Podcasts about membranproteine

  • 13PODCASTS
  • 19EPISODES
  • 18mAVG DURATION
  • ?INFREQUENT EPISODES
  • Aug 23, 2022LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about membranproteine

Latest podcast episodes about membranproteine

CFPodcast: Erfindungen und Ideen

Membranproteine machen etwa 30% unserer körpereigenen Proteine aus und sind häufig die "Zielproteine" für Medikamente oder Impfungen. Leider sind sie von Natur aus eher instabil und daher eine große Herausforderung für alle pharmazeutischen Entwicklungen. Hören Sie in dieser Folge, wie ein Start-up-Unternehmen hier Abhilfe geschaffen hat und wie es bereits in einem frühen Stadium nachhaltig um seine schutzrechtliche Zukunft gekümmert hat.

AirCampus Graz
Medikamente von morgen

AirCampus Graz

Play Episode Listen Later Oct 27, 2020


Was macht ein Experte für Membranproteine eigentlich genau und wie hängen diese Biomoleküle mit unseren Medikamenten von morgen zusammen? Das weiß Sandro Keller, der seit Kurzem am Institut für Molekulare Biowissenschaften (IMB) forscht und lehrt.   Der Beitrag Medikamente von morgen erschien zuerst auf AirCampus.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
Untersuchung der putativen Interaktion der Hyaluronansynthase mit dem Aktinzytoskelett in humanen mesenchymalen Stammzellen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

Play Episode Listen Later Jun 11, 2015


Hintergrund: Hyaluronan (HA) ist ein wichtiger Bestandteil von vielen Geweben und Flüssigkeiten des Körpers. HA beeinflusst die Makro- und Mikroumgebung und kann direkt über Rezeptoren wie CD44 (cluster of differentiation 44) und RHAMM (receptor for HA mediated motility) mit den Zellen wechselwirken. Dadurch hat HA Einfluss auf die Aktivierung, Migration und Proliferation von Zellen sowie auf den Umbau der extrazellulären Matrix. HA kann das Verhalten der Osteoblasten, Osteozyten und Osteoklasten beeinflussen und ist somit ein wichtiger Faktor sowohl für die gesunde Knochenhomöostase als auch für die Frakturheilung. Hyaluronansynthasen (HAS) sind komplexe Membranproteine, die für die Synthese von HA verantwortlich sind. Bei Säugetieren sind drei Isoformen bekannt: HAS1, HAS2 und HAS3. Sie zeigen eine hohe Homologie in ihrer Sequenz und Struktur, unterscheiden sich aber in Stabilität, Syntheserate und Länge des HA. Der genaue Regulierungsmechanismus der HAS ist noch nicht bekannt. Bisher wurde über eine Regulation durch externe Signalmoleküle, Ubiquitinierung oder Phosphorylierung berichtet. In der vorliegenden Arbeit wurde ein Modellsystem zur Untersuchung der Regulation der Aktivität der HAS aufgebaut. Mit diesem sollte die Interaktion der HAS mit dem Aktinzytoskelett als möglicher Regulationsmechanismus untersucht werden. Methoden: Zu diesem Zweck wurden drei Zelllinien hergestellt. Zum einen hTERT immortalisierte hMSCs (human mesenchymal stem cells), die sogenannten SCP1, welche jeweils eine der HAS-Isoformen, fusioniert mit einem eGFP-Tag, stabil exprimieren. Des Weiteren SCP1, die Lifeact-mRFPruby exprimieren, welches F-Aktin fluoreszenzmarkiert. Schließlich doppeltransduzierte hMSCs, welche sowohl HAS-eGFP als auch Lifeact-mRFPruby exprimieren. Als Gentransfersystem wurden Lentiviren eingesetzt. Zuerst wurden die Zellen hinsichtlich der stabilen und funktionellen Expression ihres Transgens anhand verschiedener Methoden untersucht. Mittels Immunfluoreszenzmikroskopie wurde eine Kolokalisation von Aktin und HAS dargestellt. In fluoreszenzmikroskopischen Timelapse-Aufnahmen wurden die Bewegungsmuster der HAS beobachtet. Ergebnisse: Mittels RT-PCR, Western Blot und Fluoreszenzmikroskopie wurde nachgewiesen, dass die Zelllinien SCP1-HAS1-eGFP D6, SCP1-HAS2-eGFP und SCP1-HAS3-eGFP E6 alle ihr jeweiliges HAS-eGFP-Gen stabil exprimieren. Die Funktionalität der HAS-eGFP wurde mit einem HA-spezifischen ELISA und mit einem selbst etablierten Aktivitätsassay untersucht, welcher das HA durch den biotinylierten HA-Bindekomplex (bHABC) färbt. Im ELISA zeigten alle Zelllinien eine statistisch signifikant höhere Hyaluronanproduktion als die Negativkontrolle. Die HAS3-überexprimierende Zelllinie erzielte von allen die höchste HA-Konzentration. In der Färbung mit bHABC war deutlich zu erkennen, dass diejenigen Zelllinien, in denen eine der HAS-eGFP-Isoformen überexprimiert wurde, eine stärkere Braunfärbung zeigten als Zellen der Negativkontrolle. Für den Nachweis, dass die HAS-eGFP in der Membran lokalisiert sind, wurden Immunfluoreszenzfärbungen gegen den Oberflächenmarker CD44 durchgeführt. Die fluoreszenzmikroskopischen Aufnahmen zeigten an Stellen, die durch die CD44-Färbung eindeutig als Membran zu erkennen sind, ebenfalls ein Signal für die HAS-eGFP. Dies bedeutet, dass die drei Isoformen der HAS-eGFP dort in der Zellmembran integriert vorlagen. Um eine Kolokalisation der HAS-eGFP mit dem Aktinzytoskelett darstellen zu können, erfolgte außerdem eine Färbung des Aktins mit Phalloidin. Bei allen Zelllinien konnte an ausgewählten Stellen eine solche Kolokalisation gesehen werden. Die hMSC-Lifeact-mRFPruby-Zellen wurden lebendig und fixiert im Fluoreszenzmikroskop betrachtet. Sie lieferten eine gute Darstellung des Zytoskeletts mit Stressfasern im Zellkörper und Aktinfilamenten im Zellcortex. Auffallend war, dass in den lebenden Zellen kurze Aktinfilamente zu sehen waren, die sich bei den fixierten Zellen nicht beobachten ließen. Um eine Interaktion zwischen den HAS-eGFP und dem Aktinzytoskelett in lebenden Zellen untersuchen zu können, wurden von den doppeltransduzierten hMSCs Timelapse-Aufnahmen angefertigt. Darin stellten sich die grün fluoreszierenden HAS-eGFP als globuläre Strukturen dar, die entlang der Aktinfilamente angeordnet waren und sich auch entlang dieser bewegten. Schlussfolgerung: Mit diesen Zellen wurde ein Modellsystem geschaffen, mit welchem eine Regulation der HAS über die Interaktion mit dem Zytoskelett untersucht werden kann. Genaueres Wissen über diesen Mechanismus kann für zukünftige Therapieansätze bei Frakturen und bei Knochenerkrankungen, wie z.B. der Osteoporose, richtungsweisend werden.

mit matrix arbeit bei migration regulation signal expression zum verhalten hintergrund ergebnisse stellen methoden darin schlie struktur strukturen aktivit bestandteil zweck dadurch faktor zuerst bisher stabilit oberfl aufnahmen darstellung untersuchung interaktion umbau zellen proliferation makro aktivierung beis mechanismus nachweis osteoporose synthese stammzellen schlussfolgerung therapieans sequenz rezeptoren auffallend membran bewegungsmuster geweben frakturen western blot zellmembran zelllinien aktin phosphorylierung ddc:600 signalmolek isoformen cd44 die funktionalit zelllinie homologie modellsystem zytoskeletts zytoskelett membranproteine transgens hmscs immunfluoreszenzf osteoblasten htert frakturheilung f aktin negativkontrolle osteoklasten kolokalisation aktinfilamente zellk lentiviren mittels rt pcr aktinzytoskelett
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Einfluss eines Carboanhydrase XII-spezifischen Antikörpers auf das Tumorwachstum in vitro und in vivo sowie Onkosomen-basierte Generierung neuer tumorreaktiver Antikörper

