Podcasts about fadd

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 19, 2012LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about fadd

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Die Charakterisierung des rezeptornahen Signalweges der TRAIL-induzierten Aktivierung von NF-κB

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Jan 19, 2012


Der TNF-verwandte Apoptose induzierende Ligand TRAIL ist in der Lage, spezifisch Apoptose in Tumorzellen zu induzieren ohne normales Gewebe zu schädigen und gilt deswegen als vielversprechender Kandidat für den Einsatz in der Tumortherapie. Neben der Induktion von Apoptose ist TRAIL allerdings auch in der Lage den Transkriptionsfaktor NF-κB („nuclear factor 'kappa-light-chain-enhancer' of activated B-cells") zu aktivieren, was wiederum die Induktion von Zelltod durch TRAIL vermindert. Für die Tumortherapie wäre es daher wünschenswert, durch TRAIL selektiv den Apoptosesignalweg und nicht NF-κB zu aktivieren. Dazu ist ein Verständnis beider Signalwege unerlässlich. Im Gegensatz zum Signalweg der TRAIL-induzierten Apoptose ist der Signalweg der TRAIL-induzierten Aktivierung von NF-κB aber bisher wenig erforscht. Das Ziel der vorliegenden Arbeit war es daher, das rezeptornahe Adaptorprotein und die ersten, rezeptornahen Signalschritte der NF-κB Aktivierung durch TRAIL zu identifizieren. Die Überexpression konstitutiv aktiver Fusionsproteine der beiden TRAIL-Rezeptoren 1 und 2 war in der Lage, NF-κB zu aktivieren. Fusionsproteine mit verkürztem C-Terminus, der die Apoptose-vermittelnde Todesdomäne enthält, waren dabei nicht im Stande den Signalweg zu aktivieren. Dadurch konnte die entscheidende Funktion der Todesdomäne für TR1 und TR2 bei der Induktion von NF-κB gezeigt werden. Um Untersuchungen des TRAIL-Signalweges mit dem Liganden durchführen zu können, wurde die bakterielle Produktion und Aufreinigung von rekombinantem humanem TRAIL, sowie einem hochaktiven ILZ (Isoleucin Zipper)-TRAIL und einer inaktiven Kontrollvariante etabliert. Die Untersuchung von FADD („fas associated death domain“)-defizienten JURKAT-Zellen, zeigte, dass diese nicht in der Lage waren, NF-κB auf TRAIL zu aktivieren. Die transiente und auch stabile Reexpression von FADD stellte dabei die Aktivierbarkeit von NF-κB durch TRAIL wieder her. Somit konnte FADD als Adaptorprotein für die TRAIL-induzierte Aktivierung von NF-κB identifiziert werden. Die Expression von FADD-Varianten mit je zwei Punktmutationen in der Todeseffektordomäne war hingegen nicht in der Lage, TRAIL-induzierte Aktivierung von NF-κB wiederherzustellen, was auf die Notwendigkeit der Multimerisierung von FADD hinweist. Des Weiteren aktivierten auch JURKAT-Zellen, die defizient für Caspase 8 („cysteinyl-aspartate specific protease 8“) waren, den TRAIL-induzierten NF-κB-Signalweg nicht. Auch die Verminderung der Expression von Caspase 8 in HEK 293T führte zu einer verminderten NF-κB Aktivierung durch die Überexpression des konstitutiv aktiven Fusionsproteins des TRAIL-Rezeptors 2. Im Rahmen dieser Arbeit war es somit gelungen, die Todesdomäne der TRAIL-Rezeptoren 1 und 2, das Adaptorprotein FADD mit seiner Todeseffektordomäne und wahrscheinlich Caspase 8 als rezeptornahe Signalschritte der TRAIL-induzierten Aktivierung von NF-κB zu identifizieren. Folglich sind die Signalwege von Apoptose und Aktivierung von NF-κB durch TRAIL im rezeptornahen Signalweg identisch. Damit ist es nicht möglich, an Hand der gezielten Aktivierung der rezeptornahen Signalschritte TRAIL-induzierte Apoptose selektiv zu aktivieren. Hierzu muss eine Untersuchung weiterer distaler Signalschritte erfolgen.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Untersuchungen zur Beteiligung proapoptotischer Signalwege an der YopP - induzierten Apoptose von Makrophagen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19

