POPULARITY
Evolution Radio Show - Alles was du über Keto, Low Carb und Paleo wissen musst
In Folge #129 Mein heutiger Gast ist die Öko. troph. Ulrike Gonder. Ulrike Gonder ist nicht nur ein Mensch, der scheinbar von innen heraus zu strahlen scheint, sondern auch ein Quell schier unerschöpflichen Wissens. Sie hat mittlerweile zahlreiche Bücher zu diversen Ernährungsthemen geschrieben, wobei es ihr das Fett besonders angetan hat. Sie begeistert bei Vorträgen und Seminaren durch ihre mitreißende Art und ihre Fähigkeit komplexe Themen verständlich aufzubereiten. Essen! Nicht! Vergessen!: Demenzrisiko einfach wegessen - oder: Wie die Ernährung vor Alzheimer & Co. schützen kann. Ihr neues Buch, hat sie zusammen mit dem Internisten Dr. Peter Heilmeyer geschrieben. In diesem Buch widmet sie sich einem durchaus ernsten Thema - nämlich der Demenz. Alleine in Österreich gibt es 130.000 Demenzkranke und diese Zahl soll sich bis 2050 verdoppeln. In Deutschland leben gegenwärtig fast 1,6 Millionen Demenzkranke. Also ein Thema, das uns alle angeht. Doch die frohe Botschaft ist, dass dies kein unausweichliches Schicksal ist, sondern wir ALLE etwas tun können um dem vorzubeugen. Was hat Insulin mit Hirngesundheit zu tun? Wieso ist Fett so wichtig und was kannst du tun, damit das Licht im Oberstübchen nicht ausgeht!? Bitte beachten Sie auch immer den aktuellen "Haftungsausschluss (Disclaimer) und allgemeiner Hinweis zu medizinischen Themen" auf https://paleolowcarb.de/haftungsausschluss/ 20% auf alle Produkte im BRAINEFFECT Shop Gutscheincode: Evolutionradioshow - 20% auf alle Produkte im BRAINEFFECT Shop unter www.brain-effect.com Das Video der aktuellen Folge direkt auf Youtube öffnen Und nicht vergessen: Wenn du uns auf Youtube siehst, und wenn du es noch nicht getan hast, dann abonniere unseren Kanal „Evolution Radio Show“ Wenn du das Podcast hörst, dann findest du die Links für Apple iTunes und Android hier auf unserer Homepage Transkript Julia: Ja, liebe Ulrike – Herzlich Willkommen zur Evolution Radio Show! Ulrike: Hallo Julia! Julia: Du hast ja ein neues Buch geschrieben und zwar mit dem Dr. Peter Heilmeyer zusammen und das heißt „Essen! Nicht! Vergessen!“. Und das ist ein Titel der jetzt erst einmal ein wenig zum Schmunzeln anregt, ja. Aber es geht doch um ein sehr ernstes Thema. Kannst du da ein bisschen was dazu sagen? Hintergründe für die Auswahl des Buchtitels „Essen! Nicht! Vergessen!“ Ulrike: Ja, wir haben ja diesen etwas flapsigen Titel und wir haben ja auch ein flapsiges und wie ich finde ganz lustiges Cover gewählt - und das mit Absicht. Wir haben da schon auch mit dem Verlag sehr gut darüber nachgedacht. Du hast natürlich Recht, es ist ein absolut ernstes Thema. Ich glaube wir haben alle Angst davor irgendwie dement zu werden, den Verstand zu verlieren, zu verblöden, wie immer man das nennen möchte. Aber wir haben ja eine frohe Botschaft, wenn man das so sagen darf. Wir haben ja die frohe Botschaft, dass man etwas tun kann und entscheidend ist halt auch hier, dass man rechtzeitig anfängt. Und ich glaube, deswegen ist so der bisschen lustige flapsige Titel oder auch das Cover ganz gut geeignet, weil wir eben die Leute motivieren möchten bevor sie krank werden, oder zumindest ganz am Anfang etwas zu tun und sie zu motivieren, einfach ihren Lebensstil ein bisschen zu verbessern, weil man so viele Einflussmöglichkeiten hat, und das hat sich noch gar nicht rumgesprochen. Und das war so ein bisschen der Anlass, es wirklich auch fröhlich zu machen, weil ich denke so lange man noch gesund ist oder nur Risikofaktoren nur noch keine Symptome hat, darf man das Ganze auch noch fröhlich sehen. Julia: Ja, das stimmt. Ich habe das jetzt ein bissel nachgeschaut, dass ja für Österreich gibt es Zahlen, 130.000 sind irgendwie an Demenz oder Alzheimer erkrankt und das soll sich irgendwie verdoppeln bis 2050. Deutschland schaut jetzt auch nicht viel besser aus – 1,6 Millionen. Also es ist doch eine ganz schöne Zahl. Ulrike: Das ist eine große Zahl und man hat eben Sorge durch die demographische Entwicklung, dass die Zahlen zunehmen werden. Also es steigt wohl nicht so schnell wie man ursprünglich befürchtet hat. Das ist eigentlich auch eine frohe Botschaft. Aber das hängt eben damit zusammen, dass man den einen oder anderen Risikofaktor schon im Auge hat und etwas tun kann. Aber allein dadurch, dass wir eben auch mehr ältere Herrschaften haben werden und mehr insulinresistente – und da kommen wir wahrscheinlich noch drauf zurück – werden natürlich die Zahlen steigen. Und wir dürfen ja auch nicht vergessen, für jeden Menschen der erkrankt – es ist ja eine fortschreitende demenzielle Erkrankung, ja also eine Erkrankung des Hirns, wo Hirnbereiche Schaden nehmen, die voran schreitet – für jeden Menschen der erkrankt ist, brauchen wir ja mindestens einen auch der ihn pflegt/oder sie pflegt. Das heißt, da kommt ja auch diese Doppelbelastung her, ja. Es trifft ja eben nicht nur die Betroffenen, sondern auch die Pfleger, sei es zu Hause oder im Krankenhaus. Und das ist ja Enormes was da geleistet wird, und im Grunde genommen haben die Gesundheitssysteme ja, oder die Vertreter auch große Sorge, ob wir das halt auch finanziell und personell irgendwie stemmen können was da auf uns zurollt. Julia: Ja, verständlich. Ich meine jeder der, ich weiß nicht entweder in der Familie vielleicht so was schon mal erlebt hat oder im nahen Bekanntenkreis, weiß wie belastend so etwas ist und dass das teilweise, auch wenn es natürlich vielleicht die Mutter oder der Vater oder eben nahe Angehörige sind, das teilweise schon auch die Familie wirklich an ihre Grenzen bringt. Ulrike: Absolut, absolut ja. Julia: Also das ist wirklich eine Riesenbelastung und das betrifft eben sozusagen nicht „nur“ die Person die jetzt davon betroffen ist direkt, sondern natürlich auch die ganze Familie, und das eben über Jahre vielleicht sogar. Ulrike: Vielleicht Jahrzehnte. Also wir haben auch im weiteren Bekanntenkreis Fälle. Die Leute sind wirklich viele viele Jahre krank und es wird ja immer schlimmer und immer beschwerlicher. Es ist auch ein bürokratischer Krieg. Für jede kleine Unterstützung müssen unendlich viele Papiere ausgefüllt werden. Es muss gestritten werden mit den Institutionen. Also das ist eben insgesamt keine erfreuliche Aussicht und das war so auch der Anlass. Nachdem sich die Hinweise gemehrt haben, dass tatsächlich Lebensstil, Lebensweise ganz viel auch mit dem Alzheimer-Risiko zu tun hat, haben wir dann irgendwann – also Peter Heilmeyer ist ja Arzt, Internist – und haben wir dann irgendwann gesagt, so jetzt haben wir eigentlich genug Indizien zusammen und Kenntnisse zusammen, Hinweise zusammen, dass man es auch wagen kann, so ein Buch zu schreiben. Man bewegt sich natürlich auch ein bisschen auf glattem Eis, weil das ja eine große Hoffnung auch ist, wenn man sagt, man kann über Lifestyle, über Lebensstil und insbesondere über Ernährung ja einiges tun. Vielleicht sage ich das auch vorweg: Wir machen hier natürlich keine seltsamen Heilsversprechen, sondern wir haben zusammengetragen was es an Evidenz gibt. Es gibt sehr sehr viele Risikofaktoren die sich mit anderen Erkrankungen überschneiden und von denen wir schon wissen, dass wir sie über Ernährung und Lebensstil günstig beeinflussen können. Und was uns eben sehr optimistisch gestimmt hat, sind neue Erkenntnisse aus den USA, wo verschiedene Systeme angewendet werden. In Deutschland beginnt das jetzt auch sehr zaghaft, aber wo tatsächlich die ersten Leute zurückgeholt wurden – natürlich nur ganz am Anfang der Erkrankung. Also ich sage ja immer, eine Hirnzelle die tot ist, die können wir natürlich nicht mehr lebendig machen. Das heißt, dort wo Hirnschäden schon weit fortgeschritten sind, kann man nicht mehr viel machen. Aber ich sage es mal auch ein bisschen flapsig, man hat doch den Eindruck, dass manche Hirnzellen zu Beginn nur schlafen, und die kann man wieder aufwecken. Julia: Wiederbeleben. Ulrike: Wieder beleben sozusagen, genau. Julia: Bevor wir uns jetzt eben genauer bissel anschauen – was sind denn so die Risikofaktoren und wie kann man die dann vielleicht mit Lebensstilintervention, mit Ernährung oder sonstigen Sachen beeinflussen? Was versteht man eigentlich unter Demenz/Alzheimer? Das wird ja teilweise so im Sprachgebrauch auch oft verwechselt, vielleicht auch gleich verwendet. Aber es sind ja doch zwei unterschiedliche Sachen. #Risikofaktoren und deren Beeinflussung Die Begriffe Demenz und Alzheimer Ulrike: Ja, also die große Überschrift ist im Grunde Demenz. Demenz bedeutet ja, dass Hirnfunktionen ausfallen, dass kognitive Fähigkeiten wegfallen. Und es gibt natürlich eine ganze Fülle an demenziellen Erkrankungen – so nennt man das glaube ich. Und es gibt auch ganz viele Ursachen. Also man kann durch, weiß ich Schläge auf den Kopf – wir denken an die Boxer, an den Kinofilm neulich mit der Football League, Infektionen, Vergiftungen, Alkoholabusus, Alter. Es gibt ganz ganz viele Gründe und Risikofaktoren für eine Demenz - das mal vorweg geschickt. Die Alzheimer-Erkankung wird als die häufigste Demenz angegeben. Etwa 2/3 der Demenzformen sagt man sind Alzheimer. Wobei man auch dazu sagen muss, aber das wäre eine abendfüllende Diskussion, ich will das nur erwähnt haben, dass eine Alzheimer-Diagnose ist immer auch ein bisschen geschätzt und geraten, weil eigentlich könnte man es erst definitiv nach einer Obduktion sehen, ob es tatsächlich Alzheimer war. Nur dann ist es ja für den Betroffenen auch zu spät. Insofern ist das eine akademische Diskussion. Aber jedenfalls ist z. B. typisch für Alzheimer-Patienten, dass die ersten Störungen so im Gedächtnis anfangen. Ja und das hängt damit zusammen, dass eine bestimmte Region im Gehirn, der Hippocampus – oder auf deutsch „Seepferdchen“, wir haben zwei so Seepferdchen im Kopf – dass diese Region zunächst Schaden nimmt, und das ist eben ein Hirnbereich, wo das Kurzzeitgedächtnis sitzt. Und darüber lässt sich auch erklären, dass oft Dinge zuerst vergessen werden, die in der jüngeren Zukunft waren. Man wundert sich ja immer, dass die Patienten oft noch vom Krieg erzählen können, ja oder ganz früh zurückliegend, weiß ich als die Kinder klein waren, aber das was gestern oder gerade eben passiert ist, fällt ihnen nicht mehr ein. Das erklärt sich aber über diesen Hippocampus, der eben gerade bei Alzheimer oft zuerst betroffen ist. Bei anderen Demenzformen sind andere Hirnstrukturen betroffen. Also es gibt da große Unterschiede, aber so wie es aussieht, oder so wie es im Moment die Mediziner uns erklären, ist die Alzheimer-Demenz die häufigste mit etwa 2/3 der Fälle. Und dann gibt es noch eine Form die ungefähr ¼ ausmacht. Das ist die so genannte vaskuläre Demenz und das heißt, vaskulär bedeutet, die Gefäße sind geschädigt. Und wenn wir uns vorstellen, dass unser Hirn ja ein sehr aktives Organ ist, das sehr viel Energie verbraucht und sehr viele Nährstoffe benötigt. Und die Nährstoffe werden natürlich mit den Blutgefäßen dorthin transportiert. Und wenn die Blutgefäße kaputt sind, nicht mehr elastisch sind, verstopft sind, verkalkt sind, dann kann man sich vorstellen, dass auch die Hirnfunktion nachlässt. Da haben wir auch die erste Gruppe von Risikofaktoren. Alles was unseren Gefäßen schadet, schadet eben nicht nur dem Herzen oder macht Bluthochdruck, sondern kann auch dem Gehirn schaden. In etlichen Fällen gibt es auch Überschneidungen. Dann sind die Gefäße nicht in Ordnung und es kommen andere Risiken hinzu. Das heißt, Gefäßgesundheit ist ja was, Sport, gesunde Ernährung, Blutdruck senken - da ist man schon bei der Gefäßgesundheit. Das würde auch dem Hirn zugutekommen. Aber wir wissen, oder wir sehen zunehmend aus Beobachtungsstudien, dass z. B. Menschen die sich wenig bewegen ein erhöhtes Demenzrisiko haben. Menschen die insulinresistent sind haben ein erhöhtes Demenzrisiko und sie müssen nicht an Diabetes erkrankt sein. Das fand ich z. B. sehr spannend. Wir wissen, dass manche Infektionen das Diabetesrisiko erhöhen, dass Schwermetalle wichtig sein können. Aber wenn ich es mal ein bisschen runter breche, was auch für die Ernährung dann wieder interessant ist, so war für uns das offensichtlichste im Grunde genommen die Insulinresistenz und die Gefäßgesundheit. Noch etwas ganz wichtiges, was uns aufgefallen ist: Man findet sehr sehr früh, bevor irgendwelche Symptome auftauchen, findet man mit Bild gebenden Verfahren – man kann ja heute sozusagen die Hirnaktivität sichtbar machen mit PET-Scans z. B. – kann man sehen, dass schon bevor irgendwelche Symptome kommen bei Risikopatienten die jetzt eben z. B. Gefäßprobleme haben, die z. B. insulinresistent sind, die sehr alt sind, die in der mütterlichen Linie Demenz in der Familie hatten, was erhöhtes Risiko ist, die bestimmte Genmutationen haben, das erhöht das Risiko. Bei diesen Menschen sieht man, dass schon 10 – 15 Jahre bevor irgendetwas auffällig ist, die Energieversorgung des Gehirns leicht gestört ist, also sozusagen an der einen oder anderen Stelle der Stecker gezogen ist. Man kann sich vorstellen, unser Gehirn braucht sehr viel Energie, es macht etwa 2 % des Körpergewichts aus und es verschlingt etwa ¼ der Energie die wir in Ruhe verbrauchen. Da sieht man mal so diese Diskrepanz. Und wenn ein so Energie zehrendes Organ Schwierigkeiten im Energienachschub hat, dann kann man sich vorstellen, dass das über die Jahre und Jahrzehnte dann krank macht. Also das waren so für uns die Knackpunkte. Es gibt lange Listen von Risikofaktoren, aber das waren so die Knackpunkte. Und kommt natürlich unser moderner Lebensstil dazu, wie gesagt Bewegungsmangel, Stress, oxidativer Stress, das falsche Licht, zu wenig Schlaf – name the thing! Also vieles was uns anderswo auch krank macht kann auch dem Hirn schaden. Und das ist noch ein Punkt, der uns im Buch ganz