabolisch aktive Yersinien. Diese Ergebnisse verdeutlichen zum einen die wichtige Rolle von Epithelzellen bei der Generierung von Signalen zur Initiation der Abwehrreaktion des Immunsystems gegen Y. enterocolitica. Zum anderen wurde Yersinia Invasin als Pathogenitätsfaktor charakterisiert, der gezielt eine zelluläre Entzündungsreaktion der Darmmukosa auf eine Y. enterocolitica-Infektion initiiert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Salmonellosen gehören weltweit zu den drei häufigsten registrierten, lebensmittelbedingten bakteriellen Darmerkrankungen. Dabei sind bestimmte S. enterica-Subspezies-I-Serovare an einen speziellen Wirt adaptiert, andere Serovare zeigen hingegen ein breites Wirtsspektrum. Der Krankheitsverlauf einer Salmonellose wird aber auch von der Spezies des infizierten Wir- tes bestimmt. Je nach infiziertem Wirt können beispielsweise milde bis akute Enterocolitis, aber auch schwere systemische Infektionen beobachtet werden. Um sich im Laufe ihrer Evolution optimal an ihre Wirte anzupassen, haben Salmonella spp. nach der Abspaltung vom kommensalen E. coli schrittweise neue Virulenzeigenschaften er- worben. Dies geschah vor allem über horizontalen Gentransfer (Ochman und Moran, 2001). Im ersten Schritt wurde die Salmonella-Pathogenitätsinsel 1 (SPI1), später SPI2 erworben. Beide Inseln kodieren jeweils einen Typ-III-Translokationsapparat und dazu gehörende trans- lozierte Effektorproteine, welche die Wirtszellreaktionen zum Vorteil des Pathogens modulie- ren. Die Inseln sind zu unterschiedlichen Phasen der Salmonellosen aktiv. Das für die Wirts- zellinvasion verantwortliche Typ-III-Translokationssystem von SPI1 kann auch Effektoren in die Wirtszellen schleusen, die außerhalb der SPI1 kodiert sind. Der in SPI1 kodierte Translo- kationsapparat ist in Salmonella spp. hoch konserviert (Li et al., 1995). In der vorliegenden Arbeit wurde die Rolle der translozierten Effektorproteine bei der Evolu- tion von Salmonella spp. hin zu tierpathogenen Erregern untersucht. Es konnte gezeigt wer- den, daß die meisten SPI1-abhängig translozierten Effektoren (SipA, SipB, SipC, SptP, SopB, SopD und SopE2), ob innerhalb oder außerhalb von SPI1 kodiert, ebenfalls hoch konserviert vorliegen. Phylogenetische Analysen zeigten, daß diese konservierten Effektoren früh in der Salmonella-Entwicklung, nämlich zwischen 50 und 160 Millionen Jahren (im Zeitrahmen der SPI1-Aufnahme), akquiriert wurden. So handelt es sich hierbei um Faktoren mit einer basalen bzw. zentralen Virulenzfunktion, die Salmonella spp. von kommensalen Escherichia spp. unterscheiden. Es konnte gezeigt, daß die konservierten Effektorproteine SopE2 und SopB maßgeblich an der Wirtszellinvasion beteiligt sind (Mirold et al., 2001). Diese Invasion-vermittelnden Effek- toren sind weit entfernt von SPI1, in separaten chromosomalen Loci, kodiert. Diese Beobach- tung steht in gewissem Widerspruch zur klassischen Definition der Pathogenitätsinsel. Die invasionsrelevanten Effektoren SopB und SopE2 bilden zusammen mit dem SPI1- Translokationsapparat eine funktionelle Einheit (ein sogenanntes „Invasionsvirulon“), obwohl sie nicht -wie für Pathogenitätsinseln postuliert- auf demselben chromosomalen Element ko- diert sind. Zusammen mit den phylogenetischen Daten aus dieser Arbeit, deuten diese Ergeb- nisse daraufhin, daß der letzte gemeinsame Vorfahre aller heutigen Salmonella spp. bereits sämtliche für die Wirtszellinvasion benötigten Effektorproteine kodierte und daß die Modula- tion der Signaltransduktionswege in der Wirtszelle in S. bongori und in sämtlichen S. enteri- ca-Subspezies konserviert sind. Es wird vielmehr ein Translokationsmodul durch die SPI1 bereitgestellt, durch das sowohl konservierte als auch variabel vorkommende Effektorproteine in die Wirtszelle geschleust werden können. Es konnten jedoch auch Variationen festgestellt werden. Die beiden für die Effektorproteine SopE- und AvrA-kodierenden Gene sind variabel in der Salmonella-Population verteilt. AvrA ist