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Oct 14, 2013


In dieser Arbeit wurden Mikrovesikel, die von Tumor-Zelllinien in hohen Konzentrationen sekretiert wurden, zur Immunisierung von Ratten verwendet, um auf diese Weise monoklonale Anti-körper gegen membranständige Proteine zu generieren, die auf Tumorzellen vorhanden sind. Der Grund für diesen Ansatz ist, dass Mikrovesikel verschiedenste Membranproteine enthalten, die in Tumorzellen in hohem Maße exprimiert werden. Diese Mikrovesikel sind etwa hundertfach kleiner als die Zellen, denen sie entstammen und daher deutlich weniger komplex. Gleich-zeitig enthalten sie aber überproportional viele Membran-proteine. Viele, aber nicht alle dieser Proteine sind in der Onko-logie und Tumorimmunologie bereits als Tumor-assoziierte Antigene bekannt, weshalb diese Mikrovesikel hier als Onko-somen bezeichnet werden. Es hat sich herausgestellt, dass sich Onkosomen hervorragend zur Immunisierung verwenden lassen und durch ihre Immunogenität die Möglichkeit bieten, mono-klonale Antikörper gegen zunächst unbekannte, aber onko-logisch relevante Membranproteine zu generieren. Aus solchen Immunisierungen war in der Arbeitsgruppe der Antikörper 6A10 hervorgegangen, der mit hoher Spezifität und Effizienz die Tumor-assoziierte Carboanhydrase XII (CA XII) er-kennt und inhibiert. CA XII ist ein membranständiges Enzym, das auf einer Vielzahl hypoxischer Tumoren exprimiert ist und für die Homöostase des leicht alkalischen intrazellulären pH-Wertes vieler Tumorzellen entscheidend ist. Mit dem inhibitorischen Antikörper 6A10 konnte ich in dieser Arbeit zeigen, dass eine spezifische Hemmung der CA XII-Enzymaktivität zu einem ver-zögerten Wachstum dreidimensionaler Tumorzellverbände in vitro und in vivo führt. Bei den in-vivo-Versuchen konnte ich dabei das Wachstum von Luziferase-exprimierenden Tumoren in immundefekten NSG-Mäusen durch Biolumineszenz-basierte Bildgebung (BLI) über lange Zeiträume exakt verfolgen und quantifizieren. Mittels Fluoreszenz-basierter Bildgebung konnte ich zudem die spezifische Bindung eines 6A10-Infrarotfarbstoff-Konjugates an Tumorzellen in vivo visualisieren. Da es zuvor keinen spezifischen Inhibitor gegen die CA XII gab, waren dies die ersten Untersuchungen, die speziell die CA XII als Ziel-struktur behandelten und für die klinische Onkologie als relevantes Tumor-assoziiertes Antigen validieren konnten. In einem zweiten Teil meiner Arbeit ermittelte ich die Spezifität weiterer Tumor-reaktiver Antikörper, die aus Immunisierungen mit Onkosomen hervorgegangen sind. Diese Antikörper erkann-ten nativ gefaltete Antigene auf der Oberfläche von Tumorzellen und könnten zur Beantwortung verschiedener onkologischer Fragestellungen Verwendung finden. Neben dieser unspezi-fischen „reversen“ Immunisierungsmethode, verwendete ich Onkosomen erfolgreich auch zur gezielten Generierung von Antikörpern gegen ein definiertes membranständiges Protein, die humane Carboanhydrase IX. Die CA IX ist ein weiteres be-kanntes membranständiges Tumor-assoziiertes Antigen, das oft mit der Carboanhydrase XII auf invasiven soliden Tumoren ko-exprimiert ist. Damit konnte ich belegen, dass sich Mikrovesikel nicht nur für die Generierung neuartiger Tumor-reaktiver Anti-körper, sondern auch für die Entwicklung von Antikörpern gegen ein Molekül der Wahl eignen. Die Immunisierung mit nativ ge-falteten Proteinen im Kontext immunogener Mikrovesikel könnte sich zukünftig als Möglichkeit zur Generierung von Antikörpern erweisen, die mit klassischen Immunisierungsmethode nicht oder nur schwer zu erhalten sind.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
Fluoreszenzspektroskopische und biochemische Charakterisierung der Protein-Protein Wechselwirkungen von CFP- und YFP- Fusionsproteinvarianten peroxisomaler Membranproteine

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19

Play Episode Listen Later Jan 31, 2013


Thu, 31 Jan 2013 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/15548/ https://edoc.ub.uni-muenchen.de/15548/1/Geiger_Florian.pdf Geiger, Florian

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
Verbesserter rekombinanter Immunoblot für die serologische Diagnostik der Lymeborreliose und Expression der äußeren Membranproteine Osp17 und p58 in unterschiedlichen Genospezies von Borrelia burgdorferi

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19

Play Episode Listen Later Dec 13, 2012


Thu, 13 Dec 2012 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/15282/ https://edoc.ub.uni-muenchen.de/15282/1/Bott-Fluegel_Christiane.pdf Bott-Flügel, C

expression eren diagnostik borrelia burgdorferi ddc:600 membranproteine immunoblot
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Membran-assoziierte Protein-Protein-Interaktionen des Herpes simplex-Virus 1

