POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Der TNF-verwandte Apoptose induzierende Ligand TRAIL ist in der Lage, spezifisch Apoptose in Tumorzellen zu induzieren ohne normales Gewebe zu schädigen und gilt deswegen als vielversprechender Kandidat für den Einsatz in der Tumortherapie. Neben der Induktion von Apoptose ist TRAIL allerdings auch in der Lage den Transkriptionsfaktor NF-κB („nuclear factor 'kappa-light-chain-enhancer' of activated B-cells") zu aktivieren, was wiederum die Induktion von Zelltod durch TRAIL vermindert. Für die Tumortherapie wäre es daher wünschenswert, durch TRAIL selektiv den Apoptosesignalweg und nicht NF-κB zu aktivieren. Dazu ist ein Verständnis beider Signalwege unerlässlich. Im Gegensatz zum Signalweg der TRAIL-induzierten Apoptose ist der Signalweg der TRAIL-induzierten Aktivierung von NF-κB aber bisher wenig erforscht. Das Ziel der vorliegenden Arbeit war es daher, das rezeptornahe Adaptorprotein und die ersten, rezeptornahen Signalschritte der NF-κB Aktivierung durch TRAIL zu identifizieren. Die Überexpression konstitutiv aktiver Fusionsproteine der beiden TRAIL-Rezeptoren 1 und 2 war in der Lage, NF-κB zu aktivieren. Fusionsproteine mit verkürztem C-Terminus, der die Apoptose-vermittelnde Todesdomäne enthält, waren dabei nicht im Stande den Signalweg zu aktivieren. Dadurch konnte die entscheidende Funktion der Todesdomäne für TR1 und TR2 bei der Induktion von NF-κB gezeigt werden. Um Untersuchungen des TRAIL-Signalweges mit dem Liganden durchführen zu können, wurde die bakterielle Produktion und Aufreinigung von rekombinantem humanem TRAIL, sowie einem hochaktiven ILZ (Isoleucin Zipper)-TRAIL und einer inaktiven Kontrollvariante etabliert. Die Untersuchung von FADD („fas associated death domain“)-defizienten JURKAT-Zellen, zeigte, dass diese nicht in der Lage waren, NF-κB auf TRAIL zu aktivieren. Die transiente und auch stabile Reexpression von FADD stellte dabei die Aktivierbarkeit von NF-κB durch TRAIL wieder her. Somit konnte FADD als Adaptorprotein für die TRAIL-induzierte Aktivierung von NF-κB identifiziert werden. Die Expression von FADD-Varianten mit je zwei Punktmutationen in der Todeseffektordomäne war hingegen nicht in der Lage, TRAIL-induzierte Aktivierung von NF-κB wiederherzustellen, was auf die Notwendigkeit der Multimerisierung von FADD hinweist. Des Weiteren aktivierten auch JURKAT-Zellen, die defizient für Caspase 8 („cysteinyl-aspartate specific protease 8“) waren, den TRAIL-induzierten NF-κB-Signalweg nicht. Auch die Verminderung der Expression von Caspase 8 in HEK 293T führte zu einer verminderten NF-κB Aktivierung durch die Überexpression des konstitutiv aktiven Fusionsproteins des TRAIL-Rezeptors 2. Im Rahmen dieser Arbeit war es somit gelungen, die Todesdomäne der TRAIL-Rezeptoren 1 und 2, das Adaptorprotein FADD mit seiner Todeseffektordomäne und wahrscheinlich Caspase 8 als rezeptornahe Signalschritte der TRAIL-induzierten Aktivierung von NF-κB zu identifizieren. Folglich sind die Signalwege von Apoptose und Aktivierung von NF-κB durch TRAIL im rezeptornahen Signalweg identisch. Damit ist es nicht möglich, an Hand der gezielten Aktivierung der rezeptornahen Signalschritte TRAIL-induzierte Apoptose selektiv zu aktivieren. Hierzu muss eine Untersuchung weiterer distaler Signalschritte erfolgen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Das Tollwutvirus (Rabies Virus (RV)) ist ein neurotropes Virus aus der Familie der Rhabdoviridae innerhalb der Ordnung Mononegavirales. RV Partikel werden an der Zelloberfläche durch Membran-Budding gebildet. Dabei wird der virale Ribonukleoproteinkomplex (RNP) durch das Matrixprotein (M) in eine Membranhülle verpackt in der Trimere des Transmembran-Glykoproteins (G) selektiv inkorporiert werden. Die G Spikes vermitteln die Bindung der Virionen an zelluläre Rezeptoren und die Fusion der viralen und zellulären Membran. Auch in Abwesenheit des G werden Viren freigesetzt, da der Budding-Prozess hauptsächlich durch das M Protein vermittelt wird. Das G-unabhängige Budding der Rhabdoviren erlaubt den Austausch der Oberflächenproteine (Envelope-Switching), wodurch es zu einem veränderten Tropismus (Re-targeting) der RV kommt. In dieser Arbeit konnte gezeigt werden, dass die G Proteine der Lyssaviren Mokola, Bat Hamburg und Lagos Bat, aber auch des RV-Stammes Challenge Virus Strain (CVS) für den spezifischen Neurotropismus dieser Viren verantwortlich sind. Der für die Inkorporation von Fremdproteinen in die Virushülle essentielle Bereich des RV G (tm) wurde verwendet, um chimäre Typ I Transmembranproteine aus dem rot-fluoreszierenden Protein (RFP) und RV G (tm-RFP) zu konstruieren und in die Virushülle G-defizienter und Wildtyp Tollwutviren zu inkorporieren. Fusionsproteine aus tm und zellulärem Prionprotein (tm-PrPC) wurden nicht an die Bereiche der Zellmembran transportiert, an denen Tollwutvirus-Budding stattfindet. Diese Konstrukte könnten daher verwendet werden, um den Ort des RV-Budding näher zu bestimmen, während die Inkorporation fluoreszierender Proteine in die Virushülle die direkte Visualisierung von einzelnen Stadien des Tollwutvirus-Lebenszyklus wie z.B. Virustransport oder Entry in lebenden Zellen ermöglicht. Aufgrund der G-vermittelten transsynaptischen Ausbreitung der Rhabdoviren in neuronalen Netzwerken, wurden die Fluoreszenz-markierten RV Partikel auch als neuronale Marker zur Untersuchung der Physiologie und Morphologie neuronaler Netzwerke verwendet. Der retrograde, axonale Transport der RV zum Zentralen Nervensystem ist eine essentielle Voraussetzung für die letale RV-Erkrankung. Durch die Verwendung von RV Partikeln mit tm-RFP-markierter Virushülle und eGFP-markiertem RNP konnte gezeigt werden, dass zweifarbige, also umhüllte Virionen entlang der neuronalen Ausläufer von in vitro differenzierten und primären Neuronen transportiert wurden, wobei der retrograde Transport in den in vitro differenzierten Neuronen mit einer konstanten Durchschnittsgeschwindigkeit von 0,1 µm/sek und einer durchschnittlichen Transportlänge von 25 µm erfolgte.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Der isolierte 3-Methylcrotonyl-CoA-Carboxylase (MCC)-Mangel ist eine angeborene Störung im Abbau der Aminosäure Leucin. Die Erweiterung des Neugeborenen-Screenings (NGS) führte zu der Erkenntnis, dass der MCC-Mangel eine der häufigsten organischen Azidämien darstellt. Das klinische Bild ist sehr heterogen und eine Genotyp-Phänotyp Korrelation ist nicht möglich. Über die Prognose der im NGS identifizierten und bisher asymptomatischen Mutationsträger kann bisher keine Aussage gemacht werden. Das mitochondriale Enzym besteht aus einer α- und einer β-Untereinheit. In dieser Arbeit wurden die mitochondrialen Signalpeptide beider Untereinheiten identifiziert. Hierzu wurden Fusionsproteine aus Fragmenten der Untereinheiten mit dem fluoreszierenden Protein YFP generiert. Nach Expression in humanen Hautfibroblasten wurden Kolokalisationsstudien durchgeführt. Zunächst wurde experimentell bestätigt, dass jede Untereinheit ein mitochondriales aminoterminal lokalisiertes Signalpeptid besitzt. Für MCCα befindet sich dieses in den Aminosäuren 1-39, für MCCβ in den Aminosäuren 1-20. Beide Untereinheiten haben keine weiteren Importsignale. Somit sind die aminoterminalen Targetingsequenzen ausreichend und gleichzeitig notwendig, um einen mitochondrialen Import zu ermöglichen. In einer Western Blot Analyse konnte die Abspaltung der Signalpeptide beider