wichtig war. Viele sehen ja so Alzheimer oder eine Demenz als eine isolierte Erkrankung des Gehirns an. Und das ist genau wie beim Krebs eigentlich Quatsch. Ganz selten ist der Mensch insgesamt gesund, nur sein Hirn gibt den Löffel langsam ab, oder lässt das Licht langsam ausgehen. Sondern oft findet man eben an vielen anderen Stellen auch Probleme, seien es Entzündungen oder - es gibt einen amerikanischen Augenarzt, der darauf hinweist, dass wenn man im Augenhintergrund schon Probleme mit den Nerven erkennen kann oder mit den Blutgefäßen, dass man dann davon ausgehen kann, dass auch im Gehirn etwas nicht stimmt. Also wir könnten auch die Früherkennung deutlich verbessern. Julia: Ja, das weißt ja auch wieder bissel auch auf die vaskuläre Seite hin. Wenn schon die Blutgefäße, ich meine wenn man eben im Augenhintergrund da Probleme mit Blutgefäßen erkennt, ist das ja nur exemplarisch dafür, wie es wahrscheinlich im Rest des Körpers auch ausschaut. Ulrike: Genau. Julia: Und gerade alles was ums Auge herum ist hat ja sehr nahe Beziehungen zum Gehirn. Ulrike: Zum Gehirn, ja. Man kann ja das Auge so als Ausstülpung des Gehirns sehen. Wir haben hier auch ganz viel DHA, diese Fischfettsäure die sehr oxidationsempfindlich ist und auch das gleiche Nervensystem. Also mir hat es in einem der Bücher, die ich für die Recherche verwendet habe, der Spruch sehr gut gefallen: Wir haben nur ein Nervensystem und nur einen Blutkreislauf und alles hängt zusammen. Deswegen kann man nicht sagen, jetzt ist nur das Hirn krank oder nur das Auge. Es sind dann eben oft Stoffwechselstörungen. Und nur so können wir ja eigentlich auch erklären, warum bestimmte Ernährungsmaßnahmen oder gesunder Schlaf, oder Ketonkörper – werden wir auch drauf kommen – warum die auch bei so vielen Erkrankungen hilfreich sein können, weil das klingt ja nach Woodoo, wenn wir halt sagen, ich weiß nicht, das ist günstig für den Krebspatienten, für den Diabetiker, für den der abnehmen will und auch der, der sein Hirn schützen will - der denkt, na ja ok, jetzt sind wir hier in der Abteilung Wunderheilung. Julia: Genau! Ulrike: Aber das Entscheidende ist ja, dass wir uns hier im Grunde auf ganz grundlegenden Stoffwechselvorgängen der Zelle - die Energiegewinnung ist einfach grundlegend fürs Leben auch jeder Zelle wichtig – dass wir uns auf der Basis eigentlich aller Stoffwechselaktivität befinden. Und deswegen kann es auch so viele Auswirkungen haben natürlich dann. Julia: Ja, eben, und vor allem, wenn eben die eigentliche Ursache all dieser Sachen die du angesprochen hast womöglich eine ähnliche ist, ja also Fehlregulationen des Stoffwechsels z. B., dann macht’s ja auch wieder Sinn, warum die gleiche Intervention bei diesen scheinbar unterschiedlichen Erkrankungen so positive Ergebnisse zeigt. Ulrike: Genau. Julia: Jetzt ist es ja so, dass momentan wenn man jetzt die Diagnose Alzheimer, Demenz oder so etwas bekommt, ist das ja praktisch gefühlt das Todesurteil sozusagen und man hat das Gefühl, ja da kann man gar nichts machen, man ist praktisch hilflos ausgeliefert. Oder so wird es einem auf jeden Fall vermittelt in erster Linie. Kannst du ganz kurz sagen, wie würde jetzt momentan die Standardtherapie ausschauen? Ich meine wird da überhaupt….. Der momentane Stand der Alzheimer Therapie Ulrike: Also, im Grunde genommen steht auch überall noch zu lesen: Es ist eine unumkehrbare Hirnerkrankung. Das ist ja sehr fatalistisch, ist es auch. Und tatsächlich hat die Medizin auch fast nichts zu bieten. Es gibt ganz wenige zugelassene Medikamente, die bestenfalls Dinge etwas aufschieben. Also ich rede jetzt nicht davon, dass man natürlich den Bluthochdruck behandeln kann mit Lifestyle, mit Medikamenten, dass man für die Gefäßgesundheit was machen kann. Das ist klar. Und deswegen glaube ich gehen auch die Zahlen, steigen auch die Zahlen nicht so stark, weil die Medizin in dem Bereich schon einiges bewirken kann. Aber wenn die Diagnose gestellt ist und dann gibt’s eigentlich fast gar nichts. Wie gesagt, 2 – 3 Medikamente und es werden Unmengen an Geldern in den Sand gesetzt sage ich mal, weil auch immer wieder daran geforscht wird, wie man diese Ablagerungen – es gibt ja diese Amyloidablagerungen und solche Fibrillen, die man in einem Alzheimer-Hirn findet. Das sind typische Anzeichen, also spezielle Strukturen, die da eigentlich nicht hingehören. Und mein Eindruck ist, dass immer daran geforscht wird, wie man diese Ablagerungen wegkriegt, oder wenn sie schon mal da sind, oder wie man sie verhindert. Und da wird ein ums andere Mal werden die Millionen in den Sand gesetzt. Und Peter Heilmeyer und mich erinnert das so ein bisschen an die Cholesteringeschichte, wo man auch immer versucht, das Cholesterin aus den Plugs oder in den Plugs zu verhindern. Aber das ist ja eine Reaktion des Körpers auf etwas. Und wenn man dann anfängt zu recherchieren, dann stellt man fest, dass das Amyloid – das ist also ein Protein – dass das ganz viele Aufgaben auch im Gehirn hat, dass das überall im Körper vorkommt. Und wenn es aber eben falsch gespalten wird, wenn es nicht mehr abtransportiert werden kann, weiß ich weil man insulinresistent ist, wenn also was in diesem ganzen Amyloidstoffwechsel schiefläuft oder wenn der oxidative Stress zu hoch ist, wenn zu viele Schadstoffe, schädliche Stoffe da sind, dann kann sich eben dieses Amyloid anhäufen. Jetzt kann man sich glaube ich ganz gut vorstellen, dass Medikamente, die immer nur an diesen Symptomen rumdoktern, auch wenig Aussicht auf Erfolg haben. Ich glaube, so allmählich findet da ein bisschen Umdenken auch statt in der Medizin. Aber große Erfolge sind bisher noch nicht zu verzeichnen. Und das spricht natürlich wiederum für die Lebensstil-Intervention, wenn da jetzt tatsächlich auch erste Erfolge – es sind zwar erst Fallstudien, also wir haben noch keine großen Studien. Aber wir haben jetzt mehrere hundert Fallbeschreibungen, die zeigen, dass man tatsächlich etwas tun kann. Julia: Ja, der Vergleich mit dem Cholesterin glaube ich ist wirklich sehr gut, weil das sehr sehr ähnlich vom…. Ulrike: Von der Denke her Julia: ...von der Denkweise her ist, ja genau. Ich meine du hast das ja schon gesagt. Es gibt eben viele Risikofaktoren, aber für viele ist der einzige Faktor der immer zählt: Ja, meine Oma hat das schon gehabt oder meine Mama, oder meine Tante oder mein Onkel, was auch immer, also immer nur dieser familiäre Aspekt. Das heißt, ich bin verdammt dazu an Demenz und Alzheimer zu erkranken, ja so fatalistisch ein wenig. Ist Demenz in der Familie ein unausweichliches Schicksal? Ulrike: Genau. Also das wäre vielleicht die erste frohe Botschaft, dass man sagt, es gibt eigentlich nur, also von der Genetik her gibt’s einmal Mutationen in den sog. Präsenilin-Genen. Die sind tatsächlich eine genetische Ursache. Das kann jeder haben, bekommen, die das Alzheimer-Risiko sehr deutlich erhöhen. Aber natürlich kriegen auch diese Leute das nicht zu 100 %. Aber sie kriegen es zu einem höheren Prozentsatz und auch früher. Die erkranken oft schon in der 5. Lebensdekade. Normalerweise sagt man ja, weiß ich, über 70 oder 80 dann fängt das an. Und dann gibt’s genetische Besonderheiten. Es gibt spezielle Cholesterintransporter, Moleküle. Da gibt’s verschiedene Varianten und das vererbt sich natürlich auch. Und wir wissen auch tatsächlich, dass in der mütterlichen Linie, wenn da Alzheimer oder Demenz war, dass es dann auch das Risiko für die Nachkommen erhöht. Auch hier heißt es aber natürlich nicht, dass man mit 100 %iger Wahrscheinlichkeit erkrankt, aber man hat eine höhere Wahrscheinlichkeit als jemand, in dessen Familie die Krankheit noch nicht aufgetreten ist. Aber, selbst wenn ich da eine gewisse Vorbelastung habe - und das ist wieder die frohe Botschaft – dann kann ich mit gewissen Lebensstilfaktoren, gesunder Schlaf, richtiges Licht, gesunde Ernährung, bestimmte Fette, bestimmte Lebensmittel, auch Fastenzeiten, kann ich dafür sorgen, dass mein Risiko auch wieder sinkt. Und ich meine wir reden bei Ernährung und Lebensstilmaßnahmen sowieso nie über 0 oder 100 %, sondern es geht ja immer um erhöhte oder verminderte Wahrscheinlichkeiten. Nur wenn man das mit ganz einfachen Maßnahmen wirklich die Wahrscheinlichkeit verringern kann, dann denke ich ist es ja, wäre das auszuprobieren, ja. Man weiß tatsächlich, dass z. B. bei Menschen, die das in der Familie, gerade in der mütterlichen Linie hatten – was übrigens für die Mitochondrien spricht in der Zelle, das sind die kleinen Zellkraftwerke, die von der Mutter auf die Kinder übertragen werden, die für die Energiegewinnung zuständig sind – also diese besondere Belastung durch die mütterliche Linie zeigt auch wieder, dass wir hier ganz viel mit Energiegewinnung, mit dem Energiestoffwechsel zu tun haben. Bei diesen Menschen sieht man das z. B. auch sehr früh. 20 Jahre bevor es Symptome gibt haben die schon eine Unterversorgung. Julia: Ja Wahnsinn. Ulrike: Also schon Beeinträchtigungen – so muss ich es sagen – Beeinträchtigungen in der Energieversorgung. Und das bedeutet eben bei der heutigen normalen Lebensweise, dass die Zuckerverwertung gestört ist der Gehirnzellen. Julia: Ich meine du hast jetzt ein paar mal sozusagen das Schlagwort gebracht ja gesunde Ernährung. In Bezug auf Gehirngesundheit und natürlich du hast auch Insulinresistenz erwähnt: Was bedeutet gesunde Ernährung für das Gehirn, welche Rolle spielt da die Insulinresistenz? #Gehirngesundheit und gesunde Ernährung Insulinresistenz Ulrike: Ich fange mal mit der Insulinresistenz an. Also wir sprechen ja von einem ganz wichtigen Hormon das eben im Kohlenhydratstoffwechsel eine Rolle spielt. Insulin sorgt ja dafür, dass viele Zellen den Zucker erst nutzen können der in unserem Blut unterwegs ist und der ja da auch sein muss in geringer Menge. Wir denken bei Insulinresistenz, also wenn das Hormon nicht mehr wirkt, dann wissen wir ja kommt der Fettstoffwechsel durcheinander, wie Gewichtszunahme usw., alle diese Geschichten die passieren können bei Menschen die insulinresistent sind. Die werden auch früher oder später zum Diabetiker. Das heißt das Insulin wirkt nicht mehr richtig. Der Stoffwechsel kommt durcheinander, und dann ist eben eine eher fett-/ eiweißbetonte Ernährung viel günstiger, weil die Zuckerverwertung ja nicht mehr stimmt und weil auch oft viel zu viel Zucker im System ist. Jetzt muss man dazu wissen, dass auch ein Gehirn insulinresistent werden kann. Und dann müssen wir aufpassen, dass wir nicht in die Falle tappen und denken, im Gehirn ist das Insulin dafür verantwortlich, dass die Neuronen, also die Hirnzellen die für die Signalweiterleitung verantwortlich sind, dass die jetzt Insulin bräuchten, um Zucker aufzunehmen. Das wäre eine doofe Sache, wenn das im Gehirn so wäre. Dann würde da glaube ich öfter mal ein Blackout passieren. Das stellt sicher, dass es so gut wie möglich mit Zucker versorgt wird. Das heißt, für die eigentliche Zuckeraufnahme brauchen die Neuronen gar kein Insulin in der Regel. Es gibt ein paar Zellen die das auch brauchen. Aber wir machen es jetzt mal ganz einfach, braucht nicht. Aber das Insulin hat ganz viele verschiedene wichtige Aufgaben im Gehirn. Zum Beispiel wirkt es im Gehirn als Sättigungshormon. Jetzt haben wir ja ganz oft schon gehört, Insulin ist ein Masthormon und fördert Hunger, tirili und was nicht alles. Das ist auch richtig, wenn zu viel im System ist. Nur wenn wir zu viel Insulin im Blut haben – und jetzt wird’s spannend – kommt im Hirn zu wenig an. Das heißt, zu viel Insulin im Blutkreislauf im Körper außerhalb des Gehirns bedeutet in der Regel zu wenig Insulin im Gehirn. Also hier müssen wir quasi ganz umdenken. Und wenn wir zu wenig Insulin im Gehirn haben, dann ist z. B. das Gedächtnis beeinträchtigt, das Lernen beeinträchtigt, die Konsolidierung von Gedächtnisgeschichten. Also die Sättigung kann beeinträchtigt sein. Also wir haben im Hirn ganz andere Aufgaben fürs Insulin. Und wir haben dann wenn jemand insulinresistent ist, also wenn er sich falsch ernährt, übergewichtig ist, zu viel Insulin im Blut hat, haben wir meistens zu wenig Insulin im Gehirn. Jetzt gibt es natürlich Leute die sagen, gut, dann pfeif ich mir noch ein bisschen was rein. Man kann Insulin inhalieren z. B. durch die Nase. Das hat man auch ausprobiert – ja, doch. Daran wird geforscht und das Gute ist eben oder das Einfache, man müsste es nicht spritzen, sondern es würde eben durch die Nase kann man es direkt ins Gehirn, deswegen kann man ja auch schnüffeln, ja. Schlechte Droge, aber wirkt, geht durch. Aber das hat im Grunde auch die Hoffnungen nicht erfüllt. Es bewirkt ein bisschen was, aber meistens nur vorübergehend und auch nicht bei allen. Also es scheint doch nicht der Königsweg zu sein. So, wie kriegt jetzt die Hirnzelle, wie kriegt die genug Zucker. Die eigentliche Frage ist eigentlich – braucht die so viel Zucker? Bei unserer normalen üblichen Ernährung wo wir so viel Kohlenhydrate essen läuft unser Hirn mit Zucker. Das ist der Normalfall heute, war aber nicht immer so, bzw. wir müssen immer bedenken, dass unser Hirn flexibel ist und auch flexibel sein muss. Wenn man so ein empfindliches Ding da oben in der Schädelkalotte hat, dann kann man das nicht mit einem Brennstoff versorgen. Bei jeder leichten Unterzuckerung würden wir ja umkippen, bzw. bei jeder Hungerphase die es früher immer gegeben hat. Bei jeder Fastenkur würden wir umkippen, wenn unser Hirn nicht in der Lage wäre eben auch andere Energieträger zu nutzen. Die Fette selber, so wie das z. B. Muskelzellen können, sind dafür nicht so gut geeignet. Erstens gehen sie nicht schnell genug durch die Blut-Hirnschranke. Ein paar kommen durch, aber das ist nicht so die Masse wie es dann vom Muskel verwertet werden kann als Energieträger. Und deswegen hat die gütige Natur den Umweg über die Ketonkörper gebaut. Das