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19

Play Episode Listen Later Jul 16, 2012


Herpesviren umfassen eine große Gruppe von human- sowie tierpathogenen Erregern. Auf Grund ihrer hohen Durchseuchungsrate und Fähigkeit zur Etablierung einer latenten Infektion stellen humane Herpesviren vor allem für immunsupprimierte Patienten eine ernsthafte Bedrohung dar. Deshalb ist eine umfassende Aufklärung des viralen Replikationszyklus für die Entwicklung von antiviralen Therapiestrategien zwingend erforderlich. Besonders die membran-assoziierten Vorgänge der Virionmorphogenese - primäre Umhüllung an der inneren Kernmembran mit darauffolgendem Verlust der Virushülle an der äußeren Kernmembran sowie sekundäre Umhüllung an cytoplasmatischen Membranen - sind nur unvollständig entschlüsselt. Um das komplexe Zusammenspiel der viralen Proteine während des Replikationszyklus an den verschiedenen zellulären Membranen aufzudecken, wurde im Rahmen dieser Arbeit eine genomweite Analyse der Protein-Protein-Interaktion (PPI) der durch Herpes simplex-Virus 1 (HSV-1) kodierten Membranproteine durchgeführt. Außerdem lieferte die Identifizierung von PPI zwischen dem HSV-1 Proteom und Untereinheiten der zellulären ESCRT-Maschinerie (endosomal sortingcomplex required for transport) weitere Belege für die Ausbeutung von Wirtsfaktoren durch das Virus zur Knospung der Partikel. Zur Detektion der genomweiten PPI sowohl intraviral als auch zwischen Virus und Wirt wurde das Hefe-2-Hybridsystem (Y2H) im Hochdurchsatz angewandt. Beide Datensätze konnten eine Vielzahl neuer PPI aufdecken und somit eine solide Grundlage für Interaktionsnetzwerke und zukünftige funktionale Studien schaffen. Auch wurde duch das breite Interaktionsspektrum des Virus mit den z.T. funktionell redundanten ESCRT-Proteinen erneut veranschaulicht, wie die Nutzung flexibler Strategien zur Stabilität des HSV-1 beiträgt. Anhand der Y2H-Analysen wurde ein virales Membranprotein als interessanter Kandidat zur funktionalen Charakterisierung ausgewählt. Glykoprotein M (gM/UL10) von HSV-1 ist ein Typ-III Transmembranprotein, das während der Infektion in verschiedenen Membrankompartimenten lokalisiert. Obwohl evolutionär konserviert, ist es zumindest für HSV-1 nicht-essenziell und seine molekulare Funktion unklar. Auch die funktionale Relevanz einiger potenzieller trafficking Motive von gM ist noch nicht aufgeklärt. In dieser Studie konnte gezeigt werden, dass das targeting von gM zum trans-Golgi Netzwerk (TGN) unabhängig von anderen viralen Faktoren sowie seinen potenziellen C terminalen trafficking Motiven erfolgt und keiner Homooligomerisierung bedarf. Erstaunlicherweise führt die Deletion der C-terminalen Domäne von gM (gMΔC) zu seiner Retention im ER, wohingegen der Vorwärtstransport durch eine kurze, nicht-verwandte Sequenz wiederhergestellt wurde. Demzufolge enthält die C-terminale Domäne von gM wahrscheinlich keine Sequenzinformation für das targeting vom ER zum Golgi-Apparat, jedoch scheint die Faltung und Integrität des Proteins dafür von Bedeutung zu sein. Im Kontext der Virusinfektion führte die Deletion der C-terminalen Domäne von gM (HSV-1 gMΔC) zur Akkumulation von nicht-umhüllten Partikeln im Cytoplasma, verminderter Freisetzung von Viruspartikeln und in ihrer Infektiosität beeinträchtigten reifen Virionen. Alle Effekte wurden durch eine Revertante wieder aufgehoben und sind demnach spezifisch. Im Gegensatz dazu zeigten zwei zusätzliche Mutanten, HSV-1 ΔgM mit einem frühzeitigen Stoppcodon an Position 3 von UL10 und gMΔac ohne potenzielle trafficking Motive, Wildtyp-ähnliche Wachstumskinetiken. Daraus lässt sich schließen, dass zwar gM entbehrlich ist, gMΔC jedoch einen dominant-negativen Effekt ausübt. Daher wird eine Beteiligung der N-terminalen Bereiche von gM (Aminosäuren 1-361) an der Rekrutierung von viralen und/oder zellulären Faktoren zum Ort der sekundären Umhüllung postuliert. Diese Daten enthüllen neue unbekannte Eigenschaften von HSV-1 gM.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Regulierte Intramembranproteolyse des Interleukin-1 Rezeptors II durch α-, β- und γ-Sekretase

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19

Play Episode Listen Later Jul 16, 2009


Ektodomänenspaltung und Intramembranproteolyse des Amyloiden Vorläufer Proteins (APP) durch Alpha-, Beta- und gamma-Sekretase sind in die Pathogenese der Alzheimer Erkrankung (AD) involviert. Eine vermehrte proteolytische Prozessierung und Sekretion eines anderen Membranproteins, des Typ II Interleukin-1 Rezeptors (IL-1R2) wurde mit der Pathogenese der Alzheimer Erkrankung in Verbindung gebracht. IL-1R2 ist ein Abfangrezeptor, welcher vermutlich in der Lage ist, die schädlichen Effekte von Interleukin-1 im Gehirn zu begrenzen. Bis jetzt ist die proteolytische Prozessierung von IL-1R2 nur wenig verstanden. In dieser Arbeit wird gezeigt, dass IL-1R2 ähnlich wie auch APP prozessiert wird. In humanen embryonalen Nierenzellen (HEK293) exprimiertes IL-1R2 unterläuft zuerst eine Spaltung der Ektodomäne durch eine Metalloprotease, was zur Freisetzung der Ektodomäne und einem in der Membran verbleibenden C-terminalen Fragment führt. Dieses Fragment wird durch Intramembranproteolyse des Gamma-Sekretase-Komplexes in eine intrazelluläre Domäne (ICD) gespalten. Die Intramembranproteolyse von IL-1R2 konnte durch einen hochspezifischen Gammasekretase-Inhibitor gehemmt werden und fehlte in Gamma-Sekretase-defizienten embryonalen Mausfibroblasten. Überraschenderweise erhöhen die Beta-Sekretase BACE1 und ihr Homolog BACE2 die Sekretion von IL-1R2, welche zu ähnlich großen C-terminalen Fragmenten wie auch bei der Alpha-Spaltung von IL-1R2 führen. Dies könnte bedeuten, dass beide Proteasen als alternative Alpha-Sekretasen agieren könnten. Darüber hinaus werden zahlreiche andere Membranproteine, die in dieser Arbeit untersucht wurden, nicht durch BACE1 und BACE2 geschnitten, was zeigt, dass beide Proteasen nicht am generellen Membranproteinumsatz beteiligt sind. Diese Arbeit zeigt, dass Il-1R2 und APP eine ähnliche proteolytische Prozessierung durchlaufen. Dies könnte somit eine Erklärung für die erhöhte Sekretion von IL-1R2 im Rahmen der Alzheimer Erkrankung sein.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Biogenese photosynthetischer Elektronentransport-Komplexe in Plastiden der Gerste(Hordeum vulgare L.)

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Jun 12, 2008


Die Synthese von Chlorophyll ist in Angiospermen ein streng lichtabhängiger Prozess. Keimlinge, welche im Dunkeln angezogen werden, bilden anstelle der (grünen) Chloroplasten (gelb-orange) Etioplasten. In diesen ist die Thylakoidmembran durch den parakristallinen Prolamellarkörper und einige Prothylakoidmembranen ersetzt. Auf Ebene der Proteine kann zwar bereits im Dunkeln die Translation aller plastidencodierten Chlorophyll-bindenden Proteine nachgewiesen werden, allerdings werden diese mit Ausnahme des D2-Proteins in Abwesenheit von Chlorophyll sofort wieder degradiert. Mit der Belichtung von etioliertem Gewebe setzen der Abbau des Prolamellarkörpers und die Bildung der Thylakoidmembranen ein. Diese Umstrukturierung des inneren Membransystems geht mit der Akkumulation und der Assemblierung der chlorophyll-bindenden Photosystemkomplexe einher. Der genaue Ablauf der de novo Assemblierung der Chlorophyll-bindenden Proteinkomplexe ist bisher nicht vollständig geklärt. Daher wurde in der vorliegenden Arbeit die Biogenese von Pigment-bindenden Proteinkomplexen der Plastidenmembran während der Ergrünung untersucht. Dabei dienten im Dunkeln angezogene Keimlinge bzw. die daraus isolierten Etioplasten und deren Membranproteinkomplexe als Startpunkt. Zur Identifikation und Charakterisierung der Pigment-bindenden Komplexe wurden verschiedene Methoden (differentielle Gelelektrophorese für Membranproteine, farblose native Polyacrylamidelektrophorese in Kombination mit Absorptionsspektroskopie) weiterentwickelt. Durch die Kombination aller Techniken konnten verschiedene Aussagen zur Situation im Etioplasten und zum Ablauf der de novo Assemblierung während der Ergrünung getroffen werden. Der ATP-Synthase- und der Cytochrom b6f-Komplex liegen bereits im Etioplasten in der aus dem Chloroplasten bekannten hochmolekularen Assemblierungsstufe vor, wobei im dimeren Cytochrom b6f-Komplex im Etioplasten Protochlorophyll a anstelle von Chlorophyll a nachgewiesen werden kann. Somit ist der Cytochrom b6f-Komplex der einzige Chlorophyll-bindende Komplex, der bereits in der Abwesenheit von Chlorophyll unter Ersatz des Chlorophylls durch ein Chlorophyllderivat akkumulieren kann. Unmittelbar nach der Initiation der Chlorophyllbiosynthese ist der Großteil des de novo synthetisierten Chlorophylls in der Membran nicht mit Photosystemkomplexen assoziiert, sondern transient mit dem membranintegralen Lil (Light harvesting like) 3-Protein. Die Identifikation des Lil 3-Proteins als Chlorophyll-bindendes Protein weist erstmals auf eine mögliche Funktion dieses Proteins als temporärer Chlorophyllspeicher hin. Nach einer Stunde Belichtung können sowohl Photosystem I wie auch Photosystem II-Komplexe nachgewiesen werden, wohingegen erste LHC- Komplexe nach zweistündiger Belichtung zu detektieren sind. Während des Assemblierungsvorganges können für beide Photosysteme mehrere Assemblierungsintermediate nachgewiesen werden. Nach vierstündiger Belichtung hat die Assemblierung aller Thylakoidmembrankomplexe die komplexeste Assemblierungsstufe erreicht, welche aus dem Chloroplasten bekannt ist. Daher kann nach einer Belichtungszeit von vier Stunden die Biogenese der vier an der Lichtreaktion beteiligten Thylakoidmembrankomplexe von proteinbiochemischer Seite als abgeschlossen betrachtet werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Entwicklung neuer Methoden zur massenspektrometrischen Charakterisierung von Membranproteinen