Untereinheiten gezeigt werden. Durch Veränderung der positiv geladenen Aminosäuren wurden die strukturellen Erfordernisse der identifizierten Signalpeptide näher charakterisiert. Es wurden Argininreste gegen Glutamin in verschiedenen Kombinationen ausgetauscht. Eine Mutation der aminoterminalen vier Argininreste im Signalpeptid von MCCα führte zum Importverlust. Bei einer Mutation der in der Targetingsequenz vom Aminoterminus weiter entfernt liegenden zwei Argininreste fand ein Import statt. Bei Mutationen der Argininreste im Signalpeptid von MCCβ kam es regelhaft zu einem Importverlust. Damit wurde die Relevanz der positiv geladenen Aminosäuren für den Import der MCC-Untereinheiten belegt. Die Identifizierung der Signalpeptide stellt die Grundlage weiterer Funktionsuntersuchungen dar, da nur reife Proteine ohne Signalsequenz für prokaryontische Expressionsstudien verwendet werden können. Durch solche Untersuchungen könnten die Auswirkungen von Mutationen auf die Enzymfunktion besser verstanden werden. In diesem Zusammenhang können möglicherweise diejenigen Veränderungen in der Funktionsweise des Enzyms aufgeklärt werden, die eine klinische Symptomatik nach sich ziehen. Hierdurch könnte die bisher schwierige Beratungssituation betroffener Familien hinsichtlich Prognose und Therapie erheblich verbessert werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
In der vorliegenden Dissertation wurde die Stabilitätsproblematik therapeutischer Proteine am Beispiel zweier Entwicklungssubstanzen, der Immunzytokine huKS-IL 2 und hu14.18-IL 2, erörtert. Bei beiden Molekülen handelt es sich um neuartige Fusionsproteine, in denen eine variable Antikörper-Komponente mit jeweils zwei Interleukin-2 Resten verknüpft ist. Ziel der Untersuchungen war es, das Abbauverhalten der Substanzen näher zu charakterisieren und destabilisierende Einflussfaktoren zu identifizieren. Im Fokus der Arbeit stand die Frage, inwiefern sich das Stabilitätsverhalten der Fusionsproteine gegenüber den einzelnen Proteinkomponenten verändert und welche Auswirkungen eine Variation der Molekülbestandteile auf die Stabilität der Konstrukte hat. Hierzu wurden den Stabilitätsstudien von huKS-IL 2 und hu14.18-IL 2 Untersuchungen mit den monoklonalen Antikörpern huKS und hu14.18 bzw. mit Interleukin-2 gegenübergestellt. Ein weiteres Ziel dieser Arbeit war es, eine lagerstabile flüssige oder gefriergetrocknete Formulierung für huKS-IL 2 und hu14.18-IL 2 zu entwickeln, wobei im Rahmen der Rezepturfindung neben etablierten Excipienten auch einige neuartige Hilfsstoffe erprobt wurden. Der letzte Teil dieser Dissertation befasste sich schließlich mit der Frage, inwiefern für huKS-IL 2 und hu14.18-IL 2 Stabilitätsvorhersagen aufgrund beschleunigter Haltbarkeitsstudien getroffen werden können. Hierbei wurde die Anwendbarkeit der klassischen isothermen Methode sowie einer nonisothermen Methode getestet.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
In dieser Arbeit wurde Quorum Sensing (QS) in dem mauspathogenen Bakterium Yersinia enterocolitica WA-P Serogruppe 08 in vitro und im Mausinfektionsmodell untersucht. QS beschreibt das Phänomen, welches Einzelbakterien erlaubt, die Anzahl der Bakterien innerhalb einer Population über die Konzentration von Signalmolekülen zu messen. Der untersuchte Stamm synthetisiert lediglich das N-(3-Oxohexanoyl)-Homoserinlakton (OHHL) als Signalmolekül, während Yersinien anderer Serogruppen über ein weiteres Homoserinlakton (HHL) verfügen. Es wurde gezeigt, dass die OHHL-Produktion von den Wachstumsbedingungen abhängt aber auch stammspezifisch sein kann. So synthetisierte der Stamm 8081 der gleichen Serogruppe 08 unter vergleichbaren Wachstumsbedingungen nur 1/10 der Menge an OHHL wie der Stamm