heißt, wenn wir nicht essen, wenn wir fasten, so wie das immer in unserer Evolution war und wie das auch früher war – man hat eben nicht 17 Stunden am Tag gemümmelt und genascht und geschnuckelt, wie man hier in Hessen sagt, sondern hatte längere Nahrungspausen – dann wird eben Körperfett abgebaut. Und bei einem Teil dieser Fette wird der Fettabbau an einer Stelle unterbrochen. Dann werden Ketone gebildet und diese Ketone die können genauso leicht wie Zucker ins Gehirn gelangen. Die Leber gibt die ab, also sie baut sie aber nutzt sie nicht selber - das ist ja auch clever eingerichtet - werden ins Blut abgegeben. Und die können genauso gut und genauso leicht ins Gehirn gelangen wie Zucker. Sie werden genauso prima zur Energieversorgung hergenommen. Und jetzt kommt’s aber: Wenn die Zuckerversorgung schon gestört ist – warum auch immer, ich glaube man weiß es nicht ganz genau. Kann sein, dass zu wenig Zucker ins Gehirn gelangt, kann sein, dass die Zellmembranen der Hirnzellen nicht mehr richtig funktionieren, dass die Signalkaskaden nicht stimmen. Also es gibt ganz viele Möglichkeiten, warum so eine Hirnzelle nicht mehr genug Zucker aufnehmen kann. Aber sie kann sehr lange noch Ketone aufnehmen, also sowohl bei gesunden aber jungen Menschen, auch bei alten Menschen - das hat man messen können – kann das Gehirn eben auch Ketonkörper aufnehmen und sogar auch bei beginnender Demenz. Auch hier wieder: Wenn die Hirnzellen schon zu weit geschädigt sind, wenn die Mitochondrien schon kaputt sind, geht es nicht mehr, weil für die Ketonkörperverwendung braucht die Zelle Mitochondrien. Aber am Anfang einer Schädigung oder wenn die Zellen noch schlafen, wenn sie sozusagen ihre Mitochondrien nur runtergefahren haben, aber wenn die nicht kaputt sind, um mal so ein bisschen ganz einfach bildlich das zu sprechen, dann können eben Ketonkörper ganz hilfreich sein, auch kurzkettige Fettsäuren. Die eine oder andere flutscht auch durch und kann sogar im Gehirn dann zu Ketonkörpern umgebaut werden. Die Astrozyten, die Neuronentankstellen die können das. Die versorgen ihre Kollegen. Das heißt wir haben einen alternativen Brennstoff ja, wo der Zucker nicht mehr verwertet werden kann. Wo er nicht hinkommt oder einfach die Mechanik nicht mehr stimmt, kann das Keton rein, kann der Ketonkörper rein. Dann ist die Energieversorgung wieder glatt gezogen. Und Stephen Conain aus Kanada der hat so ein schönes Bild entwickelt. Also der sagt, das Hirn zieht Zucker nach Bedarf. Ja, also wenn irgendwo die Innenaktivität steigt und es wird mehr Energie benötigt, dann zieht das Hirn normalerweise mehr Zucker aus dem Blut. Aber wenn das nicht geht, sei es, dass die Blut-/Hirnschranke kaputt ist oder das irgendwelche Transporter nicht funktionieren, dann kommt halt nicht genug Zucker an. Aber wenn Ketonkörper im Blut da sind, die gehen durch, weil die werden vom Blut ins Hirn geschoben. Das ist ein ganz anderer Weg. Ja, also die gehen flutsch rein. Und rein theoretisch könnte man bis zu 70 % des Energiebedarfs des Gehirns über Ketonkörper decken. Also nicht alles, wir brauchen immer auch ein bisschen Zucker. Insofern ist es schon richtig, dass auch Zucker benötigt wird. Aber eben nicht in dieser Masse. Und dann wird es noch viel spannender, weil die Ketone, sagen wir mal das Beta-Hydroxybutyrat als wichtigster Ketonkörper, der kann noch viel mehr als Energie liefern. Und das macht die Sache so wahnsinnig spannend. Also ich weiß ja immer nicht, ob das normal ist, dass man über solche Moleküle, oder von Molekülen so begeistert sein kann. Aber wenn ich das alles lese, bin ich hin und weg, weil ich finde auch, das hat die Natur, die Schöpfung, die Evolution – wie auch immer – so wunderbar eingerichtet, dass das alles so ineinander greift und sich ersetzen kann. Es ist halt so, dass Ketone – zumindest das Beta-Hydroxybutyrat - auch entzündungshemmend wirken. Ganz oft haben wir eine Entzündungskomponente bei einer Alzheimer-Erkrankung, nicht bei allen aber bei den meisten. Dieser Ketonkörper kann einen Teil der Insulinwirkung übernehmen, ja, für Gedächtnisbildung usw. Das Beta-Hydroxybutyrat kann im Hippocampus, da in diesem Gedächtnis, Seepferdchen da, trallala, wo das alles stattfindet, kann es dafür sorgen, dass neue Neuronen gebildet werden. Ja, es sorgt dafür, dass der brain derived neurotrophic factor – das ist wieder so ein englisches Wort, BDNF – dass der gebildet wird. Das heißt, da können neue Zellen entstehen. Wir brauchen ja für die Gedächtnisbildung neue Verknüpfungen, neue Zellen. Und es gibt ganz wenige Hirnregionen, wo überhaupt neue Zellen bei Erwachsenen gebildet werden können. Und das ist im Hippocampus. Und da können die Ketonkörper das anstoßen. Sie wirken antioxidativ. Das heißt, wir haben hier nicht nur ein Energiesubstrat, was noch viel länger durchgeht, auch wenn der Zucker schon nicht mehr durchgeht oder nur noch teilweise. Sondern wir haben einen wunderbaren Schutzstoff, der eben auch einen Teil der fehlenden Insulinwirkung abdeckt, der für Neubildung, der Mitochondrienbildung anregen kann. Also ein ganzer Blumenstrauß an tollen Funktionen, und das ist einfach Klasse. Und deswegen sind die Ketone so wichtig. Julia: Ja, das ist auch was, was mich, also warum mich die ketogene Ernährung oder Ketone und das alles so wahnsinnig fasziniert, weil es einfach unglaublich ist, welche Signalmoleküle das eigentlich sind und was die alles machen. Ulrike: Und so kleine Biester, ne. Die sind so ganz einfach, so ganz kleine Sachen. Julia: Alles was perfekt ist, das ist einfach unglaublich was die Dinger können, ja. Ulrike: Ich brauch mal grad ein bisschen hell hier; bisschen dunkel irgendwie. Es wird auch gerade dunkel. Julia: Ist dir das Licht ausgegangen? Ulrike: Nein, ich hoffe, dass es noch nicht so schnell ausgeht! Das war übrigens ein Satz von Melanie Newport. Die hat ja so ein bisschen auch Ketone und Kokosöl und diese Geschichten bekannt gemacht in der Behandlung. Das war übrigens ein Satz ihres Mannes. Der hat gesagt, nachdem die das ausprobiert haben: Das Licht in meinem Kopf ist wieder da. Das finde ich so eindrucksvoll, wenn ein Betroffener das sagt. Und das Ende sagt ketogene Ernährung. Also für mich war schon auch wichtig, dass wir jetzt nicht alle Senioren auf eine ketogene Ernährung setzen müssen. Julia: Da würde es wohl eh viel leichter. Ulrike: Das wird ein bisschen schwierig glaube ich. Weil das spannende ist, man braucht gar nicht so viel. Also wir wissen ja aus der Behandlung von Epilepsie-kranken Kindern, dass wir da relativ viele Ketonkörper brauchen und auch eine relativ strenge Ernährung. Aber auch wieder die kanadische Arbeitsgruppe um Stephen Conain die haben eigentlich genaue Messungen gemacht. Es sind am Anfang nur 10, 15, 20 % die den Zellen an Energie fehlen. Und die kann man mit relativ geringen Ketonmengen schließen diese Energielücke. Das heißt, ich muss am Anfang gar keine strenge Ernährungsform machen. Und deswegen haben wir in unserem Buch, haben wir das auch LOGI+ genannt. Also die LOGI-Methode ist ja eine Form der kohlenhydratreduzierten Ernährung, aber relativ moderat. Das heißt, wir sagen eben weniger Stärke, weniger Zucker, um diese Blutzucker- und Insulinspitzen wegzunehmen, die ja auch dann zu Insulinresistenz führen können bzw. die das wieder, wenn man das weniger isst, eben zurücknimmt. Dann ganz viel Gemüse für die Schutzstoffe, da können wir noch drauf kommen, aber eben gesunde Fette, genug Eiweiß. Auch das Hirn braucht Eiweiß. Und mit Plus meinen wir Kokosöl. Das Kokosöl wird ja auch immer so ein bisschen entweder gehypt als Wundermittel oder es wird eben gesagt, das ist ganz gefährlich und macht wieder Herzinfarkt und schlag-mich-tot. Es wundert mich immer, dass solche Geschichten immer noch für Schlagzeilen sorgen können. Und wie so oft liegt die Wahrheit in der Mitte. Kokosöl hat wunderbare Eigenschaften, nämlich u. a. die, dass es auch dann die Ketonbildung etwas ankurbeln kann, wenn man jetzt keine strenge Ernährung macht. Ich würde jetzt natürlich nicht empfehlen, Fastfood und Kokosöl zu essen oder Junkfood und Kokosöl. Das macht ja irgendwie keinen Sinn. Aber zu einer moderat kohlenhydratreduzierten Ernährung, bisschen Kokosöl dazu geben, das ist sicherlich sinnvoll. Und das kann man auch nachmessen. Das ist ein milder Effekt. Und es gibt auch andere Möglichkeiten, um die Ketone zu erhöhen, z. B. mit MCT-Öl, die schneller wirken als Kokosöl. Kokosöl wirkt dafür etwas anhaltender. Und mit solchen Sachen kann man diese kleine Energielücke die am Anfang ist ganz gut schließen. Und was mir auch gut gefallen hat aus den Berichten aus Amerika, dass es eben auch sinnvoll ist wirklich mindestens über Nacht eine 12stündige, besser 14-/15stündige Nahrungskarenz einzuhalten, weil auch in dieser Zeit der Körper kleine Mengen Ketone bildet und die dann eben ihre günstigen Effekte ausüben können und – deswegen haben wir auch immer nebenbei, es ist zwar ein Ernährungsbuch, aber wir haben immer Schlaf und Licht und alles das mit erwähnt, weil es ja ineinander geht – in der Nacht und wenn wir gut schlafen und in der Dunkelheit wird eben auch repariert, werden eben auch ungünstige Stoffe aus dem Gehirn abtransportiert. Wir wissen ja heute, dass das Hirn auch so eine Art Lymphsystem hat und dass eben in der Nacht da geputzt und aufgeräumt wird und eben alles was da nichts verloren hat rauskommt, ja und dann über den Körper sozusagen entsorgt wird. Wobei das Hirn ja auch zum Körper gehört, aber du weißt was ich meine. Julia: Ja. Ulrike: Das heißt, das eben auch, dass wir auch mit dem bisschen regelmäßig essen bzw. auch mal ein paar Stunden nicht essen und am besten halt über Nacht, dass wir auch diese Prozesse unterstützen. Ja, das wir einmal die milde Ketonbildung haben und andererseits – ich sage es jetzt wieder flapsig – die Reinigungs- und Reparaturvorgänge im Hirn unterstützen können. Das ist natürlich am Anfang, wenn wir noch ganz halbwegs beieinander sind, reicht das wahrscheinlich. Je mehr man betroffen ist, desto strenger muss man natürlich sein. Und dann kann auch eine ketogene Ernährung sinnvoll sein. Julia: Ja, das ist auch so etwas eben was vielleicht auch wichtig ist, dass man, weil das was du ansprichst mit deinem LOGI+ oder einer ähnlichen Form der Ernährung, dass man einfach sagt, wenn ich die Insulinresistenz und diese vaskulären Schäden und freie-Radikale-Schäden z. B. als Basis nehme für die Progression der Erkrankung, dann kann ich natürlich sagen, gut wenn ich jetzt eine Ernährungsform wähle, die weniger Kohlenhydrate enthält und nährstoffdicht ist, gute Fette enthält, eben auch die ganzen Baustoffe nutzt oder bringt und natürlich die Radikalbelastung minimiert, dann ist das ja auch eine Art von Prävention. Ulrike: Ganz wichtig! Entzündungshemmend, viele Antioxidantien, hohe Nährstoffdichte. Wir dürfen nicht vergessen, dass unser Hirn ja nicht nur Energie braucht, sondern eben auch die richtigen Fette. Es braucht antioxidative Mikronährstoffe. Es baut natürlich einen Teil seiner Antioxidantien selber. Auch da helfen die Ketone mit. Aber es braucht dafür natürlich Mineralien. Es braucht Selen. In unserem Hirn ist relativ viel Vitamin C. Es baut sein Glutathion selbst, auch ein antioxidativer Stoff. Und dafür muss es natürlich auch Energie übrig haben, aber dafür braucht es auch die richtigen Baustoffe. Und deswegen ist genau was du sagst eine Ernährung die eben auf Grundnahrungsmitteln basiert, die sehr nährstoffdicht sind, auch tierisch und pflanzlich ist immer ideal, wenn man es kombiniert. Wer das eine oder andere weglässt, muss natürlich wieder, braucht wieder viel mehr knowhow, muss wieder viel mehr kombinieren. Aber eigentlich ist die Kombination dafür ideal, Lebensmittel aus dem Meer, ja, nicht nur Fisch, Meeresfrüchte, Seetang, Algen, ich weiß nicht was. Alles das was aus dem Meer kommt hat eine wunderbare Kombination. Also wir haben die für das Hirn wichtigen Fettsäuren wie DHA. Wir haben das Jod, was die Doppelbindungen schützt, was antioxidativ wirkt. Wir haben das Selen, was auch in die gleiche Richtung geht. Wir haben Vitamin D. Wir haben Vitamin B12. Also wir dürfen gerade die tierischen Lebensmittel nicht unterschätzen. Die bringen einen super Nährstoffmix mit. Und natürlich die Pflanzen, die eben wieder andere Vitamine und Mineralien mitbringen, die lösliche Ballaststoffe mitbringen, die die Darmflora gesund halten. Es gibt auch Erkenntnisse die zeigen, dass wahrscheinlich ein durchlässiger Darm auch die Blut-Hirnschranke schädigen kann. Das heißt auch hier wieder eine Verschränkung was unseren Darm gesund hält, trägt indirekt auch zur Hirngesundheit bei, weil es einfach dafür sorgt, dass die Schleimhäute, dass die Barrieren richtig funktionieren, dass keine Entzündungsstoffe, keine Krankheitserreger von einem zum anderen Ort gelangen. Und das zeigt eigentlich auch wie vielfältig und wie grundsätzlich Ernährung helfen kann. Julia: Ja, das wird ja leider immer ein bissel also runtergespielt, dass irgendwer von Bedeutung, dass eben Ernährung in irgendeiner Weise einen Beitrag dazu leisten könnte zur Gesunderhaltung bzw. auch in der Progression von Erkrankungen sich noch irgendwie mit einbringen kann. Und dann natürlich, dass sich das doch auch langsam glaube ich auch schon in der Wahrnehmung irgendwie rumspricht. Ulrike: Soll ich mal das große Licht anmachen? Julia: Ja mach mal an, mach. Ulrike: So, jetzt sieht man mich glaube ich wieder ein bisschen besser. Also ich bin noch kein Grufti. Guck mal, ich habe dir mein Neuron mitgebracht. Ich habe ein kleines Stoffneuron mit Axonen und Dendriten, das gibt’s in Stoffform. Leider gibt’s noch keine Astrozyten, das sind ja die – ich sag ja immer flapsig Neuronentankstellen – die nicht nur stützt, sondern auch Nährzellen für die Neuronen. Also die muss man gut behandeln