Podcasts about tim44

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jul 23, 2009LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about tim44

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Conformational Dynamics of the Mitochondrial TIM23 Preprotein Translocase

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19

Play Episode Listen Later Jul 23, 2009


The vast majority of mitochondrial proteins are synthesized by the cytosolic ribosomes as precursor proteins which have to be transported into the organelle to reach their sites of function. The whole process of recognition, translocation, intra-mitochondrial sorting of and assembly of precursor proteins is achieved by the concerted action of different mitochondrial translocases. All proteins destined for the mitochondrial matrix and some inner membrane proteins are imported first by the TOM complex of the outer membrane and subsequently by the TIM23 complex of the inner membrane in an energy-driven process. The TIM23 complex was found to consist of ten components, conventionally divided into two sectors: membrane sector harbouring the translocation channel and the import motor on the matrix side of the membrane sector. In the first part of the present work, the two most recently discovered subunits of the TIM23 complex, Pam17 and Tim21 were characterized. A systematic characterization revealed that both of these non-essential subunits of the translocase are associated with Tim17-Tim23 core of the membrane sector of the TIM23 translocase. A functional connection between the two non-essential components was discovered. Results presented in this part showed that Pam17 and Tim21 modulate the functions of the TIM23 complex in an antagonistic manner. The second part of the work was directed towards understanding the motor sector of the translocase in terms of the regulated interaction between Tim44 and Ssc1. Previous studies on the Tim44:Ssc1 interaction were able to discern the steady-state properties of Tim44:Ssc1 interaction in organello and in vitro. However, due to the limitations of the techniques used, they were unable to shed light on the kinetics and dynamics of the process. The translocation event is a dynamic event with conformational cycling of the various components. Therefore, the kinetic components essential in defining the cycle of events in the motor sector were explored. A FRET based assay to analyze the Tim44:Ssc1 interaction in real time was developed. The same set of tools was also used to resolve the regions of the two proteins that determine their interaction. The substrate induced dissociation of Tim44:Ssc1 complex was found to be too slow to support a physiological rate of protein translocation. ATP-induced dissociation was observed to be fast enough to be physiologically relevant. The dissociation of Ssc1 from Tim44 occurred in a one step manner without Tim44 anchored conformational changes. Furthermore, peptide-array scanning of mitochondrial matrix proteins revealed that Ssc1 and Tim44 share complementary binding sites on the precursor proteins which could prevent backsliding of preproteins. The data support the Brownian ratchet model mediated translocation of preproteins into the mitochondrial matrix. The third part of the work aimed at dissecting the chaperone cycle of Ssc1 in the mitochondrial matrix, in terms of conformational changes and binding of co-chaperones. Using the FRET sensors developed, the inter-domain conformation and lid-base conformations of the PBD of Ssc1 could be investigated. Single particle FRET (SpFRET) analysis showed that in the ATP-bound form Ssc1 populates a homogeneous conformational state with respect to the inter-domain conformation and conformation of the lid to base of the PBD. On the contrary, in the ADP-bound state the conformation of the chaperone is heterogenous. Using the same sensors on bacterial homologue DnaK, specific differences in conformational distributions were observed. Furthermore, the active role of substrates in determining the inter-domain conformation and lid-closing was evident from the SpFRET based conformational analyses. Using ensemble time resolved FRET, the kinetics and dynamics of conformational changes along with binding of co-chaperones were explored. This provided a better understanding of the conformational dynamics of Ssc1 in the context of functional chaperone cycle in the mitochondrial matrix.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Strukturelle und funktionelle Charakterisierung der Proteintranslokasen der mitochondrialen Innenmembran von Neurospora crassa und Saccharomyces cerevisiae

