Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University use Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. In this podcast ser
There are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues with requisite vasculature for eventual organ transplant. In this episode of Disruptive, Jennifer Lewis is joined by Wyss Institute Research Associate Mark Skylar-Scott, Ph.D., and former Wyss Institute Postdoctoral Fellow Kimberly Homan, Ph.D., to talk about the current status of their work, challenges they face, and the next steps in their path to 3D bioprint human organs.
In this episode of Disruptive, David Walt, Wyss Core Faculty member, discusses his lessons learned from founding successful biotech companies and how he incorporates translation-minded thinking early on into his current diagnostic research in his labs at the Wyss Institute and the Brigham and Women's Hospital. Walt and collaborators are inventing new diagnostic tools to allow clinicians to better understand and treat some of the most pressing healthcare problems.
The deep ocean is the least explored environment on Earth, and scientists estimate that many thousands of species are yet to be encountered. Marine researchers depend on tools primarily developed for the military or the oil and gas industry to study and capture undersea organisms. Many of them are extremely fragile, some thousands of years old, and too often they are damaged or destroyed by equipment that is hard, bulky, and hard to control. In this episode of Disruptive, Rob Wood, a roboticist and Core Faculty member at the Wyss Institute, and David Gruber, a marine biologist at Baruch College, discuss a chance encounter that led them to develop soft robotic tools that enable a new, non-invasive approach to interacting with deep ocean life.
In this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation tools were used to merge scientific data from different disciplines, which enabled their team to create more accurate depictions and predictions of the natural world than what could otherwise be achieved. The team is now exploring how to use this approach to rational drug design and understanding the molecular mechanisms of disease.
Immunotherapy – treatment that uses the body's own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researches are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty member; Kai Wucherpfennig, Dana-Farber Cancer Institute Cancer and Immunology and Virology department chair; and Aileen Li, Wyss Institute and Mooney Lab postdoctoral fellow, discuss their collaboration developing an injectable cancer vaccine. Guests also discuss other immuno-material applications, which could treat infections, diabetes, and addiction.
With 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one's microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of Disruptive, Wyss Core Faculty member George Church and Wyss Postdoctoral Fellow Jonathan Scheiman discuss collecting and sequencing gut bacteria of elite athletes to produce customized probiotics - and the potential that these probiotics could give recipients access to some of the biological advantages that make those athletes elite.
Mechanobiology reveals insights into how the body's physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. In this episode of Disruptive, Wyss Core Faculty members Don Ingber, Dave Mooney, and Conor Walsh discuss the latest directions in Mechanotherapeutics. Along with leading researchers from around the globe, representing diverse disciplines, Ingber, Mooney, and Walsh presented at the Wyss Institute's 7th annual symposium. Speakers provided numerous examples of how mechanics are being harnessed in ways that can transform the future of medicine – from drugs to wearables.
Developed at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of Disruptive, Wyss Core Faculty member George Church, Wyss Senior Staff Scientist Rich Terry, and former Wyss Entrepreneur-in-Residence Shawn Marcell discuss FISSEQ's development and translational potential, which could be used to advance the development of diagnostics and discovery of new drug targets.
Biofilms are commonly known as the slime-producing bacterial communities sitting on stones in streams, dirty pipes and drains, or dental plaque. However, Wyss Core Faculty member Neel Joshi is putting to work the very properties that make biofilms effective nuisances or threats in our daily lives. In this episode of Disruptive, Joshi and postdoctoral fellow Anna Duraj-Thatte discuss the development of a novel protein engineering system called BIND, Biofilm-Integrated Nanofiber Display, which uses biofilms to help clean up polluted rivers, manufacture pharmaceutical products, and fabricate new textiles.
The rapid emergence of the Zika virus on the world stage calls for a detection system that is just as quick. In this episode of Disruptive, Wyss Core Faculty member and MIT professor Jim Collins and University of Toronto Assistant Professor Keith Pardee discuss how they developed a low cost, paper-based diagnostic platform that can rapidly detect the Zika virus. The full team, comprising of researchers from several institutions, also developed a workflow that will enable them to use this same platform to respond to future pandemics. In response to an emerging outbreak, a custom tailored diagnostic system could potentially be ready for use in the field within one week.