WA-P. Der Überstand von mindestens 107 Yersinien musste extrahiert werden, um OHHL detektieren zu können. Erstmalig wurde aus Yersinia-infiziertem Mausgewebe (Leber, Milz und Peyer Plaques) und aus dem Darm und Peritoneum HSL isoliert. Für die Detektion im Mausgewebe mussten aus dem jeweiligen Organhomogenat mindestens 108 Yersinien isoliert werden. Auf welchem Wege (oral, i.v. oder i.p.) die Mäuse mit den Yersinien infiziert wurden, hatte keinen Einfluss auf die OHHL-Menge im Gewebe. Es gelang mit einer neuartigen Rekombinationsmethode, dem „Red-vermittelten Genaustausch“, eine yenR-Mutante wie auch eine yenR/yenI-Doppelmutante herzustellen. Virulenztests mit den Mutanten zeigten eine Attenuierung der yenR-Mutante, während die yenR/yenI-Doppelmutante ähnlich virulent war wie der Wildtyp. Die Proteome der Yen-Mutanten wurden mittels 2D-SDS-PAGE mit denen des Mutterstammes verglichen. Dabei wurden vier differentiell produzierte YenR/YenI-abhängige Proteine identifiziert, die am Energiestoffwechsel beteiligt sind und in der Doppelmutante vermehrt synthetisiert wurden. Da QS in der Doppelmutante nicht stattfinden kann, könnte der Weg zum Übergang in die stationäre Phase versperrt sein. In der Folge werden weiterhin Stoffwechselgene exprimiert. Diese Ergebnisse müssen allerdings noch durch Komplementierungsexperimente überprüft werden. Es wurde ebenso die Degradation von OHHL durch die Laktonase AiiA in Yersinien untersucht. Es wurde AiiA sowohl rekombinant hergestellt, wie auch Fusionsproteine konstruiert. Behandlung der Überstände von Yersinien mit AiiA führte erwartungsgemäß zu einer Degradation von OHHL. Einen ähnlichen Effekt konnte auch bei Yersinien beobachtet werden, die ein YopE-AiiA Fusionsprotein produzierten. AiiA ist ein Beispiel für ein neuartiges Antiinfektivum.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Thu, 7 Oct 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/2709/ https://edoc.ub.uni-muenchen.de/2709/1/Pau_Michael.pdf P
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Epstein-Barr Virus (EBV) infiziert primäre humane B-Zellen und kann deren unbegrenzte Proliferation induzieren. Dieser Prozess der Wachstumstransformation von B–Zellen ist ein Modellsystem, das die pathogenen Mechanismen bei der Tumorentstehung widerspiegelt. Das Epstein-Barr Virus nukleäre Antigen 1 (EBNA1) wurde als essentiell für den Prozess der Wachstumstransformation primärer humaner B-Lymphozyten beschrieben, weil es an der latenten Replikation über den viralen Replikations-Ursprung oriP, der extrachromosomalen Erhaltung des Virus-Episoms und der transkriptionellen Trans-aktivierung der latenten Gene beteiligt ist (Rickinson und Kieff, 2001). Dieses Postulat wurde nie experimentell untersucht, da die genetische Analyse mit den bisherigen Methoden nicht möglich war. Das Maxi-EBV-System macht das Genom von EBV einer genetischen Manipulation zugänglich und erlaubt auch die Herstellung von Viren, denen essentielle Gene fehlen (Delecluse et al., 1998). Ein Ziel meiner Doktorarbeit war die Herstellung und Analyse eines EBNA1-negativen Virus. Entgegen der Lehrmeinung war es mit EBNA1-negativem Maxi-EBV möglich, wachstums-transformierte Zellklone nach Infektion von primären humanen B-Lymphozyten zu etablieren. Das virale Genom war in sämtlichen erhaltenen lymphoblastoiden Zelllinien so integriert, dass alle untersuchten latenten EBV-Proteine exprimiert wurden. Meine Ergebnisse zeigen eindeutig, dass EBNA1 prinzipiell für die Wachstumstransformation entbehrlich ist. Mit EBNA1-positiven Viren werden die primären B-Zellen jedoch mindestens um den Faktor 10.000 besser wachstumstransformiert. Da EBNA1 den episomalen Status des Virusgenoms vermittelt, scheint die Etablierung des EBV-Genoms