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Apr 10, 2008


Etwa 30% aller Gene codieren für Membranproteine (MP). Trotz ihrer hohen Relevanz, speziell im medizinischen Bereich, stellt die Analyse von MP aufgrund ihrer physikalisch-chemischen Eigenschaften ein häufiges Problem in der Proteinbiochemie dar. Diese Arbeit soll eine Einsicht in die Problematik geben sowie Lösungsansätze aufzeigen, um den Umgang mit diesen Polypeptiden zu vereinfachen. Ein geeignetes Modellsystem zum Studium der Eigenschaften membranintegraler Proteine und Peptide sowie zur Verbesserung der bestehenden Analysemethoden stellte die Thylakoidmembran der Plastide dar. Um das funktionelle Proteom der Thylakoidmembran zu definieren, wurden die Proteinkomplexe der Thylakoidmembran von Gerste (Hordeum vulgare) über hochauflösende 2D-Blue Native /SDS-Polyacrylamidgelelektrophorese (PAGE) getrennt. Das Gelsystem erlaubte die Isolation der photosynthetisch aktiven Proteinkomplexe PSI/LHCI, PSII, LHCII, Cytochrom b6/f und ATPase in unterschiedlichen Assemblierungszuständen. Im Fokus der Untersuchungen stand die Charakterisierung der isolierten Subkomplexe von PSII. Die Identifikation der Komplexuntereinheiten erfolgte nach enzymatischem In-Gel Verdau und massenspektrometrischer Analyse der entstandenen Peptide (offline nanoESI-MSMS). MP > 10 kDa wurden ausschließlich über Peptide aus den löslichen Abschnitten identifiziert. Die Analyse der niedermolekularen Untereinheiten (< 10 kDa) wurde auf Ebene des Gesamtproteins nach Extraktion aus den Komplexbanden der BN-PAGE realisiert. Dabei konnten dem mono- und dimeren PSII-Subkomplex folgende niedermolekularen UEn zugeordnet werden: PsbE, PsbF, PsbI, PsbK, PsbL, PsbM, PsbTc und PsbX. Da kein Unterschied in der Zusammensetzung des mono- und dimeren PSII-Subkomplexes existierte, konnte eine Beteiligung einer der niedermolekularen UEn an der Ausbildung des dimeren PSII-Subkomplexes im Rahmen der Assemblierung nicht bestätigt werden. Die Lichtsammelproteine (LHCP) des LHCII wurden nach 2D BN/SDS-PAGE auf Ebene der Superkomplexe oder abgetrennt als Mono- und Trimerer LHCII-Subkomplex identifiziert, wobei das Trimer durch das Fehlen der minoren LHCP (CP29, CP26 und CP24) charakterisiert war. Die für Membranproteine der Thylakoide ungewöhnlich hydrophilen LHCP erhielten die benötigte Hydrophobizität zur Durchspannung der Membran über die Bindung von Pigmenten (Chlorophyll). Eine eindeutige Unterscheidung der Genprodukte von Lhcb1-3 war trotz extremer Sequenzhomologie über die Detektion eines charakteristischen Peptids im N-terminalen Bereich der maturen Sequenz möglich. In Gerste wurde somit jeweils eine Form von Lhcb2 und 3, sowie sechs Isoformen von Lhcb1 identifiziert. Um den In-Gel Verdau von Proteinen nach elektrophoretischer Trennung zu vereinfachen und zu standardisieren, wurde ein Reaktionsgefäß (OMX-S®) aus Polypropylen entwickelt. Im Zuge der Anpassung des konventionellen Protokolls zum In-Gel Verdau von Proteinen für OMX-S® wurde ein optimiertes Verdauprotokoll entwickelt, das ohne die Reaktionsschritte Entfärbung, Reduktion & Alkylierung der AS Cystein sowie eine multiple Extraktion zur Anreicherung der entstandenen Peptide auskommt. Die Erhöhung der Reaktionstemperatur auf 50°C und die Verkürzung der Diffusionsstrecke für die Protease erhöhten zudem die Effizienz des Verdaus und führten zu einer Reduktion der gesamten Prozesszeit von 6-24 h auf 1 h. Welche Auswirkung die Auslassung einzelner Reaktionsschritte auf die Peptidausbeute hatte, wurde nach differentieller Isotopenmarkierung der generierten Peptide mittels massenspektrometrischer Analyse quantifiziert. Da jeder Prozessierungsschritt eine potentielle Quelle für Verluste darstellte, waren die Peptidausbeuten im Vergleich zum konventionellen In-Gel Verdau äquivalent oder sogar besser. Unabhängig vom verwendeten Verfahren, fehlten die membranintegralen Peptide in den Spektren. Folglich wurde die Detektierbarkeit und Signalintensität von tryptischen Peptiden in Abhängigkeit von verschiedenen Faktoren untersucht. Dabei ergab sich eine direkte Korrelation zwischen der Proteinmenge einer Bande und der Anzahl, der nach Verdau detektierten Peptide. Die Untersuchungen an Peptiden aus löslichen und membranintegralen Proteinen ergaben, dass die Hauptursache für das Fehlen letzterer, nicht auf den Einfluss bestimmter AS auf die Ionisierbarkeit, die Sequenzlänge und/oder die Hydrophobizität zurückzuführen war. Entscheidend für die Abwesenheit der membranintegralen Peptide war vielmehr die schlechte Zugänglichkeit der Schnittstellen für die Protease, aufgrund unzureichender Denaturierung der Sekundärstruktur bzw. der Aggregation hydrophober Abschnitte im Rahmen der Probenaufarbeitung.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Das Membranproteom halophiler Archaea - Identifizierung und Quantifizierung