die kleinen Jungs. Julia: Vielleicht noch ein paar Worte auch zum Thema Fett, weil eben du hast das angesprochen, gute Fette, DHA, EPA. Ulrike: Stopp! Veto! Man sagt immer DHA EPA. Im Gehirn ganz wichtig: DHA und Arachidonsäure, ja. Das sind eigentlich die beiden. Julia: Die böse Arachidonsäure. Ulrike: Die böse Arachidonsäure ganz wichtig fürs Gehirn. Es gibt sogar Hirnregionen, da ist mehr Arachidonsäure als DHA. Also das ist sehr unterschiedlich im Gehirn und das Hirn will gar nicht so viel EPA. Das ist auch wichtig, ist ja auch entzündungshemmend, aber im Gehirn wird mehr Arachidonsäure und DHA gebraucht, weil die dort eben verschiedene Funktionen ausüben. Natürlich muss das auch alles ausgewogen sein. Aber eigentlich versorgt sich das Gehirn aus der Peripherie. Und da wir in unserem Blut selten Arachidonsäuremangel haben, ist das kein Thema. Sondern wir haben eher ein Problem, dass nicht genug DHA da ist ja, weil wir nicht genug Fisch essen oder Algen oder was auch immer. Wobei die DHA ein zweischneidiges Schwert ist. Es ist also auch nicht so einfach, dass man sagen kann, ja wenn man älter wird ist zu wenig DHA da und dann kriegt man irgendwie, kriegt man eben dann Hirnstörungen. Es ist oft genug DHA da, aber sie ist – ich nehme wieder ein flapsiges Bild – sie ist ranzig geworden, defekt. Und dann kann sie natürlich ihre Aufgaben nicht mehr erfüllen. Und daran wird wieder deutlich, oder das erklärt auch, warum wir in den epidemiologischen Studien sehen, dass Leute, die regelmäßig Fisch essen, ein geringeres Alzheimer-Risiko haben. Aber wenn ich Supplemente gebe, Fischöl-Supplemente, habe ich oft keinen Effekt. Manchmal bringt es was. Das kommt auch wieder ein bisschen auf die Dosierung und auf den Status an, auch der Menschen und auf den Krankheitsstand. Aber Fisch scheint besser zu sein. So, warum? Fisch bringt Eiweiß, Fisch bringt DHA, Fisch bringt auch Arachidonsäure. Das wird immer vergessen. Also wir haben ja die ganzen mehrfach ungesättigten Fettsäuren. Fisch bringt Jod. Fisch bringt Vitamin D, Selen. Also wir haben hier einen perfekten Nährstoffmix, ja, noch ein bisschen Gemüse dabei, sozusagen für die Darmflora und dann haben wir ganz tolle Sachen. Also richtige Fette für das Gehirn bedeutet in erster Linie DHA und Arachidonsäure, wobei wir an Letzterer eben in der Regel keinen Mangel leiden und deswegen sprechen wir sehr viel von den Omega 3 Fettsäuren. Und die EPA wird natürlich auch gebraucht. Aber mehr eigentlich in anderen Körperteilen, und sie kommen ja zusammen meistens auch im Fisch und in Lebensmitteln vor. Insofern ist sie auch wichtig, aber im Gehirn spielt sie nicht ganz so die große Rolle wie die DHA. Julia: Es wird ja auch oft vergessen, dass das Gehirn ich glaube zu 70 % in der Trockenmasse aus Fett eigentlich besteht. Ulrike: Ziemlich viel und ziemlich viel Cholesterin. Julia: Genau, diese Anhangsfette, also man spricht immer nur über die Omega 3. Ulrike: Genau. Julia: Aber ich meine, das besteht ja nicht nur aus Omega 3 sondern auch aus wichtigen anderen Fetten. Ulrike: Das wäre eine Katastrophe! Julia: Das Cholesterin das müsste man rausnehmen. Ulrike: Das würde uns aus den Ohren rauslaufen, genau. Und wahrscheinlich wären wir gar nicht so alt geworden, zumindest ich nicht, weil du sprichst da einen ganz wichtigen Punkt an. Die ungesättigten Fettsäuren die sind exorbitant wichtig, gerade die DHA die in der Natur seit 600 Mio. Jahren für Signalübermittlung verwendet wird. Die ist extrem wichtig und extrem gut dafür geeignet. Aber sie hat eben auch eine Schattenseite. Sie ist extrem empfindlich. Sie hat 6 Doppelbindungen. Da kann es überall knallen und zischen. Und das heißt sie geht auch leicht kaputt. Und sie muss natürlich auch – die sitzt ja überwiegend in den Zellmembranen und wir sehen nachher an diesen Neuronen mit den langen Fortsätzen, da ist ja ganz viel Zellmembranmaterial, und die Zelle packt auch die DHA schon genau dahin wo sie gebraucht wird. Sie will sie z. B. nicht gern in der Mitochondrienmembran haben, weil da wird der ganze Sauerstoff verarbeitet. Das ist nicht so prickelnd. Da kann die leicht kaputt gehen. Aber wir brauchen sie für die Signalübermittlung. Das heißt, es muss genug da sein und das Hirn versucht die auch zu konservieren, aber wir müssen natürlich genug essen. Und wenn ganz viele Oxidations- und Entzündungsvorgänge im Körper sind, dann geht natürlich auch viel kaputt. Und deswegen ist auch der Nachschub schon wichtig. Das ist nicht unerheblich. Aber, ich sage ja immer so ein bisschen ketzerisch, es heißt ja immer in den Zellmembranen ist die Hälfte der Fettsäuren sind ungesättigt, und dann sage ich ja immer ganz ketzerisch, so, und was ist denn dann die andere Hälfte? Ja – gesättigt, genau! Das heißt, auch die gesättigten Fettsäuren und auch das Cholesterin spielen eine sehr sehr wichtige Rolle, aber eben auch Ketone, die ja auch aus allen Fetten, auch aus gesättigten Fetten, besonders aus mittelkettigen gebildet werden. Wir brauchen z. B. Fettabkömmlinge wie die Ketone auch, um die Myolinschicht um die Nervenzellen, also um den langen Fortsatz bei den Nervenzellen zu bilden. Der besteht aus ganz speziellen vielen gesättigten Fettsäuren und Ketone sind wichtig, auch um diese Fettsäuren aufzubauen. Und daran sehen wir auch, dass wir gar nicht nur über DHA reden, sondern dass es auch gesättigte Fettsäuren in allen möglichen Längen und Größen gibt, die für die Gehirnfunktion wichtig sind. Jetzt gibt es natürlich Leute die sagen, ja aber die gesättigten kann der Körper ja selber machen. Ja, aber nicht, wenn wir insulinresistent sind und fettarm essen und ich weiß nicht was alles, wenn der gesamte Stoffwechsel nicht funktioniert, wenn Entzündungen da sind usw. Das heißt, wir brauchen auch gesättigte Fettsäuren bzw. wir müssen uns auch gar nicht davor fürchten, wenn wir die Kohlenhydrate reduzieren, so wie wir das sonst ja auch immer sagen. Dann werden die Fette eben eher zur Energieversorgung und auch für die Bau- und Strukturmaßnahmen verwendet, wofür sie ja eigentlich auch da sind. Julia: Super. Was wären jetzt sozusagen, weil wir ja gerade jetzt bei den Lebensmitteln sind, was wäre deiner Meinung nach, oder deine TOP-3-Lebensmittel? Wie sind die absoluten Gehirnflitzer, die müssen unbedingt sein? Die wichtigsten Gehirn-Lebensmittel, 46:36 Ulrike: Also die müssen unbedingt sein. Na ja gut, also Fisch ist ganz klar. Ja, das hat sich glaube ich auch so ein bisschen rumgesprochen, also fetter Fisch hat sich auch rumgesprochen. Da kommt immer dann die Sache, ja, der hat aber auch Schadstoffe. Auch dazu gibt es schon Studien. Also einmal kann man natürlich gucken, dass man möglichst schadstoffarmen Fisch findet/bekommt. Aber man weiß auch, dass tatsächlich Menschen die regelmäßig Fisch essen durchaus auch mehr Quecksilber im Hirn haben. Aber sie haben eben auch mehr Omega 3. Sie haben mehr Selen, und sie haben weniger Demenz. Also es scheint wohl noch so zu sein, dass der Nutzen überwiegt und dass unser Fisch besser wird und die Meere sauberer, das denke ich immer sind politische Entscheidungen. Da müssen wir uns auf ganz anderer Ebene einsetzen, dass unsere Lebensmittel besser werden. Aber es ist aus meiner Sicht keine Lösung zu sagen, wir essen jetzt keinen Fisch mehr. Sonder wir müssen gucken, dass wir bessere Lebensmittel kriegen und uns dafür politisch einsetzen. Julia: Man muss ja auch überlegen: Was ist die Alternative, Ja, und ist die jetzt so viel besser? Ich meine, dann habe ich halt Glyphosat drin. Ulrike: Ja, ok. Gut, du hast gefragt die 3 wichtigsten. Also der Fisch steht sicherlich ganz oben, der Meeresfisch mit dem Jod noch dabei. Und dann an zweiter Stelle würde ich dann schon die pflanzlichen Lebensmittel, und ich würde eigentlich, ich würde Gemüse, Obst und Nüsse fast nebeneinander stellen. Die haben alle ihre Vorteile. Sie haben phenolische Substanzen, also sekundäre Pflanzenstoffe. Sie haben Ballaststoffe. Sie bringen das pflanzliche Eiweiß mit. Also sie haben eine Fülle an Schutzstoffen, die den Fisch oder andere tierische Lebensmittel optimal unterstützen. Ich glaube ein bisschen beim Beerenobst haben wir natürlich den Vorteil, dass nicht so viel Zucker drin ist und dass sie ballaststoffreich sind. Aber ich glaube, dass die Empfehlung zu Beerenobst auch ein bisschen daher rührt, dass das Beerenobst eigentlich auch am besten untersucht ist. Es ist ja immer auch die Frage wo haben wir Daten. Und ja, es gibt ein bisschen was zu Zitrusfrüchten. Es gibt sehr viel zu Blaubeeren. Es gibt ein bisschen was zu Cranberries oder Granatapfel. Aber weiß ich nicht, wenn wir jetzt ich sage mal Feigen und Äpfel und Nektarinen untersuchen, kommt vielleicht auch was dabei heraus. Also ich will jetzt gar nicht sagen es ist nur das Beerenobst. Aber das hat natürlich eine Fülle an Schutz- und Wirkstoffen und ist sehr gut zu verwenden. Gemüse haben wir ja schon gesagt. Nüsse ganz interessanterweise eben auch mit vielen interessanten Fetten, Eiweiß, Ballaststoffe. Also auch eine tolle Kombination. Aber Nüsse sind natürlich immer eher Snacks. Also wir wollen ja jetzt nicht, dass die Leute kiloweise Nüsse essen. Aber die kann man ruhig auch genießen. Das wären so meine TOP und natürlich ergänze ich Kokosöl. Julia: Natürlich! Ulrike: Weil das Kokosöl einfach selbst, wenn ich jetzt mich nicht so perfekt ketogen ernähre oder nicht so Top LOGI mich ernähre, aber es bringt eben doch einen kleinen Zusatzeffekt durch die milde Ketonbildung. Ich glaube, dass gerade wenn das schon darum geht, wie kann ich auch alte Leute motivieren – das Kokosöl bringt ja auch so eine leichte Süße von Natur aus mit und man weiß ja, dass oft die Leute dann auch auf Süßes stehen. Dann ist das vielleicht auch eine Möglichkeit, ein gutes Fett eben in Süßspeisen einzuarbeiten oder auch einen Teil der Süße dadurch einzusparen. Ich kann ja auch mit Kokosflocken arbeiten. Ich kann Kokosnuss essen. Also ich muss ja nicht nur das Öl nehmen, sondern ich kann ja auch andere Kokosprodukte verwenden und da habe ich ganz vielseitige. Julia: Jetzt weiß man natürlich auf der einen Seite halt glücklich, wenn man jemanden älteren betreut und der wirklich noch zu Hause ist, da hat man es natürlich einfacher, weil man ja auch da noch mitbestimmt was vielleicht auf den Tisch kommt. Wenn man für sich selbst kocht und das auch präventiv natürlich macht, dann ist das auch eine andere Sache. Aber wie würdest du das sehen, wenn jetzt jemand schon in einem Pflegeheim ist oder in einem Seniorenheim, gar nicht unbedingt pflegebedürftig jetzt, aber angewiesen darauf, dass andere für einen kochen. Macht das dann Sinn, trotzdem Kokosöl einzubauen und zu versuchen vielleicht einfach weniger Kartoffeln jetzt essen oder so. Ulrike: Oder Kokosprodukte. Weniger - was meinst du? Julia: Kartoffeln oder irgendwas. Also kann man, hast du jetzt persönlich Erfahrung in der Umsetzung oder von jemandem gehört, ist das möglich? Bedeutung und Auswirkung des Einsatzes von Kokosöl, 50:59 Ulrike: Also ich will mal eine Sache erzählen die ich jetzt gehört habe, nicht so sehr aus dem Pflegeheim, sondern aus der privaten Betreuung. Also in den Pflegeheimen, ich würde mir halt wünschen, dass es dort mehr ausprobiert würde, weil da ist ja eben oft noch wirklich süße Speisen und preiswerte Speisen. Dann sind wir immer beim Grießbrei, bei Nudeln und Kartoffeln. Ich würde mir sehr sehr wünschen, dass eben auch die Menschen die im Pflegeheim für die Verpflegung zuständig sind, dass die ein bisschen mehr eben Kohlenhydrate reduzieren und auch sich mit Kokosöl beschäftigen. Ich glaube das passiert noch viel zu wenig, ja. Ich habe aber die Tage eine Geschichte zugetragen bekommen von einer Frau die ihre Mutter pflegt, die schon an Alzheimer erkrankt ist. Die kriegt das noch mit. Man denkt ja auch immer, ja man hat Alzheimer und ist dann weg. Aber das Schlimme ist ja, dass es sehr lange dauert und dass man am Anfang sehr wohl alles mitbekommt. Und die Mutter ist also erkrankt und die Tochter kümmert sich und ernährt sie möglichst ketogen, möglichst LowCarb mit Kokosöl. Und jetzt hat sich aber bis zur demenzkranken Mutter rumgesprochen, dass Kokosöl ja ganz böse ist, dass das Herzinfarkt macht und nicht gut ist, woraufhin sie dann mal wieder Brot gegessen hat. Und die Tochter berichtet, dass sie schon ganz kurz danach sich in der Wohnung nicht mehr orientieren konnte, also eine unmittelbare Wirkung. Und dann haben sie wieder umgestellt, und jetzt kennt sie sich wieder aus. Das finde ich sehr sehr eindrucksvoll, ist n = 1, ist jetzt ein Erfahrungsbericht. Ich bin mir sicher wir werden mehr davon hören. Der Dale Bredesen, der amerikanische Arzt, der ein umfängliches Lebensstilprogramm entwickelt hat zur Alzheimer-Therapie auch, die berichten ähnliche Dinge. Die haben die ersten Fallbeschreibungen wo sie Leute haben, die Vorstufen von Demenz haben, die z. T. am Beginn der Erkrankung sind, die aber schon so beeinträchtigt waren, dass sie ihre Arbeit nicht mehr richtig machen konnten oder z. T. sogar schon aufhören mussten. Und die erste Fallserie die beschrieben wurde, das waren 10 Patienten. Und da hat man genau das gemacht, also man hat für gesunden Schlaf gesorgt. Man hat geguckt, dass die Leute sich auch ein bisschen entspannen, soziales Miteinander und eben Kokosöl in der Ernährung oder eben MCT-Öle, also die Ketonbildung, nächtliches Fasten. Und man hat bei 9 von 10 eine solche Verbesserung gefunden, dass die wieder arbeiten gehen können oder eben wieder ihre Arbeit genauso gut machen können wie vorher. Also mir ist sehr wohl bewusst, dass das natürlich wissenschaftlich alles noch anfechtbar ist, weil es erst Fallbeschreibungen sind. Aber irgendwo muss man anfangen. Und ich denke wir haben ein sehr geringes oder eigentlich gar kein Risiko für Nebenwirkungen. Wir haben die