in infizierten Zellen der limitierende Schritt zu sein. Auch in vivo im SCID-Maus-Modell erwies sich EBNA1 als entbehrlich für die Tumorbildung, womit es nicht als essentielles Onkogen von EBV betrachtet werden kann. Ein weiterer im Rahmen dieser Doktorarbeit untersuchter Aspekt war die Frage, ob EBNA1 für die extrachromosomale Erhaltung und Replikation des EBV-Episoms durch heterologe Genprodukte ersetzt werden kann. Zu diesem Zweck wurden Fusionsproteine aus der DNA-Bindedomäne von EBNA1 mit den zellulären Proteinen Histon H1 bzw. HMG-I (Mitglied der hoch mobilen Protein-Gruppe) hergestellt. Ich konnte zeigen, dass HMG-I:EBNA1- und H1:EBNA1-Fusionsproteine in der Lage sind, kleine oriP-enthaltende Plasmide und Maxi-EBVs episomal zu erhalten und die zelluläre Replikations-Maschinerie zu rekrutieren. Zusätzlich dazu unterstützen die Fusionsproteine im EBNA1-negativen Maxi-EBV die Produktion infektiöser Viren. Für ein konditional regulierbares Vektorsystem wurden Fusionsproteine aus der EBNA1-Transaktivierungsdomäne und der DNA-Bindedomäne des Tet-Repressors (TetR) hergestellt. Diese Proteine sollten mit Tet-Operator-Sequenzen (TetO, TetR-Bindemotiv) interagieren, die multimerisiert auf oriP-basierte Vektoren kloniert wurden. Dadurch sollte die Erhaltung der oriP-basierten Vektoren in der Zelle konditional regulierbar gestaltet werden. Es gelang in dieser Doktorarbeit zum ersten Mal ein System zu etablieren, mit dem Plasmide episomal erhalten werden und bei Zugabe von Doxyzyklin konditional regulierbar verloren gehen. Dieses erstmals realisierte konditional regulierbare Vektorsystem schafft neue Wege, die virale und zelluläre Replikation genauer zu untersuchen. Außerdem öffnen sich Möglichkeiten für eine sicherere Gentherapie, da die viralen Anteile auf ein Minimum reduziert werden können. Mit einem solchen System könnten EBV-Genvektoren in B-Zellen eingeführt werden und nach Expression des auf dem Vektor kodierten, therapeutischen Gens könnte die Genfähre durch Tetrazyklin-Applikation wieder aus dem Patienten entfernt werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Leukocyten-spezifische Integrin LFA-1 spielt eine wichtige Rolle bei der Immunantwort, durch die Vermittlung dynamischer Zell-Zell- bzw. Zell-Matrix-Interaktionen. Die kontrollierte Adhäsion bzw. Deadhäsion von Leukocyten bedarf einer spezifischen Regulation des LFA-1-Integrins und die Aufklärung der molekularen Grundlagen dieser Vorgänge ist von großem Interesse. Cytohesin-1 war unmittelbar vor Beginn dieser Arbeit als cytoplasmatischer Regulationsfaktor der durch LFA-1 vermittelten Zelladhäsion identifiziert worden und seine spezifische Interaktion mit der cytoplasmatischen Domäne von CD18 konnte in vitro dokumentiert werden. Im Rahmen dieser Arbeit gelang es zunächst, die Assoziation von Cytohesin-1 und LFA-1 auch endogen, im intakten Zellverband, mittels Kolokalisationsstudien in der lymphoblastoiden B-Zellinie LCL-721, zu demonstrieren. Ferner konnte mit Hilfe von Mutationsanalysen die, für die Interaktion kritische Region in der cytoplasmatischen Domäne von CD18 lokalisiert werden. Sie befindet sich im aminoterminalen Bereich und umfaßt die Aminosäuren WKA(723 - 725). Die Mutation dieser Aminosäurereste nach TRG resultierte in einem vollständigen Interaktionsverlust mit Cytohesin-1. Die Inhibition der Cytohesin-1/CD18-Bindung konnte dabei sowohl durch Protein-Protein-Interaktionsanalysen in Hefe als auch durch biochemische Bindungsstudien in vitro dokumentiert werden, wobei jeweils Fusionsproteine der cytoplasmatischen Domäne von CD18 charakterisiert wurden. Funktionale Analysen der WKA(723-725)-Region von CD18 ergaben, daß die Mutation von WKA(723-725) nach TRG im intakten LFA-1-Molekül eine