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jan 25, 2007


Membranproteine als Mediatoren zwischen extrazellulären Reizen und intrazellulären Prozessen sind trotz ihrer enormen biologischen Bedeutung in Proteomstudien meist unterrepräsentiert. Die vorliegende Arbeit konzentriert sich auf die kartierende und quantitative Analyse des Membranproteoms am Beispiel der Modellorganismen Halobacterium salinarum und Natronomonas pharaonis. Grundlage war die Entwicklung einer optimierten Membranisolierung für halophile Archaea unter Beibehaltung hoher Salzkonzentrationen. Nach Zellaufschluss durch Beschallen wurden die so generierten Membranvesikel über Zuckergradienten-Dichtezentrifugation aufgereinigt. Es konnte gezeigt werden, dass hohe Salzkonzentrationen nicht nur zur Stabilisierung der Membran sondern auch der Membranproteinkomplexe notwendig sind. Für die Analyse von halophilen Membranproteinkomplexen wurde die Blue Native Elektrophorese-Technik etabliert und adaptiert, sodass salzhaltige Proben untersucht werden konnten. Anhand dieses Systems konnten z.T. unbekannte Proteininteraktionen nachgewiesen werden. Da integrale Membranproteine mit der klassischen 2D-Elektrophorese nicht getrennt werden können, wurde für die zweidimensionale gelbasierte Darstellung des Membranproteoms das 16-BAC/SDS-System etabliert und bezüglich Trennleistung optimiert. Die Identifizierung von Proteinsspots war für membranassoziierte Proteine mit der peptide mass fingerprinting Methode erfolgreich, diese Technologie ist jedoch für die Analyse von integralen Membranproteinen stark eingeschränkt. Deren Inventarisierung erfolgte über einen LC-MS/MS Ansatz. Die auch bei dieser Technik beobachteten Schwierigkeiten konnten darauf zurückgeführt werden, dass Peptide, die membranintegrale Bereiche repräsentieren, spezifisch an langkettigen reversed phase Materialien verloren gehen und sich daher einer Analyse entziehen. Aus diesem Grunde war die Abreicherung membranassoziierter Proteine während der Membranisolierung durch ein mildes Detergens entscheidend, sodass integrale Proteine angereichert und der Analyse zugeführt werden konnten. Durch einen 1D-SDS PAGE LC-MS/MS Ansatz wurden so 50% des vorhergesagten integralen Membranproteoms von H. salinarum und 32% des integralen Membranproteoms von N. pharaonis identifiziert. Damit war die Grundlage geschaffen, die Veränderungen im Membranproteom von H. salinarum, hervorgerufen durch unterschiedliches Energie- und Nahrungsangebot, zu untersuchen. Im Rahmen dieser Arbeit wurde für die quantitative Membranproteomik erstmals die differenzielle Gelelektrophorese (DIGE) mit dem 16-BAC/SDS-System kombiniert. Diese gelbasierte Quantifizierungsstrategie ermöglicht nicht nur eine Übersicht über das Ausmaß der Regulation des gesamten Proteoms, sondern auch die Quantifizierung einzelner Proteinspots unabhängig von deren Identifizierung. Mit einer grundlegend anderen, massenspektrometrie-basierten Technologie wurden diese Ergebnisse verifiziert und erweitert. Theoretische Berechnungen zeigten, dass auch bei diesen Analysen die Quantifizierung integraler Membranproteine erschwert ist, da wesentlich weniger Peptide pro Protein als bei löslichen Proteinen für eine Quantifizierung zur Verfügung stehen. Sie zeigten aber auch, dass die Markierung freier Aminogruppen mit isotopenmarkierten Sonden, wie die Nicotinoylierung (ICPL), für Membranproteine erfolgreicher ist, als eine Cystein-basierte Markierungsstrategie. Mit Hilfe der ICPL-Technologie, die in dieser Arbeit erstmals für Membranproteine angewandt wurde, war es möglich am Beispiel von aerob und phototoph kultivierten Zellen für 155 Membranproteine quantitative Information zu erhalten, darunter 101 integrale Membranproteine. Das am stärksten regulierte Protein war, wie zu erwarten, das photosynthetisch aktive Protein Bacteriorhodopsin. Daneben konnten weitere am aeroben und anaeoben Energiemetabolismus beteiligte Proteine als reguliert identifiziert werden. Die insgesamt überraschend geringen Regulationen auf Ebene des Membranproteoms, welche sich sowohl aus der gelbasierten als auch bei der massenspektrometrie-basierten Analyse ergaben, könnten eine günstige Überlebensstrategie für Organismen in ökologische Nischen mit geringem selektivem Druck darstellen.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Untersuchungen zur Rolle der äußeren Membranproteine bei der Adhärenz von Helicobacter pylori

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19

Play Episode Listen Later Feb 3, 2006


Fri, 3 Feb 2006 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/4887/ https://edoc.ub.uni-muenchen.de/4887/1/Engel_Kirstin.pdf Engel, Kirstin ddc:610, ddc

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Rolle des TRADD Adapterproteins in der Signaltransduktion des zellulären TNF-Rezeptors 1 und des Latenten Membranproteins 1 des Epstein-Barr-Virus