am Rande der SPI1 kodiert und es wird vermutet, daß es nicht zum Kern der SPI1 gehört. Das variable SopE ist bei Zentisom 60 des Salmonella-Chromosoms, abgetrennt von SPI1 (Zentisom 63), kodiert. Das variable Effektorprotein SopE und wahrscheinlich auch AvrA tragen vermutlich als „Adaptationsproteine“ zur Feinmodulation der Wechselwirkung mit dem Wirt bei. Vermutlich existieren noch wesentlich mehr variable Effektorproteine, die zu dieser Feinanpassung beitragen. In dieser Arbeit wurde weiterhin der horizontale Transfer von sopE detailliert untersucht. SopE ist in Typhimurium auf SopEΦ, einem Bakteriophagen der P2-Familie, kodiert. SopE ist das erste Effektorproteingen, bei dem die horizontale Übertragung über den Mechanismus der lysogenen Konversion nachgewiesen werden konnte. Bisher war bei Salmonella spp. nur der Phagen-vermittelte horizontale Transfer durch Transduktion bekannt. Die spezifische Integra- tionsstelle von SopEΦ in das Salmonella-Chromosom wurde näher charakterisiert. Es konnte gezeigt werden, daß SopEФ in der attL-Region eines bereits integrierten kryptischen Propha- gen (CP4-57) integriert ist, der seinerseits in ssrA, dem Gen für die kleine stabile tmRNS, integriert ist. Epidemiologische Untersuchungen wiesen zudem darauf hin, daß der Erwerb des sopE-Gens durch lysogene Konversion mit SopEФ einen selektiven Vorteil gegenüber sopE-negativen Typhimurium-Stämmen darstellen. SopE-tragende S. enterica-Subspezies-I-Serovar Typhi- murium-Stämme lösten in den siebziger und achtziger Jahren verstärkt Epidemien aus. Darü- berhinaus konnte gezeigt werden, daß SopEФ-Lysogene eine gesteigerte Virulenz aufweisen. Dies wurde sowohl in Zellkulturversuchen (diese Arbeit) als auch in Rinderinfektionsversu- chen (Zhang, zur Publikation eingereicht) experimentell nachgewiesen. Schließlich wurde in dieser Arbeit auf die Koevolution von Salmonella spp. und Virulenzfak- tor-tragenden Bakteriophagen untersucht. Es wurde festgestellt, daß die genetischen Mecha- nismen, welche den Modulaustausch zwischen Bakteriophagen vermitteln, auch dazu führen, die Flexibilität der Salmonella spp. bezüglich der Wirtsanpassung zu steigern. Dieser Mecha- nismus stellt möglicherweise für die Bakterien und damit auch für die assoziierten Bakteri- ophagen einen Selektionsvorteil dar. Es wurde beobachtet, daß der Virulenzfaktor SopE in einigen Serovaren der S. enterica-Subspezies-I nicht auf einem P2-ähnlichen sondern auf ei- nem lambdoiden Bakteriophagen kodiert ist. Es konnte demzufolge zum ersten Mal beobach- tet werden, daß ein Virulenz-vermittelndes Effektorproteingen in dem Genom zweier ver- schiedener Phagenfamilien kodiert ist und durch diese Phagen möglicherweise horizontal transferiert werden kann. Die ermittelten DNS-Sequenzen um sopE lassen vermuten, daß eine konservierte sopE-tragende Kassette (oder „Moron“) durch homologe Rekombination zwi- schen den zwei verschiedenen Bakteriophagenfamilien (P2- und lambdoid) transferiert wor- den ist. Diese Art des Transfers von Virulenzgen-Modulen zwischen verschiedenen Phagen- Familien erlaubt die flexible Neukombination von Phagen-kodierten Effektorproteinen. Zusammenfassend läßt sich feststellen, daß variabel vorkommende translozierte Effektorpro- teine die Pathogen-Wirt-Beziehung optimieren können. Neukombinationen dieser Effektoren können über horizontalen Transfer hergestellt werden und somit die optimale Anpassung an die jeweiligen Wirte gewährleisten. Dabei spielt der horizontale Transfer von Virulenzgenen über konvertierende Bakteriophagen eine wesentliche Rolle. Günstige Kombinationen von variablen Effektorproteinen sind wahrscheinlich entscheidend an der Entstehung neuer Epi- demiestämme beteiligt. Die effizienten horizontalen Transfermechanismen zwischen ver- schiedenen Salmonella spp. als auch zwischen verschiedenen Phagenfamilien tragen so dazu bei, daß Salmonella spp. ein äußerst breites Spektrum von Wirten infizieren können und daß neue Epidemieklone mit höherer Frequenz entstehen können.