Play Episode Listen Later Oct 26, 2006


Die Exposition von Makrophagen gegenüber Bakterien oder LPS führt über die Aktivierung zellulärer Signalkaskaden zu einer vermehrten Expression von Genen, deren Proteinprodukte zelluläres Überleben unter Infektionsbedingungen ermöglichen. Die Aktivierung des Transkriptionsfaktors NF - kB spielt dabei eine wichtige Rolle. Pathogene Yersinia enterocolitica - Stämme hemmen die Aktivierung von NF - kB und induzieren Apoptose bei Makrophagen. In dieser Arbeit konnte gezeigt werden, dass das Yersinia - Effektorprotein YopP maßgeblich an der Apoptoseinduktion beteiligt ist. Bei Infektionsversuchen konnten lediglich die Yersinienstämme bei Makrophagen Apoptose induzieren, die über einen funktionstüchtigen Typ III - Sekretionsapparat und ein dadurch transloziertes YopP verfügen. Eine transiente Überexpression der transkriptionell aktiven NF - kB - Untereinheit p65 schützt Makrophagen spezifisch vor durch Yersinien, nicht jedoch vor durch Salmonellen induzierter Apoptose. Das weist darauf hin, dass YopP durch die Blockierung des NF - kB aktivierenden Signalwegs Apoptose bei Makrophagen vermittelt. Die Transfektion von J774A.1 Makrophagen mit YopP induzierte bei 40 - 50% der transfizierten Zellen Apoptose. Durch die zusätzliche Stimulation mit LPS konnte die Apoptoserate auf 80 - 90% gesteigert werde. Dieser synergistische, proapoptotische Effekt ist direkt auf durch LPS induzierte Signaltransduktions -prozesse zurückzuführen. Aus Transfektionsversuchen mit dominant - negativen Signalmolekülen der TLR - Signalkaskade ergaben sich Hinweise auf eine Beteiligung der Transmitter MyD88 und IRAK2 an der Apoptoseeinleitung. IRAK1 und TRAF6 scheinen dagegen eher ein antagonistisches, NF - kB aktivierendes LPS - Signal zu bedienen, welches unter dem Einfluss von YopP unterdrückt wird. Dadurch überwiegt das durch LPS induzierte, proapoptotische Signal, welches den apoptotischen Zelltod einleitet. Die Aktivierung des Apoptoseprogramms selbst erfolgt über FADD und Caspase - 8.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Analyse der Funktion von Signaladaptoren zelltodvermittelnder Rezeptoren

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19

Play Episode Listen Later Nov 6, 2003


In dieser Arbeit sollte untersucht werden, auf welchem Wege die beiden Zelltodrezeptoren TNFR1 und Fas Apoptose in den Zelllinien A9 und SV80 ausführen. Ausgangspunkt waren widersprüchliche Erkenntnisse über die Signalwege von TNFR1 und Fas. So war in der Literatur beschrieben, daß TNFR1 und Fas die gleichen intrazellulären Signalmoleküle benutzen um Apoptose auszulösen. Als diese Signalmoleküle wurden FADD, TRADD und FLICE identifiziert. Ergebnisse aus unserem Labor zeigten jedoch, daß in A9 Zellen der durch Fas oder TNFR1 ausgelöste Zelltod unterschiedliche Signalwege beschreiten musste, da sich der durch TNFR1 ausgelöste Zelltod bezüglich der Hemmbarkeit durch verschiedene Inhibitoren der Apoptose deutlich von dem durch Fas ausgelösten Zelltod unterschied. Es sollte untersucht werden, ob in SV80 und A9 Zelllinien FADD als gemeinsames Signalprotein beider Zelltodrezeptoren benutzt wird, oder bereits auf dieser Ebene ein Unterschied festzustellen ist. Dazu wurde FADD kloniert, und die Mutante DFADD von FADD hergestellt, die in der Lage ist, den bisher bekannten Signalweg von FADD in einer dominant negativen Weise zu hemmen. FADD und DFADD wurden in A9 und SV80 Zellen zur Expression gebracht. In SV80 Zellen führte Überexpression von FADD wie erwartet zu Zelltod, Expression von DFADD schützte nach Stimulation des TNFR1 oder Fas wie erwartet vor Zelltod. Expression von FADD in A9 Zellen führte zu Zelltod. Überraschenderweise führte jedoch auch Expression von DFADD in A9 zu Zelltod. Es war unerwartet, daß die Mutante, die den bisher bekannte Signalweg von FADD blockieren sollte, selbst Zelltod auslösen kann. Um die Art der Wirkung dieser Mutante DFADD weiter zu charakterisieren wurde versucht, den durch DFADD vermittelten Zelltod durch verschiedene Klassen von Hemmstoffe der Apoptose zu inhibieren. Zum einen Apoptoseinhibitoren, die über Hemmung der Caspasen wirken, zum anderen solche, die durch Hemmung der Atmungskette Apoptose unterbinden. Des weiteren wurde das Signalmolekül RAIDD und verschiedene dominant negative Mutanten kloniert, um zu untersuchen, ob DFADD in der Lage ist weitere Signalproteine zu aktivieren und so Zelltod auszulösen.