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Sep 26, 2005


Das Adapterprotein TRADD spielt eine zentrale Rolle in der Signaltransduktion des zellulären TNF-Rezeptors 1 (TNF-R1) und des Latenten Membranproteins 1 (LMP1) vom Epstein-Barr-Virus. Im Gegensatz zur Situation am TNF-R1 bindet TRADD an LMP1 nicht über seine Todesdomäne, sondern über seinen N-terminalen Bereich. Betrachtet man die Zusammensetzung der TNF-R1 und LMP1 Signalkomplexe und der von diesen beiden Membranproteinen aktivierten Signalwege, sind ganz offensichtlich viele Gemeinsamkeiten zu erkennen. Dennoch ist die biologische Funktion dieser beiden Membranproteine zum Teil sehr unterschiedlich. Während der TNF-R1 maßgeblich an der Regulation inflammatorischer Prozesse beteiligt ist und in bestimmten Situationen die Zelle in den programmierten Zelltod (Apoptose) treiben kann, ist LMP1 essentiell an der Immortalisierung von B-Lymphozyten durch das Epstein-Barr-Virus beteiligt. LMP1 ist ein virales Onkogen, das die Expression mitogener Faktoren induziert und gleichzeitig Apoptose und Seneszenz inhibiert. Die Aufklärung der Signaltransduktion dieser beiden Membranproteine auf molekularer Ebene steht seit vielen Jahren im Zentrum intensiver Forschung. Das Ziel der vorliegenden Arbeit war es, die Rolle von TRADD in der Signaltransduktion von TNF-R1 und LMP1 zu klären. Da das einzig wirklich zuverlässige System zur Untersuchung der TRADD Proteinfunktionen ein TRADD „knockout“ Zellsystem ist, wurde im Rahmen dieser Doktorarbeit erstmals ein TRADD-defizientes Zellsystem mittels homologer Rekombination in humanen B-Lymphozyten (DG75) hergestellt. Im zweiten Teil dieser Arbeit wurde die Signaltransduktion von TNF-R1 und LMP1 in DG75 wildtyp und DG75 TRADD-defizienten Zellen untersucht. Dabei konnte erstmals gezeigt werden, dass TRADD für die Aktivierung des klassischen NF-κB Signalwegs sowohl durch die TNF-R1 Signaldomäne als auch durch LMP1 notwendig ist. Zusätzlich konnte durch die Entwicklung einer neuen, auf FACS-basierenden Methode zur Zelltodanalyse nach transienter Transfektion apoptotischer Gene, in DG75 TRADD-defizienten Zellen nachgewiesen werden, dass TRADD an der Induktion von Apoptose durch TNF-R1 essentiell beteiligt ist. Diese beiden Ergebnisse stützen das derzeitige Modell der TNF-R1 bzw. LMP1 Signaltransduktion. Dagegen konnte im Rahmen dieser Doktorarbeit festgestellt werden, dass TRADD weder für die Aktivierung des JNK1 Signalwegs durch die TNF-R1 Signaldomäne noch durch LMP1 benötigt wird. Im Fall von TNF-R1 stellt dieses Ergebnis das bis heute gültige Modell der TNF-R1 Signaltransduktion in Frage und zeigt, dass TRADD nicht das zentrale Adapterprotein zur Induktion aller wichtigen TNF-R1 Signalwege sein kann. Diese Ergebnisse konnten durch Experimente mit TRADD-siRNA in HeLa Zellen bestätigt werden. Abschließend konnte in dieser Arbeit erstmals gezeigt werden, dass TRAF2 unabhängig von TRADD mit dem TNF-R1 interagieren kann und von der TNF-R1 Signaldomäne in Abwesenheit von TRADD in „lipid rafts“ rekrutiert wird. Da TRAF2 für die TNF-R1-vermittelte JNK1 Aktivierung essentiell ist, könnte dies eine Erklärung für die TRADD-unabhängige Induktion des JNK1 Signalwegs durch TNF-R1 sein. Welches Molekül die Bindung von TRAF2 an TNF-R1 vermittelt, ist noch unklar und wird in Zukunft experimentell adressiert werden. Hierfür stellen die DG75 TRADD-defizienten Zellen ein wertvolles experimentelles System dar.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Im Rahmen dieser Arbeit wurden verschiedene Proteome von H. salinarum untersucht, die nach zellulären Kompartimenten unterschieden wurden in (1) das Flagellarmotor-Proteom (2) das Cytosolproteom und (3) das Membranproteom. Die Untersuchung des Flagellarmotors erfolgte hauptsächlich auf struktureller Basis mittels Elektronenmikroskopie. Es konnte eine Struktur mit zwei übereinanderliegenden Ringen isoliert werden, die beide an eine Flagelle gebunden sind. Aus weiteren Aufnahmen und Größenkorrelationen wurde ein Modell zum Flagellarmotor entworfen, welches eine Rotation beider Ringe beinhaltet. An diese Doppelringstruktur sind mehrere Flagellen über einen Hook gebunden, was dieses Modell damit vom bakteriellen Flagellarmotor unterscheidet. Bei der Untersuchung des Cytosolproteoms konnten insgesamt 840 Proteine mittels MALDI-MS-Fingerprint identifiziert werden, was einer Identifizierungsrate von 38% des löslichen Proteoms entspricht (Identifizierungsrate aller löslichen Proteine größer 20 kD: 61%). Es wurde eine massenkompatible Silberfärbung optimiert und ein semi-manuelles Verfahren zur in-Gel Spaltung entwickelt, mit dem 800 Proteine/Tag enzymatisch gespalten werden können. Für die anschließende Identifizierung wurde ein Standardprotokoll für die Proben- und Matrixpräparation entwickelt, welches sich im Vergleich zu anderen automatischen Präparationen als zuverlässiger und sensitiver gezeigt hat. Im Verlauf dieser Arbeit wurde von der Bioinformatikgruppe (Dr. F. Pfeiffer) das web-basierte HALOLEX-System entwickelt, welches als Ziel die vollständige Erfassung aller Fakten zu H. salinarum hat. Die generierten Daten (Gele, Proteinidentifizierungen, MALDI-Peaks, MS/MS-Peaks) werden innerhalb dieser Oberfläche zugänglich gemacht und erlauben detaillierte Nachanalysen. Für das Membranproteom wurde gezeigt, dass der etablierte Zellaufschluss mittels Niedrigsalz-Dialyse zu einer erheblichen Kontamination mit löslichen Proteinen führt. Ein Aufschluss unter Hochsalzbedingungen mit anschließender Dichtegradienten-Zentrifugation reinigt die Membran, jedoch dissoziiert die Zellmembran bei anschließender Niedrigsalz-Behandlung in hohem Maße in nicht pelletierbare Fragmente. Eine optimierte Membranaufarbeitung unter ständigen Hochsalzbedingungen, Dichtegradienten-Zentrifugation, Delipidierung und Solubilisierung in einer Detergenzienmischung (Triton X-100/ASB-14) führte bei anschließender zweidimensionaler Trennung (IEF/SDS) zur Identifizierung von fast ausschließlich peripheren Membranproteinen. Mit einer fluoreszenzmarkierten Membranfraktion konnte gezeigt werden, dass der Verlust von integralen Membranproteinen auf einer nahezu quantitativen Präzipitation der Membranproteine an derem pI beruht. Eine pI-unabhängige Strategie wurde mittels BAC/SDS etabliert, die speziell bei H. salinarum zu einer guten Proteinauftrennung führt. Die Identifizierung eines 13 TM-Antiporters (0,22 TM/kD, GRAVY +0,74) als dominantestes Protein dieser Membranfraktion zeigt die Anwendbarkeit dieses Systems. In einem Vergleich von Membranfraktionen aus aerob und phototroph gewachsenen Kulturen konnten so Unterschiede des Expressionsniveaus von Membranproteinen nachgewiesen werden. Aus theoretischen Berechnungen der vorhergesagten Membranproteine zeigte sich weiterhin, dass bei tryptischer Spaltung nicht ausreichend Peptid-Fragmente generiert werden, um mittels MALDI-Fingerprint-Analyse identifiziert zu werden. Diese (H. salinarum spezifische) Problematik kann mittels MS/MS umgangen werden. Bei der Kombination aus 1-D Gel und LC/MS/MS konnten schließlich 114 integrale Membranproteine identifiziert werden, was 20% des integralen Membranproteoms entspricht.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Charakterisierung der endosomalen Membranproteine DdLmp B/C aus Dictyostelium discoideum und biochemische Analyse der Stimulierung der bakteriellen Kinase YopO aus Yersinia enterocolitica durch Aktin

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Feb 3, 2004


Die vorliegende Arbeit hatte zum Ziel, (i) die regulatorische Funktion bestimmter integraler Membranproteine im Dictyostelium Zytoskelett und (ii) die biochemische Interaktion einer Kinase eines infektiösen Bakteriums mit Aktin aus der Wirtszelle genauer zu analysieren. (i) Die ubiquitären Mitglieder der CD36/LIMPII-Familie sind integrale Membranproteine, die als Lipidrezeptoren und Zelladhäsionsproteine in der Plasmamembran oder - mit bisher unbekannter Funktion - in Membranen endosomaler Vesikel vorkommen. In Dictyostelium discoideum führte die Inaktivierung eines lysosomalen Membranproteins aus dieser Gruppe zur Suppression des Phänotyps einer Profilin-minus Mutante. Im Zuge der vollständigen Sequenzierung des D. discoideum-Genoms konnte festgestellt werden, daß es neben diesem DdLmpA noch die beiden weiteren homologen Proteine DdLmpB und DdLmpC gibt. Da der Mechanismus der Suppression des Profilin-minus Phänotyps ungeklärt ist, wurden die beiden Isoformen im Rahmen der vorliegenden Arbeit genauer charakterisiert. Sowohl für DdLmpB wie auch für DdLmpC konnte die familientypische Membran-Topologie einer Haarnadelstruktur nachgewiesen werden. Dabei weist die zentrale, lumenale Domäne beider Proteine zahlreiche Glykosylierungen auf. Durch Immunofluoreszenz und Saccharosegradienten wurde die Lokalisation der drei Isoformen an endolysosomalen Vesikeln nachgewiesen. Es stellte sich dabei heraus, daß die drei DdLmp-Proteine in unterschiedlichen Vesikelpopulationen auftraten. Auch “pulse-chase“-Experimente mit TRITC-Dextran und nachfolgender Markierung der Vesikel mit DdLmp-spezifischen Antikörpern ergaben unterscheidbare Zeitmuster für die Rekrutierung der Membranproteine in Vesikeln. Die für DdLmpA oft beobachtete Kolokalisation mit Makropinosomen konnte z.B. für DdLmpB und DdLmpC nur selten festgestellt werden. Nach zahlreichen Versuchen und der Konstruktion von verschiedenen Vektoren konnte am Ende der praktischen Arbeiten eine DdLmpB-minus Mutante im Wildtyp-Hintergrund isoliert werden. (ii) Im zweiten Teil der Arbeit wurde die in der Literatur beschriebene Interaktion zwischen Aktin und der Kinase YopO, die durch Yersinia enterocolitica als Effektorprotein in die Wirtszelle transloziert wird, biochemisch genauer untersucht. Es konnte festgestellt werden, daß G-Aktin und nicht F-Aktin für die Aktiverung der YopO-Kinase verantwortlich ist. Dabei tritt Nichtmuskel-Aktin im Vergleich zum Muskel-Aktin als ein deutlich besserer Aktivator von YopO auf. Obwohl die aktivierte Kinase in vivo das Aktin-Zytoskelett beeinflußt, ist Aktin offensichtlich kein Substrat von YopO. Mittels Fluoreszenzspektroskopie konnte gezeigt werden, daß sowohl die native Kinase YopO als auch das durch Punktmutation inaktivierte YopO K269A die Polymerisierungskinetik von Aktin behindern. Für eine mutmaßliche Aktin-Binderegion von 20 Aminosäuren aus dem C-terminalen Ende konnte hingegen kein Effekt beobachtet werden. Der Einfluß von aktinbindenden Proteinen, aktinmodifizierenden Substanzen und YopO-bindenden GTPasen auf die Aktivierung der Kinase durch Aktin deutet darauf hin, dass die Aktivität der Kinase in der Wirtszelle nicht nur durch Aktin alleine, sondern auch durch weitere Zytoskelett-Komponenten reguliert wird.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Regulation der Latenz des Epstein-Barr-Virus in humanen B-Lymphozyten durch die viralen Latenten Membranproteine 1 und 2A