signifikante Reduktion der Integrin- Aktivität zur Folge hatte. Sowohl T-Zellklone als auch nicht hämatopoetische Zellen, wie HeLa, wiesen nach Expression von LFA-1(TRG), mit Hilfe rekombinanter Vaccinia- Viren, eine stark reduzierte Adhäsionsfähigkeit an immobilisiertes ICAM-1 auf. Ferner ergaben funktionale Studien mit HeLa-Zellen, die LFA-1 stabil exprimierten, daß Cytohesin-1 nur dann eine gesteigerte Adhäsion dieser Zellen an ICAM-1 induzierte, wenn sie Wildtyp-LFA-1 exprimierten. HeLa-Zellen, die LFA-1(TRG) exprimierten, ließen sich durch Cytohesin-1 zu keiner verstärkten Adhäsion aktivieren. Diese Ergebnisse demonstrierten die Bedeutsamkeit der Cytohesin-1/CD18-Interaktion für eine effiziente, durch LFA-1 vermittelte Zelladhäsion. Unklar war jedoch der Mechanismus, durch den Cytohesin-1 die Integrin/Liganden-Bindung regulierte. Studien mit dem Reporterantikörper 24 ließen darauf schließen, daß Cytohesin-1 durch die Bindung an CD18 eine Konformationsänderung in der extrazellulären Domäne des LFA-1-Integrins induzieren konnte, die möglicherweise die Affinität des Rezeptors modulierte. Diese Modulation der LFA-1-Konformation schien jedoch nicht hinreichend für eine stabile Bindung an ICAM-1 zu sein, wie eingehendere Analysen von Dr. W. Kolanus zeigten. Vielmehr erforderte eine effiziente Zelladhäsion zusätzlich die Guaninnukleotid-Austauschfunktion (GEF-Funktion) von Cytohesin-1, da die GEF-defekte Punktmutante, Cytohesin-1(E157K), nicht mehr in der Lage war, die Adhäsion von Jurkat E6-Zellen an ICAM-1 stabil zu induzieren. Biochemische Interaktionsstudien konnten dabei zeigen, daß die Mutante weiterhin fähig war, die cytoplasmatische Domäne von CD18 zu binden. Diese und weitere Ergebnisse von Dr. W. Nagel, die einen Zusammenhang zwischen der GEF-Funktion von Cytohesin-1 und dem „Spreading“ von adhärenten Jurkat E6-Zellen aufzeigten, legen die Vermutung nahe, daß Cytohesin-1 durch einen dualen Mechanismus in die LFA-1-Regulation involviert ist. Sowohl die direkte Interaktion von Cytohesin-1 und dem Integrin als auch seine GEF-Funktion stellen essentielle Faktoren für eine stabile Zelladhäsion, die durch LFA-1 vermittelt wird, dar. Welche funktionalen Mechanismen dabei durch den Guaninnukleotid-Austausch und der damit verbundenen Aktivierung einer GTPase induziert werden, ist noch unklar. Primär wäre eine Modulation des Aktin-Cytoskelettes und eine damit verbundene erhöhte laterale Mobilität der Integrine denkbar, die eine verstärkte Rezeptormultimerisierung und dadurch eine Aviditätsänderung des Integrins ermöglicht. Weitere Studien dieser Arbeit analysierten die Regulation von Cytohesin-1 selbst. Es konnte gezeigt werden, daß PI3-Kinase in die Kontrolle der Cytohesin-1-Funktion involviert war. Die Überexpression einer konstitutiv aktiven Form dieser Kinase (P110*) führte zu einer gesteigerten Adhäsion von Jurkat E6-Zellen an ICAM-1. Eine Inkubation dieser Zellen mit dem PI3-Kinase-spezifischen Inhibitor Wortmannin resultierte dagegen in einer signifikanten Reduktion der Zelladhäsion. Weitere funktionale Analysen, die die Zelladhäsion von Jurkat E6-Zellen nach Koexpression von P110* und der PH-Domäne von Cytohesin-1 untersuchten, sowie eingehendere Studien von Dr. W. Nagel, ermöglichten die Entwicklung eines Modells zur Regulation von Cytohesin- 1. Demzufolge führt die Aktivierung der PI3-Kinase zu einer verstärkten Rekrutierung von Cytohesin-1 an die Plasmamembran. Als Rekrutierungsmodul fungiert dabei die PHDomäne, die durch Bindung von PtdIns(3,4,5)P3, einem Produkt der PI3-Kinase, die Assoziation mit der Membran gewährleistet. Die Rekrutierung von Cytohesin-1 an die Plasmamembran führt zur Aktivierung von LFA-1 und der damit verbundenen stabilen Zelladhäsion an ICAM-1.