Chance, das auszuprobieren. Das steht ja auch jedem frei. Und ich habe gehört auch, es gibt jetzt die ersten Arztpraxen in Deutschland, z. B. in Freiburg gibt’s eine Praxis, die ähnliche Programme machen. Und das sind ja Leute, die noch nicht erkrankt sind und die eben auch sagen, wir sehen gute Erfolge. Was die Erkrankten angeht, da kommen eben jetzt die ersten Berichte auch aus Amerika von Bredesen und auch das stimmt uns sehr optimistisch. Aber aus den Pflegeheimen höre ich ehrlich gesagt noch gar nichts. Und das wäre eigentlich mein sehnlichster Wunsch, dass auch ein paar Pfleger oder Altenheimbesitzer oder Aktionäre unser Buch lesen und dass man einfach erkennt, dass man wahrscheinlich mit ganz einfachen Maßnahmen wirken kann. Ich sage immer, man könnte ja mal im ersten Stock Kokosöl einführen und im zweiten Stock macht man weiter wie bisher und dann wird man schon Unterschiede sehen. Davon bin ich überzeugt. Julia: Ja, das ist wichtig. Also die Geschichte die du vorhin erzählt hast, weil ich habe genau, also auch jemanden der mir etwas Ähnliches erzählt hat von der Mutter, die mehr oder weniger ketogen ernährt worden ist. Und die musste, also da war es irgendwie so, die hat eine, da gibt es so Getränke, so Trinknahrung die dann so zuckerhaltig ist, ja. Und die hat nicht gewusst, dass sie die trinkt. Aber die hat dann angefangen dies zu trinken und auf einmal hat die eben nicht mehr auf die Toilette gefunden, ja. Ulrike: Zum Beispiel. Julia: Also das war eben wirklich… Ulrike: Und das ist wirklich sehr eindrucksvoll. Ich weiß sehr wohl, dass die Kasuistiken in der Evidenzpyramide sehr weit unten stehen. Aber sie gehört zur Evidenz dazu. Julia: Aber irgendwo muss man anfangen, so wie du es sagst. Ulrike: Ja, und die randomisierte kontrollierte Doppelblindstudie ist in anderen Bereichen auch nicht vom Himmel gefallen. Da hat man auch erst Dinge beobachtet, hat dann Grundlagenforschung gemacht, und das ist ja auch etwas was uns ja auch optimistisch stimmt was die ketogene Ernährung oder die Ketonkörperanwendung in anderen Bereich betrifft, dass wir ja auch aus der Grundlagenforschung sehr gute Hinweise haben. Und natürlich sind das im Moment alles Angebote, Hinweise. Aber ich finde die Menschen sollten das wissen, und dann entscheidet jeder für sich, ob er das ausprobieren möchte oder nicht. Aber wenn es so gute Aussichten gibt oder solche Aussicht auf Erfolg oder auf Aufschieben oder auf besseres Wohlbefinden, dann finde ich haben die Menschen ein Recht, das zu erfahren. Julia: Genau. Vor allem muss man auch immer abwägen, was sind Kosten - Nutzen oder Risikoabwägung machen. Man kann natürlich nach randomisierten Doppelblindstudien schreien, aber es ist eine Sache ob ich ein Medikament teste, das vielleicht schwerste Nebenwirkungen hat oder ob ich eine Ernährungsintervention ausprobiere, die schlimmstenfalls halt nichts bringt, ja. Also vor allem, da muss man sicherlich die Verhältnismäßigkeiten glaube ich auch betrachten, ja. Ulrike: Genau. Julia: Ich möchte noch mal dein Buch gleich in die Kamera halten. Ulrike: Das ist gut. Julia: „Essen! Nicht! Vergessen!“ eben von dir, Ulrike Gonder und Dr. Peter Heilmeyer, im systemed Verlag erschienen, und ich kann es jedem nur wärmstens empfehlen. Das was wir jetzt besprochen haben ist ja wirklich nur ein ganz ganz Mini-Mini- ja Ausschnitt aus diesem, aus dem tollen Buch, aus dem ganzen Wissen das da drin ist. Es sind Anleitungen auch wie man es wirklich umsetzen kann sehr praktisch und toll geschrieben, also verständlich. Also sachlich, fachlich sehr kompetent, aber auch verständlich, was ja oft dann das Schwierige ist, so ein komplexes Thema ja nicht zu stark zu vereinfachen, weil auch das birgt Gefahren meiner Meinung nach. Ulrike: Unbedingt, ja. Julia: Wenn es zu stark vereinfacht ist, macht es auch angreifbar natürlich. Deswegen Gratulation zu dem Buch – wirklich sehr sehr gelungen! Ulrike: Freut mich, danke! Julia: Und da möchten wir gleich noch auf etwas anderes hinweisen, nämlich: Im Februar und zwar 17./18. Februar wird der LCHF-Kongress in Düsseldorf wieder stattfinden zum 2. Mal und du wirst über dieses Thema sprechen. Ulrike: Ja, wir haben das genannt „Futter fürs Hirn – damit das Licht im Oberstübchen an bleibt“. Da habe ich die große Ehre, den ersten Vortrag halten zu dürfen und da freue ich mich sehr drauf. Julia: Toll. Und es gibt ja noch etwas, nämlich im April. Ulrike: Genau, im April werde ich mit den Damen von LCHF Deutschland, mit Iris und Margret, ein 2-Tages-Seminar anbieten genau für Menschen, die etwas für ihre Hirngesundheit tun wollen, also nicht für bereits Erkrankte, sondern die präventiv etwas für ihre Hirngesundheit tun wollen, werden wir ein 2-Tages-Seminar anbieten. Infos gibt’s dann auch auf der Internetseite von LCHF Deutschland. Und da wird es eben auch, aber nicht nur, um Ernährung gehen, sondern eben auch Stressabbau, Bewegung, Konzentrationsübungen, Licht – all die Fragen, die wir im Buch auch gestreift haben. Julia: Super. Und das ist, gibt’s da schon einen Veranstaltungsort? Ulrike: Das wird in der Nähe von Hamburg sein und es ist dann auch ein Flyer online, und man kann sich auch per Email informieren. Julia: Also wir werden dann natürlich sowieso in den shownotes verlinken, sowohl natürlich zum Buch, zum Kongress und zu dem Wochenendseminar, dass dann in allen Oberstübchen das Licht an bleiben möge! Ulrike: Genau. Julia: Dann vielen lieben Dank Ulli für deine Zeit! Ulrike: Ich danke dir! Julia: Es war wie immer eine Freude. Ulrike: Und die Zeit ist schon wieder so schnell um. Wir haben immer – ich glaube uns geht der Gesprächsstoff nicht aus. Julia: Ja, vielen Dank noch mal. Einen schönen Abend wünsche ich und bis bald! Ulrike: Bis bald! Tschüß Julia! Bücher Essen! Nicht! Vergessen!: Demenzrisiko einfach wegessen - oder: Wie die Ernährung vor Alzheimer & Co. schützen kann. Leseprobe als PDF beim Verlag Webseiten Ulrike Gonder und ihr Blog | (auf Facebook folgen) Paleo Low Carb - JULIAS BLOG | (auf Facebook folgen)
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 17/19
Trotz einer deutlichen Verbesserung der Prognose bleibt der systemische Lupus erythematodes (SLE) eine unheilbare Autoimmunkrankheit mit hoher Mortalität und insbesondere Morbidität. Da bei unvollständig verstandener Pathogenese weiterhin nur symptomatische Behandlungen verfügbar sind, steigt die Prävalenz des systemischen Lupus kontinuierlich, wobei die verursachten Kosten durch Behandlung und Arbeitsausfall aktuell in den USA jährlich bei umgerechnet über 10 Mrd. Euro liegen. Bisher ist bekannt, dass der Endorganschaden durch das Auftreten von autoreaktiven T-Zellen und insb. B-Zellen sowie von diesen produzierten Autoantikörpern vermittelt wird, sodass die Behandlung in vielen Fällen der Chemotherapie niedrig-maligner B-Zell-Lymphome ähnelt und daher viele unerwünschte Nebenwirkungen mit sich bringt. Die genaue Art und Herkunft der nukleären Autoantigene ist bislang ebenso unbekannt wie die beteiligten molekularen Signalwege, wobei hier unter anderem Toll-like-Rezeptoren sowie deren intrazelluläre Signalkaskaden, inklusive der Interferon-regulatorischen Faktoren (IRFs) diskutiert werden. Ziel dieser Arbeit war es, die Rolle des Interferon-regulatorischen Faktor 4 (IRF4) in der Entstehung des systemischen Lupus erythematodes zu untersuchen. IRF4 wird fast ausschließlich in Zellen des Immunsystems exprimiert und reguliert als Transkriptionsfaktor die Entwicklung und Polarisierung von B-Zellen, T-Zellen und Makrophagen. Zusätzlich wirkt IRF4 aber insbesondere in dendritischen Zellen auch als negativer Regulator des pro-entzündlichen Toll-like-Rezeptor-Signalweges. Diese duale Rolle von IRF4 spiegelt sich auch in den Auswirkungen auf die Krankheitsentwicklung im untersuchten murinen SLE-Modell wieder: Während im Vergleich zu IRF4-kompetenten (wt) Mäusen IRF4-defiziente (KO) Tiere deutlich früher und stärker ausgeprägt Zeichen der systemischen Entzündung zeigen, sind sie vor der Entwicklung der SLE-typischen Endorganschäden vollständig geschützt. So weisen IRF4-KO-Mäuse stark erhöhte Plasmaspiegel von IL-12 und TNF-α sowie eine ausgeprägte Splenomegalie auf, zeigen aber weder detektierbare Autoantikörper im Plasma noch die typische Lupusnephritis. Neben der Wichtigkeit von autoreaktiven Lymphozyten in der Pathogenese des SLE zeigt die vorliegende Arbeit damit, dass trotz hyperaktiver innater Immunität der autoimmune Endorganschaden vermieden werden kann, was perspektivisch die Möglichkeiten einer eher immunmodulatorischen als rein immunsuppressiven Therapie mit ihren zahlreichen Nebenwirkungen aufzeigt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Die Plasmamembran lebender Zellen stellt die Hauptbarriere für alle Arten von extrazellulären Signalen dar. Viele davon werden ins Innere der Zelle weitergeleitet, hier lösen sie im Kern transkiptionelle Veränderungen und damit die Anpassung der Zelle auf Proteinebene aus. Andere wiederum werden direkt erkannt und in unmittelbare molekulare Antworten umgewandelt, wie zum Beispiel die Sekretion von gespeicherten Stoffen oder Konformations-änderungen von Proteinen. Besonders in Pflanzen, welche durch ihre sesshafte Lebensweise auf die rechtzeitige und spezifische Erkennung von Umweltveränderungen angewiesen sind, hat sich ein höchst diverses Rezeptorsystem entwickelt. In der Ackerschmalwand Arabidopsis thaliana, der in dieser Arbeit verwendeten Modellpflanze, wurden 610 verschiedene Rezeptorproteine identifiziert, welche wiederum von zahlreichen interagierenden, und bis jetzt weitestgehend unerforschten Proteinen reguliert werden. Als entscheidendes Prinzip, dieses Aufgebot an membran-gebundenen Komponenten von Signalkaskaden zu organisieren, gilt inzwischen die zeitliche und lokale Kompartimentierung der Plasmamembran. Durch Akkumulation relevanter Bestandteile von biologischen Prozessen in sogenannten Membrandomänen werden kurze Reaktionszeiten und die unmittelbare Signalweiterleitung garantiert. Besonders wichtig bei solchen Prozessen sind sogenannte Gerüstproteine, welche als Adaptoren zwischen anderen Komponenten fungieren. In dieser Arbeit wurden Remorine, eine Familie pflanzenspezifische Proteinen ohne bisher definierte Funktion, aufgrund ihrer Eigenschaft Membrandomänen zu markieren und ihrer mutmaßlichen Beteiligung an Pflanzen-Pathogen-Interaktionen, genauer untersucht. Eine systematische Expression von Remorinen als Fluorophor-Fusionen mit anschließender hochauflösender mikroskopischer und quantitativer Untersuchung offenbarte, dass die meisten Remorine sich in deutlich unterschiedlichen Mustern an der Membran verteilen. Untersucht wurden dabei Parameter wie die Größe der erkennbaren Domänen, die Form, die Helligkeit, aus welcher auf die Proteinkonzentration rückgeschlossen werden kann, sowie die Domänendichte an der Membran. Diese Ergebnisse wurden von Kolokalisationsanalysen unterstützt, welche die Lokalisation in unterschiedlichen, koexistierenden Membrankompartimenten erkennen ließen. Ferner wurden die Eigenschaften der von Remorinen markierten Membrandomänen, wie zum Beispiel der Austausch an Proteinen mit der umgebenden Membran, sowie lokale und zeitliche Dynamik und Stabilität untersucht. Dabei konnte eine hohe Fluktuation einzelner Proteine zwischen Domäne und umliegender Membran, jedoch eine klare laterale Immobilität der gesamten Domäne nachgewiesen werden. Zusätzlich zeichneten sich die untersuchten Domänen teilweise durch eine außerordentlich große zeitliche Stabilität aus, andere wiederum scheinen abhängig von bestimmten Stimuli zu entstehen. Weitergehende Arbeiten dienten der Identifizierung der Funktion einzelner Bereiche der Proteine. Hierbei konnte die entscheidende Rolle des äußersten C-terminalen Bereichs, des so- genannten RemCAs (Perraki et al., 2012; Konrad et al., 2014) als Membrananker bestätigt werden. Zusätzlich wurden mit Hilfe eines Hefe-2-Hybrid Ansatzes zahlreiche neue Interaktoren für eine Auswahl von Remorinen identifiziert. Dabei wurde ein essentieller Rezeptor der basalen Immunantwort, BAK1 als Interaktor für Remorin 6.4 gefunden. Zuletzt wurden einige wenige Remorine mit Hilfe von Mutantenlinien in einer genetischen Studie phänotypischen Analysen bezüglich ihrer Funktion bei Pflanzen-Pathogen Interaktionen unterzogen. Remorin 6.4 spielt hiernach eine Rolle bei der Immunantwort nach Befall mit virulenten Bakterien. Die grundlegende Erkenntnis, dass in lebenden Zellen zahlreiche klar unterscheidbare Arten an Membrandomänen koexistieren, ist ein Meilenstein auf dem Weg zur Anerkennung einer neuen Vorstellung vom Aufbau der Zytoplasmamembran. Diese wird häufig noch als undifferenzierte zweidimensionale Flüssigkeit beschrieben, in welcher stellenweise sogenannte Lipidflöße, festere Strukturen aus Cholesterin und Sphingolipiden, die auch bestimmte Proteine beherbergen können, auftreten. Anhand der in dieser Arbeit gewonnen Ergebnisse, sowie ähnlicher Studien in Hefe lässt sich nun folgendes Bild zeichnen: Es ist davon auszugehen, dass unterschiedliche Proteine, welche im selben biologischen Prozess involviert sind, in unmittelbarer Nachbarschaft oder sogar im selben Proteinkomplex in der Membran organisiert sind. Die Lipidzusammensetzung in der unmittelbaren Umgebung wird von diesen Proteinen bestimmt, bietet jedoch auch die Grundlage für die Bildung der Domäne, indem sie die Lokalisation der Komponenten in diesem Bereich fördert. Die zahlreichen an der Zellmembran gleichzeitig ablaufenden, unterschiedlichen Prozesse erfordern eine hochkomplexe, zeitlich und räumlich stark regulierte Kompartimentierung der Membran. Es kann vermutet werden, dass Remorine eine Rolle als Gerüstproteine bei der Ausbildung einer Auswahl dieser Domänen bilden. Im Fall von Remorin 6.4 ist das Protein für den Prozess der Flagellin-Erkennung und die unmittelbaren Abwehrantworten, welche nachweislich eine Präformierung der beteiligten Proteinkomplexe voraussetzen, notwendig.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