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Feb 10, 2005


Die Innenmembran von Mitochondrien besitzt zwei Translokasen für den Import von Proteinen. Der TIM23-Komplex vermittelt die Translokation über und in die Innenmembran, der TIM22-Komplex inseriert Proteine mit mehreren hydrophoben Segmenten in die Innenmembran. Im Rahmen dieser Arbeit sollten Komponenten dieser Translokationsmaschinerien in N. crassa und S. cerevisiae identifiziert und charakterisiert werden. In N. crassa waren zu Beginn der Arbeit im Vergleich zu S. cerevisiae nur wenige Komponenten der TIM-Translokasen bekannt. In der vorliegenden Arbeit wurden die Proteine Tim22, Tim54 und Tim44 in N. crassa identifiziert. Dies wurde entweder durch die Verwendung degenerierter Primer in PCR-Reaktionen mit cDNA aus N. crassa oder durch Durchmustern von Datenbanken erreicht. Die identifizierten Proteine des TIM22-Komplexes wurden bezüglich ihrer Lokalisation und Topologie untersucht. Es handelt sich bei Tim22 um ein Membranprotein der inneren mitochondrialen Membran mit vier Transmembranhelices, das sowohl den N- als auch den C-Terminus in den Intermembranraum exponiert. Tim54 ist ebenso in der inneren mitochondrialen Membran lokalisiert und besitzt nur eine Transmembranhelix. Der größte Teil des Proteins liegt im Intermembranraum, nur wenige Aminosäurereste befinden sich in der mitochondrialen Matrix. Ferner wurde der TIM22-Komplex von N. crassa charakterisiert. Dazu zählten die Untersuchungen der beteiligten Komponenten, der Komplexgröße und der Stabilität des Komplexes. In N. crassa besteht der TIM22-Komplex aus den Komponenten Tim22, Tim54, Tim9 und Tim10, die einen etwa 350 kDa großen Komplex bilden. Für spätere funktionelle Untersuchungen wurde der TIM22-Komplex bzw. Tim22 alleine gereinigt. Beides wurde in Lipidvesikel rekonstituiert. Dieses Verfahren bietet die Grundlage für Untersuchungen in einem definierten experimentellen System, wie Proteine der Carrier-Familie in Lipidmembranen inseriert werden. In S. cerevisiae wurde mit Tim16 eine neue Komponente des mitochondrialen Importmotors des TIM23-Komplexes identifiziert. Dies konnte durch Koreinigung mit einer weiteren Komponente des Importmotors, Tim14, erreicht werden. Die strukturelle Vorhersage für Tim16 ähnelt stark der des J-Proteins Tim14. Tim16 fehlt allerdings das für die Funktion von J-Proteinen essentielle HPD-Motiv. Tim16 ist in der mitochondrialen Matrix lokalisiert und peripher mit der inneren mitochondrialen Membran assoziiert. Durch Depletion von Tim16 wird der Import von Substraten in Mitochondrien beeinträchtigt, die vom mitochondrialen Importmotor abhängig sind. Durch Koimmunopräzipitationen und Quervernetzungsexperimente wurde Tim16 als neue Komponente des mitochondrialen Importmotors der TIM23-Translokase definiert. Funktionell spielt Tim16 eine große Rolle für die Integrität des Importmotors. Die genaue Struktur des Importmotors, seine Regulation und dessen Dynamik im Zuge der Translokation von Präproteinen muss in zukünftigen Experimenten geklärt werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

6 Literatur Ziel der vorliegenden Arbeit war es, die Lokalisation und Funktion des Hsp70- Homologen, Ecm10, zu klären. Ecm10 wurde als drittes Hsp70-Protein neben Ssc1 und Ssq1 in der mitochondrialen Matrix lokalisiert. Es besteht eine hohe Sequenzähnlichkeit zwischen Ecm10 und Ssc1, woraus eine ähnliche Funktionsweise resultiert. Die teilweise Funktionsüberlappung konnte in ssc1-3 ∆ecm10-Zellen durch einen synthetischen Wachstumsphänotyp experimentell nachgewiesen werden. Ecm10, das kein abundantes Protein ist, konnte jedoch selbst nach Überexpression Ssc1 nicht funktionell ersetzen. Da keine endogenen Substrate für Ecm10 bekannt sind, wurde die Funktion von Ecm10 im Vergleich zu Ssc1 in vitro analysiert. Ecm10 kann bei Überexpression den Proteinimport in die Matrix auch ohne funktionelles Ssc1 vollständig wiederherstellen. Wie Ssc1 bindet Ecm10 über eine Wechselwirkung mit Tim44 an die zu translozierende Polypeptidkette. Weiterhin verfügt es über eine ATPase-Domäne, deren Aktivität über die Wechselwirkung mit Mge1 reguliert wird. Im Gegensatz zu Ssc1 scheint Ecm10 jedoch nur über eine verminderte Faltungsaktivität zu verfügen, wobei nicht geklärt ist, ob diese durch eine eingeschränkte Wechselwirkung mit dem Cochaperon Mdj1 erklärt werden kann. Welche Rolle die gezeigten Funktionalitäten unter physiologischen Bedingungen für Ecm10 spielen, bleibt weiterhin offen. Des Weiteren wurde die Sortierung polytoper Membranproteine der mitochondrialen Innenmembran untersucht. Dazu wurde auf zwei bitope Beispielproteine, Mrs2 und Yta10, zurückgegriffen. Beide verfügen über jeweils eine negativ geladene, von zwei Transmembrandomänen eingerahmte Intermembranraumdomäne, die jedoch unterschiedlich groß ist. Es konnte gezeigt werden, dass beide Proteine dem konservativen Sortierungsweg folgen, in dessen Verlauf ein lösliches Sortierungsintermediat von der Matrix aus in die Innenmembran inseriert wird. Dabei ist der Insertions- oder Exportschritt aus der Matrix im Vergleich zum Import in die Matrix in höherem Maße abhängig vom Membranpotential über die Innenmembran. In beiden Fällen erfolgte die Sortierung unabhängig von den bisher bekannten Insertionsfaktoren Oxa1 und Mba1, was auf die Existenz weiterer Insertionsfaktoren deuten könnte. Die Untersuchung der Ladungsverteilung innerhalb der Intermembranraumdomänen verschiedenster mitochondrialer Innenmembranproteine ergab eine eindeutige Bevorzugung von sauren Resten, was auf einen allgemeinen Sortierungsweg für solche Proteine hindeutet, die aus bakteriellen Vorläufern abgeleitet wurden.