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Oct 17, 2002


Thu, 17 Oct 2002 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/847/ https://edoc.ub.uni-muenchen.de/847/1/Schaadt_Eveline.pdf Schaadt, Eveline

durch regulation epstein barr virus latenz ddc:500 b lymphozyten ddc:570 membranproteine
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

6 Literatur Ziel der vorliegenden Arbeit war es, die Lokalisation und Funktion des Hsp70- Homologen, Ecm10, zu klären. Ecm10 wurde als drittes Hsp70-Protein neben Ssc1 und Ssq1 in der mitochondrialen Matrix lokalisiert. Es besteht eine hohe Sequenzähnlichkeit zwischen Ecm10 und Ssc1, woraus eine ähnliche Funktionsweise resultiert. Die teilweise Funktionsüberlappung konnte in ssc1-3 ∆ecm10-Zellen durch einen synthetischen Wachstumsphänotyp experimentell nachgewiesen werden. Ecm10, das kein abundantes Protein ist, konnte jedoch selbst nach Überexpression Ssc1 nicht funktionell ersetzen. Da keine endogenen Substrate für Ecm10 bekannt sind, wurde die Funktion von Ecm10 im Vergleich zu Ssc1 in vitro analysiert. Ecm10 kann bei Überexpression den Proteinimport in die Matrix auch ohne funktionelles Ssc1 vollständig wiederherstellen. Wie Ssc1 bindet Ecm10 über eine Wechselwirkung mit Tim44 an die zu translozierende Polypeptidkette. Weiterhin verfügt es über eine ATPase-Domäne, deren Aktivität über die Wechselwirkung mit Mge1 reguliert wird. Im Gegensatz zu Ssc1 scheint Ecm10 jedoch nur über eine verminderte Faltungsaktivität zu verfügen, wobei nicht geklärt ist, ob diese durch eine eingeschränkte Wechselwirkung mit dem Cochaperon Mdj1 erklärt werden kann. Welche Rolle die gezeigten Funktionalitäten unter physiologischen Bedingungen für Ecm10 spielen, bleibt weiterhin offen. Des Weiteren wurde die Sortierung polytoper Membranproteine der mitochondrialen Innenmembran untersucht. Dazu wurde auf zwei bitope Beispielproteine, Mrs2 und Yta10, zurückgegriffen. Beide verfügen über jeweils eine negativ geladene, von zwei Transmembrandomänen eingerahmte Intermembranraumdomäne, die jedoch unterschiedlich groß ist. Es konnte gezeigt werden, dass beide Proteine dem konservativen Sortierungsweg folgen, in dessen Verlauf ein lösliches Sortierungsintermediat von der Matrix aus in die Innenmembran inseriert wird. Dabei ist der Insertions- oder Exportschritt aus der Matrix im Vergleich zum Import in die Matrix in höherem Maße abhängig vom Membranpotential über die Innenmembran. In beiden Fällen erfolgte die Sortierung unabhängig von den bisher bekannten Insertionsfaktoren Oxa1 und Mba1, was auf die Existenz weiterer Insertionsfaktoren deuten könnte. Die Untersuchung der Ladungsverteilung innerhalb der Intermembranraumdomänen verschiedenster mitochondrialer Innenmembranproteine ergab eine eindeutige Bevorzugung von sauren Resten, was auf einen allgemeinen Sortierungsweg für solche Proteine hindeutet, die aus bakteriellen Vorläufern abgeleitet wurden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Expressionsprofile von ABC-Transportern in Arabidopsis thaliana

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Mar 15, 2002


Die Superfamilie der ABC-Proteine ist eine der größten bisher bekannten Proteinfamilien. Ihre Mitglieder enthalten ein oder zwei nukleotidbindende Domänen mit je einem Walker A- und B-Motiv, sowie das charakteristische ABC-Motiv. Ein Großteil darunter sind Membranproteine, die zusätzlich ein oder zwei Transmembrandomänen besitzen. Diese ABC-Transporter sind vor allem in Mensch und Hefe charakterisiert, wo sie in zahlreichen Transportprozessen über die Membranen involviert sind. Über die Funktion der ABC-Transporter in pflanzlichen Organismen ist wenig bekannt, jedoch gibt es Hinweise dass diese Proteinfamilie in Pflanzen auch an der Kompartimentierung von Fremdstoffmetaboliten beteiligt ist. In der Modellpflanze Arabidopsis thaliana wurden 103 ABC-Transportergene annotiert, die sich in 9 Subfamilien aufteilen. Experimentell nachgewiesen wurden bisher lediglich 6 Mitglieder aus 2 Subfamilien. In dieser Arbeit wurden 28 ABC-Transporter aus 6 Subfamilien, davon 4 bisher nicht untersuchte, hinsichtlich organspezifischer Expression und Induktionsverhalten nach Herbizid- bzw. Safenerbehandlung untersucht. Dazu wurde ein DNA-Array ("Detox-Array") mit genspezifischen Sonden zur parallelen Transkriptanalyse etabliert. Zusätzlich wurden in Zusammenarbeit mit anderen Projekten weitere Genfamilien mit einbezogen, die potenziell an der Detoxifizierung von Xenobiotika beteiligt sind (Cytochrom P450 Monooxygenasen, Glutathion-S-Transferasen und UDP-Glycosyltransferasen), um Koregulationen einzelner Mitglieder der unterschiedlichen Genfamilien untersuchen zu können. Um die Unterscheidung auch hoch homologer Mitglieder dieser Familien zu ermöglichen, wurden Sonden aus dem 3‘-untranslatierten Bereich dieser Gene entwickelt und auf ihre Eignung zur Transkriptmessung untersucht. Die Expressionsanalyse der ABC-Transporter in Wurzeln, Stängeln, Blättern, Blütenständen und Schoten zeigte neben den sechs bereits bekannten ABC-Transportern Transkripte von 21 weiteren Vertretern. Die meisten waren in der Wurzel (26 von 28) nachzuweisen, die wenigsten (7 von 28) im Blatt. Am höchsten exprimiert waren AtMRP12 und AtPDR8 in der Wurzel und AtMRP5 in der Schote. Die Induktion der ABC-Transporter durch Xenobiotika wurde an Pflanzen 24h oder 36h nach Behandlung mit unterschiedlichen Chemikalien (Primisulfuron, Bromoxynil, Benoxacor) in sublethalen Dosen untersucht. Für die beiden Herbizide typische Schäden konnten erst 3 Tage nach der Behandlung beobachtet werden. Neben der in der Literatur beschriebenen Primisulfuron-Induktion von AtMRP3 (Tommasini et al., 1997) waren AtPDR8, AtMRP5, AtMRP4 und AtAOH1 transient nach 24h induziert. Mit einem Antiserum, das gegen die Subfamilie der PDR-Transporter erzeugt worden war, konnte deren Induktion durch Primisulfuron und Benoxacor auch auf Proteinebene nachgewiesen werden. Eine spezifische 6-fache Induktion nach Bromoxynil-Behandlung zeigte der ABC-Transporter AtTAP1. Die sechs genannten ABC-Transporter stellen somit Kandidaten dar, die an der Kompartimentierung von Metaboliten beteiligt sein können. Dabei kann es sich entweder um Primisulfuron- bzw. Bromoxynilmetabolite oder durch die Behandlung mit den Xenobiotika entstandene endogene Metabolite handeln. Eine Hauptkomponentenanalyse der Expressionsprofile zeigte, dass auf der Basis der auf dem Detox-Array vertretenen, aus dem Entgiftungs- und Sekundärmetabolismus ausgewählten Genfamilien eine eindeutige Unterscheidung der Antwort auf die verschiedenen Herbizide abgeleitet werden kann. Weitere Daten aus Kollaborationen mit anderen Projekten wurden in einer zweiten Hauptkomponentenanalyse mit einbezogen und zeigen, dass die Unterschiede vor allem auf die sekundären Auswirkungen der Herbizide zurückzuführen sind. Die dabei gefundene Koregulation der Primisulfuron-Behandlung mit der Reaktion auf das Signalmolekül Salicylsäure und ein bakterielles Pathogen ließ weiter schließen, dass Primisulfuron einen Elicitor-ähnlichen Effekt auf die Pflanze hat. Zur weiterführenden Funktionsanalyse von ABC-Transportern wurden parallel zu diesen Arbeiten knock-out Mutanten gesucht. In einer Kollektion des MPI für Züchtungsforschung in Köln konnten zwei Mutanten identifiziert werden, die jeweils ein En-Transposon innerhalb der offenen Leserahmen von AtPDR4 bzw. AtMDR4 besitzen.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein Protein für neue Aufgaben: die cytosolische PH-Domäne des Cytohesin-1 als Paratop und als Substrat für Translokationen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 20, 2001