TRPA1 ist ein Kationenkanal aus der Familie der "transient receptor potential" (TRP)-Kanäle. Die Expression und Funktion dieses Ionenkanals wurde bisher hauptsächlich in neuronalen Zellen, insbesondere in Schmerzneuronen, untersucht. Dort übt TRPA1 eine Warnfunktion aus und fungiert als Sensormolekül für Reizstoffe. Dementsprechend wird TRPA1 durch eine Reihe von irritativen oder toxischen Substanzen direkt aktiviert, z. B. durch Allylisothiocyanat (AITC), Formalin, Zigarettenrauch, Tränengas oder Ozon. Im Einklang mit dieser Funktion wurde eine neuronale Expression von TRPA1 in vielen Grenzflächen des Körpers, z. B. in der Haut, im Gastrointestinaltrakt oder in der Lunge gefunden. Im Respirationstrakt konnte TRPA1 in sensorischen Nervenendigungen in den luftleitenden Atemwegen nachgewiesen werden, wo seine Aktivierung durch inhalative Schadstoffe mit entzündlichen und asthmatoiden Reaktionen in Verbindung gebracht wird. Im Gegensatz zur gut charakterisierten Rolle von TRPA1 in Neuronen ist bisher noch relativ wenig über die Expression von TRPA1 in non-neuronalen Zellen bekannt. Auch eine Funktion von TRPA1 in Tumoren ist bisher weitgehend unerforscht. In dieser Arbeit wurde eine Reihe von Zelllinien des Kleinzelligen Bronchialkarzinoms (engl.: "small cell lung cancer", SCLC) im Hinblick auf die Expression von TRP-Kanälen und im Speziellen von TRPA1 untersucht. Dabei zeigte sich, dass TRPA1 in SCLC-Zelllinien exprimiert wird und seine Aktivierung zur Stimulierung von Tumor-relevanten Signalkaskaden führt. Die Aktivierung von TRPA1 durch AITC oder durch ein wässriges Extrakt aus Zigarettenrauch führte in diesen Zellen zu einer Erhöhung der intrazellulären Calciumionenkonzentration ([Ca2+]i). Diese Ca2+-Erhöhung erwies sich als transmembranärer Ca2+-Einstrom und konnte von TRPA1-Inhibitoren blockiert werden. Darüber hinaus führte die TRPA1-abhängige Erhöhung der [Ca2+]i zu einer Aktivierung der extrazellulär signalregulierten Kinase ERK1/2 über einen Src-abhängigen Mechanismus. Des Weiteren wirkte eine TRPA1-Aktivierung in SCLC-Zellen anti-apoptotisch und förderte das Überleben der Zellen in serumfreiem Medium. Umgekehrt hatte die siRNA-vermittelte Herunterregulierung von TRPA1 eine schwere Wachstumsreduzierung von SCLC-Zellen in semisolidem Medium zur Folge. Die potentielle tumorbiologische Relevanz dieser Befunde wird durch die Tatsache unterstrichen, dass in humanen Tumorproben von Patienten mit SCLC eine gegenüber non-SCLC-Proben und normalem Lungengewebe deutlich erhöhte TRPA1-Expression zu verzeichnen war. Interessanterweise fand sich eine funktionelle Expression von TRPA1 außerdem auch in zwei Pankreaskarzinom-Zelllinien sowie einer Lungenzelllinie mit Alveolarzell-Typ-II-Charakteristika. Die Tatsache, dass eine Aktivierung von TRPA1 das Überleben von SCLC-Zellen förderte, weist auf potentielle Tumor-promovierende Wirkungen von TRPA1-Aktivatoren hin. Bekanntermaßen stimulieren zahlreiche Inhaltsstoffe des Tabakrauchs den TRPA1-Kanal und Nikotinabusus ist einer der Hauptfaktoren bei der Entstehung des SCLC. Insofern weist die vorliegende Untersuchung auf einen möglichen neuen Signalweg hin, der neben den etablierten genotoxischen Effekten von Tabakrauch für die Entstehung von Lungentumoren wichtig ist. Weiterhin sind die hier vorgestellten Befunde ein Anknüpfungspunkt für weitere Studien zur Rolle von TRPA1 im Pankreaskarzinom und in epithelialen Zellen in der Lunge.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
Die Familie A der G-Protein-gekoppelten Rezeptoren (GPCRs) bildet die größte und vielfältigste aller Transmembranrezeptorfamilien. Ihre Mitglieder spielen eine wesentliche Rolle in fast allen (patho)physiologischen Prozessen. Nach Agonistenbindung aktivieren GPCRs, wie ihr Name andeutet, heterotrimere G-Proteine aber auch G-Protein-unabhängige Signalwege. Die verschiedenen aktiven G-Proteinuntereinheiten (Gα-GTP und βγ) induzieren nach Dissoziation vom Rezeptor entsprechende Signalkaskaden z.B. über Phospholipase A und Cβ. Um eine Fehlregulation zellulärer Prozesse z.B. durch „Überstimulation“ zu verhindern, unterliegen GPCRs strengen Regulationsmechanismen, die ihre Fähigkeit zur Signaltransduktion und ihre Verfügbarkeit an der Zelloberfläche bestimmen. Die Bradykininrezeptoren B1 und B2 (B1R, B2R) gehören zur Familie A der GPCRs, also zu den Rhodopsin-ähnlichen GPCRs, und werden durch die pro-inflammatorischen Peptide desArg9-Bradykinin/desArg10-Kallidin (DABK/DAK) bzw. Bradykinin (BK)/Kallidin aktiviert. Im Gegensatz zum konstitutiv exprimierten B2R, der nach Stimulation schnell desensitisiert und internalisiert wird, erfolgt eine B1R-Expression fast ausschließlich unter pathophysiologischen Bedingungen über Induktion durch Zytokine. Nach Stimulation wird der B1R nicht internalisiert, sondern verbleibt an der Zelloberfläche. Beide Rezeptoren koppeln sowohl an Gαq/11 als auch an Gαi und aktivieren somit weitgehend identische Signalwege [vor allem Phospholipase Cβ (PLCβ) und „mitogen activated protein kinase“ (MAPK)-Kaskaden]. Durch ihre - besonders im Hinblick auf ihre Internalisierungs-eigenschaften - konträre Regulation, stellen die Bradykininrezeptoren ein interessantes Modell zur Untersuchung regulatorischer Mechanismen und deren Einflüsse auf die Signalübertragung von GPCRs dar. Beide Bradykininrezeptoren spielen bei inflammatorischen Prozessen eine Rolle. Sie fördern die Ausschüttung pro-inflammatorischer Zytokine und rekrutieren Immunzellen. Während entzündlicher Ereignisse kommt es zu erhöhter Zytokinfreisetzung z.B. von Interleukin-1β (IL-1β) und dadurch zur de novo Synthese von B1R. Pro-inflammatorische Zytokine wie IL-1β, die zur B1R-Expression führen, induzieren unter anderem aber auch einen Anstieg der Körpertemperatur (Fieber), eine häufige Begleiterscheinung inflammatorischer Vorgänge. Trotz des bekannten Zusammenhangs zwischen Inflammation und erhöhter Temperatur war über den Einfluss eines Temperaturanstiegs auf Membranrezeptoren und ihre Signalvermittlung auf zellulärer Ebene bisher nur sehr wenig bekannt. In dieser Arbeit wurde - unseres Wissens nach - erstmals auf die Temperatur als regulatorische Komponente für GPCR-vermittelte Signalübertragung eingegangen. Am Beispiel der Bradykininrezeptoren wurde gezeigt, dass die Stärke der Signalübertragung von GPCRs signifikant durch eine Temperaturerhöhung von 37°C auf 41°C beeinflusst werden kann. Hierbei war jedoch zwischen einer Temperaturabhängigkeit des Signalwegs selbst und einer rezeptorspezifischen Temperatursensitivität zu unterscheiden. So wurde die Aktivierung von ERK1/2 unter pathophysiologisch erhöhter Temperatur (41°C; normale Körpertemperatur: 37°C) signifikant gesteigert, unabhängig davon ob sie durch B1 oder B2 Rezeptoren stimuliert wurde. Die gesteigerte Aktivität PLCβ-vermittelter Signalkaskaden bei 41°C konnte hingegen auf eine nur für den B1R spezifische Temperaturabhängigkeit zurückgeführt werden. Diese Beobachtung zusammen mit der Tatsache, dass die B1R-Expression unter pathophysiologischen Bedingungen besonders induziert wird, deutet darauf hin, dass der B1R in Kombination mit Fieber eine verstärkte Wirkung im Organismus haben könnte. Ob diese Heilungs-fördernd oder -abträglich wirkt, müsste noch genauer untersucht werden. Neben dem Einfluss der Temperatur wird die Signalübertragung der GPCRs durch die jeweiligen Rezeptorkonformationen und die sich daraus ergebenden Funktionsunterschiede bestimmt. Die Familie A der GPCRs wird durch einige hoch konservierte Strukturmerkmale wie die E/DRY-Sequenz mit R3.50 in der dritten Transmembrandomäne (TM) oder die NPXXY-Sequenz am Ende der siebten TM charakterisiert. Publizierte Ergebnisse deuten darauf hin, dass bovines Rhodopsin durch eine Salzbrücke zwischen R3.50135 (TM3) und E6.30247 (TM6), auch „ionic lock“ genannt, im inaktiven Zustand gehalten wird. Der B2R ist einer der wenigen Peptid-GPCRs, der ein Glutamat an Position 6.30 (E6.30238) trägt, und eignete sich daher zur Untersuchung der Anwesenheit und Funktion eines möglichen „ionic lock“ auch in „nicht-Rhodopsin“-GPCRs. Für alle bisher entsprechend untersuchten GPCRs ist bekannt, dass R3.50 für eine effiziente G-Protein-Aktivierung unabdingbar ist (selbiges wurde in der vorliegenden Arbeit auch für den B2R bestätigt). Die funktionelle Analyse eines „ionic lock“ anhand einer R3.50 Mutation und G-Protein-abhängiger Kaskaden ist deshalb nicht möglich. Die Rolle eines „ionic lock“ im Hinblick auf G-Protein-unabhängige Mechanismen wie die Rezeptorinternalisierung, einem wichtigen Regulationsschritt für die meisten GPCRs, wurde bisher jedoch noch nicht untersucht. In der vorliegenden Arbeit wurde erstmals gezeigt, dass die Rezeptorendozytose durch Mutation von R3.50128 zu Alanin (R3.50128A), im Gegensatz zur G-Protein-Aktivierung, nicht zum Erliegen kommt. Die mutierten Rezeptorkonstrukte wiesen sogar ein konstitutives Internalisierungsverhalten auf. Dies verwies auf unterschiedliche Funktionen dieser Aminosäure bei der G-Protein-vermittelten Signaltransduktion und bei der Rezeptorinternalisierung. Ein Aufbrechen des möglichen „ionic lock“ durch Mutation von E6.30238 zu Alanin oder Arginin resultierte ebenfalls in konstitutiv internalisierenden Rezeptorkonstrukten. Im Gegensatz zur Endozytose zeigten diese Mutanten zwar keine konstitutive Signalübertragung, wurden aber auch durch prinzipiell als Antagonisten klassifizierte Verbindungen effizient aktiviert. Diese Ergebnisse legen einen mehrstufigen Aktivierungsprozess nahe, dessen Stufen sich durch verschiedene Rezeptorkonformationen mit unterschiedlichen Interaktionsmöglichkeiten für die G-Protein-Rekrutierung/Aktivierung oder mit der Internalisierungsmaschinerie [GPCR-Kinasen (GRKs), Arrestine] auszeichnen. Der wechselseitige Austausch der beiden hoch konservierten Aminosäuren R3.50128 und E6.30238 ermöglichte wahrscheinlich die Bildung eines inversen „ionic lock“, wodurch normales B2R-Verhalten wieder hergestellt wurde. Diese Arbeit zeigt somit erstmals, dass ein Aufbrechen eines möglichen „ionic lock“ in einem Peptidrezeptor unterschiedliche Auswirkungen für die Prozesse der G-Protein-Aktivierung und der Rezeptorendozytose haben kann. Dadurch wird die Annahme bestärkt, dass es bei einem GPCR mehrere aktive Konformationen geben kann, die unterschiedliche Affinitäten gegenüber regulatorischen Proteinen (GRKs, Arrestinen) oder Effektoren (G-Proteinen, Arrestinen) aufweisen und dadurch differenziert zelluläre Signale auslösen können. Die Aufklärung der unterschiedlichen Aktivierungsmechanismen von GPCRs in Kombination mit der Herstellung von Verbindungen z.B. sogenannten „small molecule compounds“, die bestimmte Rezeptorkonformationen mit ihren signalspezifischen Eigenschaften stabilisieren können, wäre möglicherweise für die Entwicklung von Agonisten oder Antagonisten, die nur ganz bestimmte Signalwege modulieren und so eine optimierte therapeutische Anwendung erlauben, hilfreich.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Herz-Kreislauf-Erkrankungen stellen heute in der westlichen Welt die häufigste Todesursache überhaupt dar. In der Vergangenheit wurde deshalb zu deren Therapie bereits eine Vielzahl an medikamentösen und chirurgischen Behandlungsmöglichkeiten entwickelt, die jedoch insbesondere in schweren Erkrankungsfällen keine langfristig zufrieden stellenden Optionen bieten konnten. Von Embryonalen Stammzellen (ES-Zellen) erhofft man sich deshalb ganz neue, zelltherapeutische Möglichkeiten. Durch das Potential, vitales Herzmuskelgewebe aus diesen pluripotenten Zellen in vitro generieren zu können, eröffnen sich dabei für die kausale Behandlung der Herzinsuffizienz bisher ungeahnte Perspektiven. Zwei der Hauptprobleme bei der Gewinnung von Kardiomyozyten aus der differenzierten ES-Zell-Kultur stellen jedoch zum einen der geringe Anteil von Herzmuskelzellen an der Mischkultur und zum anderen deren schwierige hochselektive Aufreinigung dar. Durch Entschlüsselung der Stammzellentwicklung und der daran beteiligten Faktoren und Signalkaskaden könnte es jedoch in Zukunft möglich werden, die Steuerung für diese Differenzierung zu übernehmen, um so aus den hoch proliferativen, pluripotenten Vorläuferzellen Kardiomyozytenreinkulturen gewinnen zu können. In der vorliegenden Arbeit wurde der früh während der Embryonalentwicklung exprimierte Transkriptionsfaktor mesoderm posterior 1 (MesP1) als mögliche Schlüsselkomponente der kardiovaskulären Entwicklung detailliert untersucht. Mithilfe eines dafür konstruierten Vektors konnte der Faktor MesP1 in stabil-transfizierten, murinen embryonalen Stammzellen überexprimiert – und so dessen induktive Wirkung auf die Entwicklung von Herz- und Endothelzellen während der ES Zell-Differenzierung auf molekularer wie auch zellulärer Ebene nachgewiesen werden. So zeigte sich in den transgenen Zellen bereits zu einem frühen Zeitpunkt der Entwicklung eine verstärkte Expression u. a. der frühen kardialen Transkriptionsfaktoren Nkx2.5 und GATA-4, die sich später während der Differenzierung in einer mehrfach erhöhten Ausbeute an Kardiomyozyten und Endothelzellen in der Zellkultur widerspiegelte. Die Funktionalität der amplifizierten Kardiomyozyten bezüglich Kontraktionsfrequenz und Reagibiliät auf vegetative Reize blieb dabei unverändert erhalten. Bei der Analyse der Keimblattentwicklung fiel auf, dass durch Überexpression des mesoderm posterior 1 in den transgenen Zellen die Menge an Gesamtmesoderm unverändert blieb, jedoch innerhalb dieses Keimblattes die Differenzierung deutlich in Richtung kardiovaskulär und zu Lasten der Skelettmuskelentwicklung verschoben war. Im Ektoderm zeigte sich eine verstärkte neurale Entwicklung, induziert durch die vermehrt vorhandenen kardiogenen Zellen. Die Bildung des Endoderms war unbeeinträchtigt. Im Folgenden konnte schließlich in Untersuchungen zur Signaltransduktion der Mechanismus der MesP1-vermittelten kardiovaskulären Induktion aufgeklärt werden, indem der Faktor Dickkopf-1, ein Inhibitor des Wnt-Signalweges, als Zielgen des Transkriptionsfaktors MesP1 identifiziert und in Folgeversuchen mittels Bandshift auch bestätigt werden konnte. Die Blockade des Wnt-Signalweges ist verantwortlich für die Initiierung der kardiovaskulären Differenzierung während der Embryonalentwicklung. MesP1 stellt damit einen besonderen Faktor während der Embryogenese dar und einen wichtigen Startpunkt für die weitere Entzifferung der komplexen Signaltransduktionskaskaden der Herz- und Gefäßentwicklung. Das vollständige Verständnis dieses komplexen Netzwerkes sowie die Übertragung auf das humane ES-Zell-System könnte es einmal ermöglichen, Herzmuskelerkrankungen des Menschen mit embryonalen Stammzellen therapieren zu können.