How can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA's properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for nano-scale engineering. The resulting newly programmed and built DNA structures can enhance our ability to see and study molecular interactions and the inner-life of cells. As these structures become increasingly complex and versatile, they have the potential to spawn entirely new and revolutionary technologies for biological monitoring, therapeutic delivery, and applications scientists have not even thought of yet. In this episode of Disruptive, Wyss faculty members William Shih, Wesley Wong, and Peng Yin discuss what it is like being on the frontier of science, and the potential applications of their DNA-programming work.
How can a materials science approach lead to medical breakthroughs? In this episode of Disruptive, Wyss Founding Core Faculty Member Dave Mooney discusses programmable nanomaterials approaches to fighting disease. Mooney explains how a cancer vaccine, developed by his team and currently in a clinical trial at the Dana-Farber Cancer Institute, can train one's own immune system to target specific cancer cells. He also describes the development of novel hydrogels that find application in drug delivery systems and tissue regeneration. Chris Gemmiti, a member of the Wyss Institute's Business Development team, joins the conversation to discuss the Wyss process of translation and what is involved in bringing the hydrogel drug delivery technology from bench-to-bedside.
Sepsis is a bloodstream infection caused by an uncontrolled spread of pathogens and release of toxins that can lead to systemic inflammation and multi-organ failure. Sepsis is the leading cause of hospital deaths and kills at least eight million people worldwide each year. Current treatment is to administer patients broad-spectrum antibiotics because there is often not enough time to identify the specific cause of infection. Diagnosis takes two to five days and every hour one waits can increase the risk of death by 5-9%. In this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Senior Staff Scientist Mike Super discuss how their team developed a new therapeutic device inspired by the human spleen. This blood-cleansing approach can remove sepsis-causing pathogens from circulating blood without ever needing to know their identity. In animal studies, treatment with this device reduced the number of targeted pathogens and toxins circulating in the bloodstream by more than 99%. This device may radically transform the way sepsis is treated.
In part 3 of the Bioinspired Robotics episode, Wyss Core Faculty Member Conor Walsh discusses how a wearable robotic exosuit or soft robotic glove could assist people with mobility impairments, as well as how the goal to create real-world applications drives his research approach. Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that "self-organize" to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in your backyard, to creatures in the sea, to what we see in the mirror, engineers and scientists at the Wyss Institute are drawing inspiration from nature to design whole new classes of smart swarm, soft, wearable and popup robotic devices. In this three part episode, Wyss Institute Core Faculty Members Radhika Nagpal, Robert Wood and Conor Walsh discuss the high-impact benefits of their bioinspired robotic work, as well as what drove them to this cutting-edge field.
In part 2 of the Bioinspired Robotics episode, Wyss Founding Core Faculty Member Robert Wood discusses new manufacturing techniques that are enabling popup and soft robots. Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that "self-organize" to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in your backyard, to creatures in the sea, to what we see in the mirror, engineers and scientists at the Wyss Institute are drawing inspiration from nature to design whole new classes of smart swarm, soft, wearable and popup robotic devices. In this three part episode, Wyss Institute Core Faculty Members Radhika Nagpal, Robert Wood and Conor Walsh discuss the high-impact benefits of their bioinspired robotic work, as well as what drove them to this cutting-edge field.
In part 1 of the Bioinspired Robotics episode, Wyss Founding Core Faculty Member Radhika Nagpal discusses swarm collectives, as well as the challenges faced by women in the engineering and computer science fields. Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that "self-organize" to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in your backyard, to creatures in the sea, to what we see in the mirror, engineers and scientists at the Wyss Institute are drawing inspiration from nature to design whole new classes of smart swarm, soft, wearable and popup robotic devices. In this three part episode, Wyss Institute Core Faculty Members Radhika Nagpal, Robert Wood and Conor Walsh discuss the high-impact benefits of their bioinspired robotic work, as well as what drove them to this cutting-edge field.
What sorts of breakthroughs are possible by modifying an organism's genome – something researchers are now able to do ever more cheaply and efficiently? Researchers around the world are already able to program microbes to treat waste water, generate electricity, manufacture jet fuel, create hemoglobin, and fabricate new drugs. What sounds like science fiction to most of us might be a reality in our lifetimes: the ability to build diagnostic tools that live within our bodies, or find ways to eradicate malaria from mosquito lines, or possibly even to make genetic improvements in humans that are passed down to future generations. Wyss Institute Founding Core Faculty Pam Silver and George Church discuss the high-impact benefits of their synthetic biology work, as well as how they manage the potential of unintended consequences.