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Das leichte Schädelhirntrauma stellt in der Altersgruppe zwischen dem 15. und dem 25. Lebensjahr mit einer Inzidenz von 600 Personen/100000 Gesamtbevölkerung in Deutschland eine der häufigsten neurologischen Erkrankungen dar. 10-20% der Betroffenen leiden an chronischen posttraumatischen Leistungseinbussen, ohne zerebral einen makroskopisch erkennbaren Schaden aufzuweisen. In dieser Dissertation konnte im experimentellen Tiermodell des leichten Schädelhirntraumas erstmals der Verlust von Basalmembranbestandteilen als ein mikroskopisches Korrelat im Sinne einer deutlichen Störung der für die normale Funktion des Gehirns notwendigen Blut-Hirn-Schranke gezeigt werden. Dieses mikroskopische Korrelat äusserte sich in der Zerstörung der Integrität der Basalmembran und ihrer Verankerung mittels Integrinen in der extrazellulären Matrix. 24 Stunden nach einem milden Flüssigkeits-Perkussions-Trauma zeigte der Kortex der Ratten einen Verlust von 31 ± 6% (p < 0,03) des Basalmembran-bestandteiles Kollagen Typ IV im Western Blot gegenüber der nicht-traumatischen Seite und bestätigte somit den bereits in Vorarbeiten in der Immunhistochemie festgestellten Verlust von 19 ± 4% (p < 0,009) der gefärbten Kollagenfläche, als auch mit 29 ± 6% (p < 0,02) der Reduktion der Gesamtanzahl der durch Kollagen identifizierten Mikrogefäße. Dieser Verlust war nach 12 Stunden Überlebenszeit erst als Trend zu sehen und erst nach 24 Stunden Überlebenszeit signifikant. Der beobachtete Verlust war auf den Kortex der Traumaseite beschränkt, das heißt die Basalganglien blieben unbeschädigt. Verglichen mit ischämischen Veränderungen nach MCAO/R (Verschluss der Arteria cerebri media und Reperfusion) war der Kollagen Typ IV Verlust im milden SHT weniger ausgeprägt, als auch von einem unterschiedlichen Verteilungsmuster, da im MCAO/R der mikrovaskuläre Basalmembranschaden hauptsächlich in den Basalganglien zu finden ist, im experimentellen SHT jedoch in kortikalen Arealen. Auch im Bereich der Verankerung der Basalmembran fand sich ein ausgeprägter Verlust der Zell-Adhäsions-Molekül Untergruppe genannt Integrine. Die untersuchten Integrinuntereinheiten α1, α6 und β1 finden sich entlang des Endothels der kleinen hirnversorgenden Gefäße. Als direkte Folge auf ein moderates Schädelhirntrauma in der Ratte treten hier deutliche Verluste auf. Die mit α1-Integrin Antikörper durchgeführte Immunhistochemie zeigte von allen drei untersuchten Integrinsubgruppen die stärkste Reduktion: Die angefärbte maximale Fläche nahm sowohl in der 12-Stunden-Überlebensgruppe, als auch in der 24-Stunden-Überlebensgruppe signifikant gegenüber der nicht-traumatischen Seite ab. Die 12-Stunden-Gruppe erfuhr eine Reduktion der maximalen α1 Integrinfläche um 8 ± 2% (p < 0,01; Abbildung 30), die 24-Stunden-Gruppe sogar eine Reduktion der maximalen α1-Integrinfläche um 13 ± 2% (p < 0,001). Die ebenfalls untersuchte α1 Integrinintensität nahm in einem vergleichbarem Maß signifikant ab, in der 12-Stunden-Überlebensgruppe um 8 ± 1% (p < 0,01), in der 24-Stunden-Überlebensgruppe um 14 ± 2% (p < 0,01). Etwas weniger stark ausgeprägt und erst nach 24 Stunden Überlebenszeit signifikant, folgten die beiden Integrinuntereinheiten β1 und α6 mit 12 ± 2% (p < 0,005) respektive 8 ± 2% (p < 0,05) Verlust der gefärbten Integrinfläche, sowie 10 ± 3% (p < 0,05) respektive 7 ± 1% (p < 0,005) Verlust der Integrin Färbeintensität. Dieser Effekt konnte nur in kortikalen Arealen des Gehirns entdeckt werden, wie bereits zuvor die Schäden der Basalmembran, und war auch im Zeitverlauf parallel zum Verlust von Kollagen Typ IV. Auch war, verglichen mit ischämischen Veränderungen nach MCAO/R, der Integrinverlust im milden SHT weniger ausgeprägt und von einem unterschiedlichen Verteilungsmuster. Die vorbeobachteten Verluste dieser Integrinuntereinheiten (entsprechend Kollagen Typ IV) werden nach MCAO/R hauptsächlich in den Basalganglien gefunden, im experimentellen SHT jedoch in kortikalen Arealen. Als ursächlich für die beobachteten und deutlichen Schäden der mikrovaskulären Basalmembran des Gehirns auch nach dem milden experimentellen Schädelhirntrauma wäre am ehesten die Aktivierung der Matrix-Metallo-Proteasen als einer der drei Hauptwege der Proteolyse (Plasminogen-Plasmin-System, Matrix-Metallo-Proteasen und Inflammation) zu vermuten. Zudem könnten auch die Basalmembranbestandteile selbst, die als Reaktion auf ein Trauma freigesetzt werden, insbesondere Untereinheiten von Kollagen Typ IV, verborgene Bindungsstellen zur Signalvermittlung präsentieren, welche eine Kaskade von intrazellulären Zerstörungsmechanismen anstossen könnten. Zukünftige Untersuchungen sollten sich daher auf die drei bisher bekannten proteolytischen Hauptwege, sowie die Basalmembranbestandteile selbst und ihre Auswirkungen auf die Regeneration der Mikrogefäße stützen, um ein besseres Verständnis für die in den Verlust von Basalmembran involvierten Prozesse während eines Schädelhirntrauma zu entwickeln. Zukünftige Therapien des leichten bis moderaten experimentellen Schädelhirntraumas sollten daher möglicherweise bereits während der akutmedizinischen Versorgung in Betracht gezogen werden. Man sollte anhand der Ergebnisse dieser Dissertation in Betracht ziehen, dass die hier vorgestellte Studie auch im milden experimentellen Schädelhirntraumamodell bereits zum frühen Zeitpunkt von 24 Stunden Überlebenszeit stabil signifikante Verluste von Basalmembranbestandteilen nachweisen konnte. Therapeutische Strategien sollten sich daher auch nach mildem Schädelhirntrauma auf eine Wiederherstellung der endothelialen Basalmembran konzentrieren, insbesondere um die oben beschriebenen Folgeschäden durch im Blut gelöste Bestandteile der Basalmembran, ihre Interaktion mit Integrinen und den nachfolgenden intrazellulären Signalkaskaden zu unterbinden. Optimalerweise sollten diese Strategien bereits für den akutmedizinischen Zeitpunkt geplant werden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Polytraumatisierte Patienten entwickeln eine systemische Entzündungsreaktion (systemic inflammatory response syndrome, SIRS), die entscheidend den klinischen Verlauf der Patienten determiniert. Zahlreiche Untersuchungen weisen dem Immunsystem dabei eine zentrale steuernde Funktion zu, wobei die initialen Triggermechanismen der traumabedingten Immunantwort bisher unbekannt ist. Obwohl den Monozyten dabei eine führende Rolle zugesprochen wird, sind die hierfür verantwortlichen intrazellulären Steuerungsmechanismen, insbesondere die Signaltransduktion, die Transkription sowie die Modulation der Translation von inflammatorisch wirksamen Proteinen bislang nur ansatzweise aufgeklärt. Ziele der vorliegenden Untersuchungen waren daher: i) zu überprüfen, ob es überhaupt spezifische, Trauma-responsive mRNA Expressionsmuster in Monozyten polytraumatisierter Patienten in der frühen posttraumatischen Phase gibt, ii) in einem zweiten Schritt zu untersuchen, ob es darüber hinaus Genexpressionsprofile gibt, die in Abhängigkeit von klinischen Parametern einer signifikant unterschiedlichen Expression unterliegen iii) und schließlich diese identifizierten Faktoren auf ihre biologisch funktionelle Rolle im Organismus zu untersuchen Mittels Affymetrix Oligonukleotid Microarray (22.000 Probe Sets, 14.500 Gene) wurde eine Genom-weite mRNA Expressionsanalyse in Monozyten polytraumatisierter Patienten in der unmittelbar posttraumatischen Phase (0h-72h) durchgeführt und in einem mehrstufigen biostatistischen Verfahren mit klinischen Einflussfaktoren korreliert. Zur Überprüfung der biologischen Funktion der identifizierter Genexpressionsprofile wurden biologisch-funktionelle Pathway Analysen mittels Ingenuity Pathway Systems durchgeführt. Um das erste Teilziel zu erreichen wurde eine unsupervised-Analyse anhand der ermittelten Microarray Daten durchgeführt. Zentrales Kriterium der unsupervised Analyse ist nun der Variationskoeffizient eines einzelnen Faktors/Gens. Somit lassen sich diejenigen genetischen Expressionsprofile identifizieren, die durch das gemeinsame klinische Ereignis „Trauma“ zu einer gemeinsamen Expressionsänderung angeregt wurden. Dabei fanden sich 318 Probe Sets (280 Gene) signifikant durch das klinische Ereignis „Trauma“ verändert. Somit lässt sich anhand der vorliegenden Studie die Fragestellung i) klar dahingehend beantworten, dass Trauma-sensitive Gene Zeichen der gleichsinnigen Aktivierung bzw. Deaktivierung zeigen können. Um die Teilfragestellung ii) zu beantworten, wurden die Patienten im Anschluss in klinisch relevante Gruppen unterteilt. Führende Zielparameter waren dabei zunächst die Quantifizierung der anatomischen Verletzungsschwere quantifiziert mittels Injury Severity Score (ISS). In den so gruppierten Datensätzen fanden sich interessanterweise 295 Probe Sets (273 Gene), hochsignifikant verschieden exprimiert in Patienten mit einem ISS > 40 im Vergleich zu weniger schwer verletzten Patienten (ISS < 40 Punkte). Eine ähnliche supervised- Analyse wurde anhand des Kriteriums „Massive Substitution von Erythrozytenkonzentraten“ (>10 EKs/24h) berechnet. Dabei fanden sich 224 Probe Sets (205 Gene) differentiell exprimiert. Besonders interessant zeigten sich die Ergebnisse der supervised-Analyse nach Einteilung der Patienten anhand der Ausprägung eines Multiorganversagens. 660 Probe Sets (642 Gene) waren bei Patienten mit Anzeichen eines solchen (MOF Score ≥4 Punkte) hochsignifikant differentiell exprimiert im Vergleich zu Patienten ohne klinische Hinweise auf ein manifestes Multiorganversagen (MOF-Score < 4 Punkte). Schließlich konnten in einer weiteren supervised-Analyse 763 Probe Sets (696 Gene) identifiziert werden, deren Expression je nach dem, ob der Patient das Trauma überlebt hatte, oder im späteren posttraumatischen Verlauf verstorben war, erneut ein hochdifferentiell unterschiedliches Expressionsprofil aufweisen. Somit lässt sich Fragestellung ii) dahingehen beantworten, dass es tatsächlich spezifische Genxpressionsmuster gibt, die durch verschiedene klinische Situationen, wie z.B. die Verletzungsschwere, Massentransfusionen, die Entwicklung eines Multiorganversagens oder das endgültige klinische Outcome induziert werden können. Zur Beantwortung der Fragestellung iii) wurden Pathway Analysen durchgeführt. Dieses Instrumentarium fasst den derzeitigen Stand der wissenschaftlichen Erkenntnisse in einer groß-dimensionierten Software zusammen und zeigt die biologisch-funktionellen Beziehungen der einzelnen Faktoren auf. Dabei fanden sich für die klinische Entität der Verletzungsschwere vor allem Gene, die bei der oxydativen Phosphorylierung von Proteinen eine Rolle spielen, als differentiell exprimiert. Patienten, die einer massiven Bluttransfusion zugeführt werden mussten, zeigen eine signifikant andere Regulation des Ubiquitin-C Pathways als Patienten mit geringerem Transfusionsbedarf. Bei polytraumatisierten Patienten, die im Beobachtungszeitraum Anzeichen eines Multiorganversagens entwickelten, zeigte die Pathway Analyse Software eine unterschiedliche Regulation des Ephrin Rezeptor Pathways. Betrachtet man schließlich das Datenset der Outcome-klassifizierenden Gene, so fällt auf, dass Patienten mit positivem klinischen Outcome eine hochsignifikant andere Expression der PPAR-Signalkaskade aufweisen im Vergleich zu Patienten, die im späteren posttraumatischen Verlauf verstorben waren. Somit lässt sich Fragestellung iii) dahingehend beantworten, dass in der Tat einzelnen, biologisch relevanten, funktionellen Gruppen spezifische, klinische Ereignisse zugeordnet werden können. Die vorliegende Arbeit zeigt somit erstmals, dass es Trauma-responsive, hochspezifische mRNA Expressionsmuster und Signalkaskaden in Monozyten polytraumatisierter Patienten in der unmittelbaren posttraumatischen Phase gibt, die nicht nur mit dem Ausmaß des Traumas, sondern auch mit dem klinischen Verlauf des Patienten hochsignifikant korrelierbar sind.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Fri, 21 Dec 2007 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/7960/ https://edoc.ub.uni-muenchen.de/7960/1/Hennecke_Katharina.pdf Hennecke, Katharina ddc:500, ddc:540, Fakultät für Chemie und Pharmazie
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Ziel der vorliegenden Arbeit war es zu untersuchen, auf welche Art und Weise das endogene Cannabinoidsystem die Extinktion konditionierter Furcht vermittelt. Dabei gliedert sich diese Arbeit in vier Teile. Der erste Teil beschäftigt sich mit der Modulation intrazellulärer Signalkaskaden durch den CB1 Cannabinoidrezeptor während der Extinktion konditionierter Furcht. Dafür wurden CB1 Cannabinoidrezeptor-knockout Mäuse einer Furchtkonditionierung und deren Extinktion unterzogen und danach der Phosphorylierungsstatus der Kinasen p42, p44 sowie der Proteinkinase B und das Expressionslevel der Phosphatase Calcineurin im basolateralen und zentralen Nucleus der Amygdala, im ventromedialen präfrontalen Cortex sowie im dorsalen und ventralen Hippocampus dieser Tiere gemessen. Die untersuchten Enzyme zeigten sich in diesen Hirnregionen, die in die Extinktion konditionierter Furcht involviert sind, im Vergleich zu Wildtyp-Mäusen unterschiedlich reguliert. Diese Studie legt den Schluss nahe, dass Endocannabinoide die Extinktion konditionierter Furcht über die Modulation intrazellulärer Signalkaskaden vermitteln, die in Abhängigkeit von der jeweiligen Hirnstruktur unterschiedlich einbezogen sind. Da bisherige Arbeiten zur allgemeinen Rolle von CB1 in verschiedenen Lernaufgaben kontroverse Ergebnisse lieferten und allein die Einbeziehung des Endocannabinoidsystems in die Extinktion konditionierter Furcht übereinstimmend gezeigt wurde, wird im zweiten Teil dieser Arbeit untersucht, inwieweit sich die Furchtkonditionierung von anderen Lernparadigmen unterscheidet. In diesem Zusammenhang wurde in der vorliegenden Arbeit erstmalig nachgewiesen, dass die bei der Furchtkonditionierung auftretende unabdingbare, stark aversive Situation neben der klassischen Konditionierung auch eine Stress-Sensitivierung hervorrufen kann. Hierfür wurde gezeigt, dass bereits die Applikation eines milden elektrischen Fußschocks per se ausreicht, um eine unspezifische Erhöhung der Reaktivität des Tieres zu erzielen. Auf der Verhaltensebene zeigten schocksensitivierte Tiere beispielsweise eine Furchtreaktion auf Töne, wie sie ebenfalls für die Furchtkonditionierung verwendet wurden, aber auch ein verstärktes angstähnliches Verhalten im Hell-Dunkel-Meidetest. In einer Reihe von Experimenten wurde demonstriert, dass sich diese Erhöhung der Furchtantworten nach Applikation eines Fußschocks nicht auf eine Kontextgeneralisierung, d.h. auf kontextuelles assoziatives Lernen, zurückführen lässt. So zeigten auch Mäuse, die eine Furchtkonditionierung erfahren hatten, neben der Furchtreaktion auf den konditionierten Tonreiz ein verstärktes angstähnliches Verhalten im Hell-Dunkel-Meidetest, was unterstreicht, dass während einer Furchtkonditionierung nicht nur assoziative, sondern auch nicht-assoziative Lernvorgänge, wie die Sensitivierung, induziert werden. Ähnliches gilt für die Extinktion der Furchtkonditionierung, die in derzeitigen Modellen als neue inhibitorische Assoziation zwischen konditioniertem Stimulus und dem Ausbleiben des vorhergesagten ‚Bestrafungsreizes’ beschrieben wird. In der vorliegenden Arbeit wurde dargelegt, dass nicht-assoziative Habituationsprozesse, die bei wiederholter Präsentation des konditionierten Stimulus auftreten, ebenfalls zur Extinktion konditionierter Furcht beitragen. Dieses erstmalig gezeigte Zusammenspiel assoziativer und nicht-assoziativer Prozesse bei der Akquisition und Extinktion konditionierter Furcht wurde in der ‚Zwei-Komponenten-Theorie’ zum Gedächtnis konditionierter Furcht zusammengefasst. Da vorhergehende Studien die Involvierung des Endocannabinoidsystems in die Extinktion konditionierter Furcht belegten, wurde im dritten Teil der vorliegenden Arbeit untersucht, ob Endocannabinoide assoziatives Extinktionslernen oder Habituationsprozesse modulieren. In einer Reihe von Experimenten wurde gezeigt, dass der CB1 Cannabinoidrezeptor assoziatives Sicherheitslernen nicht beeinflusst – für Habituationsprozesse jedoch erforderlich ist. In einigen Experimenten konnte kein Einfluss des CB1 Cannabinoidrezeptors auf die Kurzzeitanpassung festgestellt werden, dennoch vermittelte der CB1 Cannabinoidrezeptor generell, d.h. auch in diesen Fällen, Langzeithabituation an aversive Situationen. Dies deutete darauf hin, dass das Endocannabinoidsystem Kurzzeitanpassung und Langzeithabituation über verschiedene Mechanismen vermittelt. Zusammenfassend wurde im Rahmen der vorliegenden Arbeit das endogene Cannabinoidsystem als erstes molekulares Korrelat der Habituationskomponente der Furchtextinktion identifiziert. Um die unterschiedliche Einbeziehung des Endocannabinoidsystems in die Kurzzeitanpassung an aversive Situationen besser zu verstehen, wurde im letzten Teil der Arbeit die Aversivität der Testsituation, d.h. die Intensität der Fußschocks während der Sensitivierung, systematisch verändert und danach die akute Furchtreaktion auf einen Ton gemessen. Nach geringen und starken Fußschocks waren Endocannabinoide nicht an der Kurzzeitanpassung beteiligt, lediglich die Applikation eines Fußschocks mittlerer Intensität führte dazu, dass Endocannabinoide ihre Furcht reduzierende Wirkung während der darauf folgenden Tonpräsentation entfalten konnten. Um zu erforschen, ob in stark aversiven Situationen der CB1 Cannabinoidrezeptor durch effiziente Endocannabinoid-Wiederaufnahme- und Abbauprozesse nicht genügend stimuliert wird, um Furchtreaktionen zu reduzieren, wurden Endocannabinoid-Wiederaufnahme- und Abbauhemmer appliziert. Dies führte zu einer verbesserten Anpassung an stark aversive Situationen, die sich in einer verringerten Furchtreaktion zeigte und somit eine therapeutische Ansatzmöglichkeit für Angsterkrankungen bilden könnte. Die hier neu gewonnen Erkenntnisse, namentlich dass eine bestimmte Aversivität erreicht werden muss, um das Endocannabinoidsystem zu aktivieren und dass bei sehr starker Aversivität die Furcht reduzierende Wirkung der Endocannabinoide durch effiziente Wiederaufnahme- und Abbauprozesse limitiert wird, wurde in der ‚Hypothese vom kritischen Bereich der Endocannabinoidwirkung’ zusammengefasst. Auf diese Weise gewährleistet das Endocannabinoidsystem eine adäquate Anpassung an aversive Situationen, indem Furchtreaktionen in Situationen mittlerer Aversivität gedämpft werden, starke Aversivität jedoch eine starke Reaktion auslöst, um bei relevanten Stimuli und Ereignissen die Bildung eines Furchtgedächtnisses zu ermöglichen. Zusammenfassend wurde in der vorliegenden Arbeit erstmalig nachgewiesen, dass sowohl bei der Akquisition als auch bei der Extinktion konditionierter Furcht Sensitivierung bzw. Habituation als nicht-assoziative Prozesse mitwirken. Dabei zeigte sich, dass das Endocannabinoidsystem die Extinktion konditionierter Furcht vermittelt, indem es Langzeithabituation ermöglicht und in einigen Fällen auch in die Kurzzeitanpassung involviert ist. Eine solche Einbeziehung des Endocannabinoidsystems in die akute Anpassung an aversive Situationen erwies sich als von der Aversivität der Situation abhängiger Prozess. Der CB1 Cannabinoidrezeptor wurde somit als erstes molekulares Korrelat der Habituationskomponente der Extinktion konditionierter Furcht identifiziert.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Die Exposition von Makrophagen gegenüber Bakterien oder LPS führt über die Aktivierung zellulärer Signalkaskaden zu einer vermehrten Expression von Genen, deren Proteinprodukte zelluläres Überleben unter Infektionsbedingungen ermöglichen. Die Aktivierung des Transkriptionsfaktors NF - kB spielt dabei eine wichtige Rolle. Pathogene Yersinia enterocolitica - Stämme hemmen die Aktivierung von NF - kB und induzieren Apoptose bei Makrophagen. In dieser Arbeit konnte gezeigt werden, dass das Yersinia - Effektorprotein YopP maßgeblich an der Apoptoseinduktion beteiligt ist. Bei Infektionsversuchen konnten lediglich die Yersinienstämme bei Makrophagen Apoptose induzieren, die über einen funktionstüchtigen Typ III - Sekretionsapparat und ein dadurch transloziertes YopP verfügen. Eine transiente Überexpression der transkriptionell aktiven NF - kB - Untereinheit p65 schützt Makrophagen spezifisch vor durch Yersinien, nicht jedoch vor durch Salmonellen induzierter Apoptose. Das weist darauf hin, dass YopP durch die Blockierung des NF - kB aktivierenden Signalwegs Apoptose bei Makrophagen vermittelt. Die Transfektion von J774A.1 Makrophagen mit YopP induzierte bei 40 - 50% der transfizierten Zellen Apoptose. Durch die zusätzliche Stimulation mit LPS konnte die Apoptoserate auf 80 - 90% gesteigert werde. Dieser synergistische, proapoptotische Effekt ist direkt auf durch LPS induzierte Signaltransduktions -prozesse zurückzuführen. Aus Transfektionsversuchen mit dominant - negativen Signalmolekülen der TLR - Signalkaskade ergaben sich Hinweise auf eine Beteiligung der Transmitter MyD88 und IRAK2 an der Apoptoseeinleitung. IRAK1 und TRAF6 scheinen dagegen eher ein antagonistisches, NF - kB aktivierendes LPS - Signal zu bedienen, welches unter dem Einfluss von YopP unterdrückt wird. Dadurch überwiegt das durch LPS induzierte, proapoptotische Signal, welches den apoptotischen Zelltod einleitet. Die Aktivierung des Apoptoseprogramms selbst erfolgt über FADD und Caspase - 8.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Adhäsionsvorgänge von Leukozyten spielen eine wichtige Rolle bei den verschiedensten biologischen Prozessen. Die Adhäsionsinteraktionen können Signalkaskaden aktivieren, die Funktionen wie die Zellmigration, Proliferation und Reifung von T-Lymphozyten steuern. Die Zellen des Immunsystems müssen schnell auf körperfremde Eindringlinge reagieren können und Adhäsionsvorgänge zwischen Zellen bzw. zwischen Zellen und der extrazellulären Matrix effektiv regulieren. Um jeden Infektionsherd im Körper zu erreichen, benutzen die Immunzellen die Lymph- und Blutbahnen, können diese Systeme aber verlassen (Diapedese) und durch Gewebe migrieren. Am Infektionsort interagieren die Immunzellen mit infizierten Zellen und starten Vernichtungsprogramme. Weiterhin präsentieren antigenpräsentierende Zellen im Lymphknoten ihre Antigene vorbeiziehenden T-Zellen, die bei korrekter Antigenerkennung zu T-Effektorzellen proliferieren. Bei all diesen regulierten Adhäsionsreaktionen spielen besonders die Integrine eine große Rolle. Von besonderem Interesse ist hierbei das Heterodimer LFA-1 (CD11a/CD18). LFA-1 wird nur auf Leukozyten exprimiert und bindet an die Liganden ICAM-1,-2,-3 der Immunglobulinsuperfamilie. Die kontrollierte Adhäsion bzw. Deadhäsion von Leukozyten bedarf einer spezifischen Regulation des LFA-1-Integrins und die Aufklärung der molekularen Grundlagen dieser Vorgänge ist von großem Interesse. Die LFA-1-vermittelte Zelladhäsion kann über den intrazellulären Guanin-Nukleotid-Austauschfaktor Cytohesin-1 aktiviert werden. Die Aktivierung wird dabei u.a. über Inositid-abhängige Membranrekrutierung von Cytohesin-1 kontrolliert. In dieser Arbeit wurde ein mit Cytohesin-1 interagierendes Protein, CYTIP, identifiziert, welches durch Cytokine in hämatopoetischen Zellen vermehrt exprimiert wird. CYTIP interagiert über seine „coiled-coil“-Proteininteraktionsdomäne direkt mit der N-terminalen „coiled-coil“-Domäne von Cytohesin-1 und inhibiert vollständig die Zelladhäsion auf Integrinliganden. Aufgrund der zwei Proteininteraktionselemente („coiled-coil“-Domäne, PDZ-Domäne) stellt CYTIP ein Adaptermolekül dar, um verschiedene Signalkomponenten in einem Multiproteinkomplex zu koppeln. CYTIP (Cytohesin-1 interacting protein) stellt eine neue Molekülklasse dar, die durch direkte Interaktion mit Cytohesin-1 die LFA-1 vermittelte Zelladhäsion negativ regulieren kann.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Prion-Protein ist in seiner infektiösen Form für das Auftreten und die Übertragung von transmissiblen spongiformen Enzephalopathien verantwortlich. Diese Erkrankungen können bei Mensch und Tier auftreten, wobei die bekannteste tierische Form der „Rinderwahn“ bzw. BSE ist. Die häufigste Prion-Krankheit beim Menschen ist die Creutzfeldt-Jacob-Krankheit, deren neue Variante im Zusammenhang mit dem Auftreten von BSE steht. Die pathologische Form des Prion-Proteins (PrPSc) wird durch posttranslationale Umwandlung aus der apathogenen physiologischen Isoform PrPC gebildet. Dieses Protein wird vor allem in neuronalem Gewebe exprimiert und ist in allen Säugetieren hoch konserviert. Die Funktion des zellulären, apathogenen Prion-Proteins ist noch immer nicht geklärt, da Mäuse ohne dieses Protein gesund sind und keinen pathologischen Phänotyp haben. Daher müssen alternative experimentelle Ansätze unternommen werden, um zur Klärung der physiologischen Funktion beizutragen. In der vorliegenden Arbeit wurde deshalb mittels eines „Yeast-Two-Hybrid“-Screens nach Interaktoren des zellulären Prion-Proteins der Maus gesucht, welche in murinem Gehirn exprimiert werden. Es konnten in Hefe erfolgreich mehrere Proteine identifiziert werden, die bislang noch nicht als mögliche Interaktoren des zellulären Prion-Proteins beschrieben worden waren. Drei dieser Isolate wurden ausgesucht, um deren physiologische Interaktion mit PrP näher zu charakterisieren: Pint1, Synapsin Ib und Grb2. Mittels Copräzipitation konnte bestätigt werden, dass auch in Säugetierzellen eine physiologische Wechselwirkung zwischen den identifizierten Interaktoren und PrP auftritt. Das Protein Pint1 wurde bislang noch nicht beschrieben und besitzt eine hoch konservierte Aminosäureregion, die in Proteinfragmenten vom Menschen bis zum Wurm C. elegans zu finden ist. Die beiden anderen untersuchten Proteine sind beide an verschiedenen Wegen der zellulären Signaltransduktion beteiligt. Synapsin Ib ist mit synaptischen Vesikeln assoziiert, womit eine mögliche Verbindung zwischen der zellulären Funktion von PrPC und extrazellulären bzw. endokrinen Signalwegen besteht. Grb2 ist ein Adaptorprotein mit vielfältigen Aufgaben, vor allem der Kopplung von Membranrezeptoren mit intrazellulären Signalkaskaden. Durch den Nachweis einer Interaktion dieser beiden Proteine mit dem zellulären Prion-Protein konnte in der vorliegenden Arbeit erstmals ein physiologischer Zusammenhang zwischen PrPC und intrazellulären Signaltransduktionswegen gezeigt werden.