6.1. Die PH-Domäne als Paratop Die Pleckstrin-homologe (PH-) Domäne des humanen Cytohesin-1 besteht aus einem Proteingerüst sowie vier längeren Loops. Von diesen weisen drei in eine Richtung und bilden eine komplexe, flexible Oberflächenstruktur aus. Sollte man diese Oberflächenstruktur durch Mutation der Loops als Bindungstasche (Paratop) für Epitope von Schlüsselmolekülen etablieren können, wäre ein breiter Einsatz der PH-Domäne als Wirkstoff oder spezifisches Nachweisreagenz interessant, zumal sie sich in E. coli mit hohen Ausbeuten cytoplasmatisch löslich exprimieren läßt. In dieser Arbeit konnte gezeigt werden, daß sich die drei Loops verändern lassen, ohne daß die PH-Domäne ihre Struktur verliert; von daher eignet sich die PH-Domäne als Proteingerüst. Sie wurde insgesamt in 29 Aminosäurepositionen mit einem neuartigen Verfahren gewichtet randomisiert, indem an jeder Position die Wildtyp-Aminosäure bevorzugt wird. In Anbetracht der Zahl randomisierter Positionen sollte damit gegenüber einer ungewichteten Randomisierung kein Verlust an Komplexität für die Bibliothek zu befürchten sein, durch den möglichen Erhalt lokaler und nicht lokaler Wechselwirkungen aber die Zahl stabiler (damit exprimierbarer und selektierbarer) Mutanten deutlich erhöht werden. Die Randomisierung erfolgte dabei mit drei Oligodesoxynukleotiden, die in den randomisierten Positionen jeweils eine definierte Basenverteilung aufweisen. Zur Klonierung einer Bibliothek wurden sie im dazu entwickelten Verfahren der „asymmetrischen PCR-Reaktion“ eingesetzt und daraufhin zu einem in drei Segmenten randomisierten DNA-Fragment assembliert. Mit dieser Strategie konnten 6 · 107 Mutanten erzeugt werden. (Aus deutlich kleineren Bibliotheken anderer Proteine ließen sich bereits bindende Mutanten isolieren.) Die randomisierten Mutanten der PH-Domäne wurden im phage-display-Verfahren zur Selektion gegen drei Zielsubstanzen eingesetzt. Danach konnten ausschließlich Deletionsmutanten und Mutanten mit stop-Codons nachgewiesen werden, die keine Expression von PH-Domänen erlauben. Zurückgeführt wird dieses Ergebnis auf die schlechten Transporteigenschaften der PH-Domäne bei der Translokation in das Periplasma von E. coli, weshalb nicht auf bindende Paratope aus der Bibliothek selektiert werden konnte. Nach Verbesserung der Translokationseigenschaften von PH-Domänen sollte sich das phage-display-Verfahren zur Selektion bindender Mutanten fortsetzen lassen. 6.2. Die PH-Domäne als Substrat für Translokationen Die im phage-display-Verfahren eingesetzten M13-Bakteriophagen assemblieren in der inneren Membran von E. coli. Dies setzt die Translokation der mit dem g3-Protein fusionierten PH-Domäne in das Periplasma voraus. Die geringe periplasmatische Expression bei mehrheitlich aberranten Prozessierungen im Bereich des Signalpeptids und die geringe Darstellung auf der Phagenoberfläche veranlaßten zur Translokationsoptimierung der PH-Domäne. Während der allgemeine sekretorische Transportmechanismus von E. coli durch die beteiligten Membranproteine strukturell und funktionell gut verstanden ist, sind die Eigenschaften und Voraussetzungen für die Translokation von Substratproteinen (mit Signalpeptid als Präprotein bezeichnet) bislang weniger gut charakterisiert. Der „translokationskompetente“ Zustand beschreibt die Präproteine nur phänomenologisch. Für die schlechte Translokation wurden mehrere biochemische und biophysikalische Eigenschaften der PH-Domäne in Betracht gezogen und verschiedene Mutanten hergestellt, die demzufolge eine verbesserte Translokationseigenschaft aufweisen sollten. Dabei erwies sich weder die Verringerung der thermodynamischen Stabilität noch das engineering ausgewählter, spezifischer Sequenzelemente als translokationsbegünstigend. Wird dagegen durch Einführung neuer N- und C-Termini sowie der Verbrükkung der ursprünglichen Termini mit einem Linker die Topologie verändert, können bei zwei dieser sogenannten Circularpermutanten bis zu 30-fach höhere Expressionsausbeuten im Periplasma erzielt werden. Die Circularpermutation wurde damit erstmalig erfolgreich im rationalen Proteindesign angewendet. Die vorliegenden Ergebnisse legen nahe, daß die Mutanten der PH-Domäne vor der Translokation in einem nativ-ähnlichen Zustand gefaltet vorliegen und zur Translokation entfaltet werden müssen. Das in dieser Arbeit vorgeschlagene „Kräftemodell“ erklärt die verbesserte Translokation der Circularpermutanten CP X.6. gegenüber dem Wildtyp. Danach ist die maximale Kraft zur Entfaltung des Proteins die translokationslimitierende Größe, was sich mit Hilfe von Einzelmolekül-Kraft-Spektroskopie weiter untersuchen ließe. Wie sich die Mutationen an der PH-Domäne bei weiteren Transportprozessen auswirken, wurde beim mitochondrialen Import analysiert. Die untersuchten Mutanten zeigten unabhängig von ihrer thermodynamischen Stabilität und ihrer periplasmatischen Expression eine Unterbrechung des Imports. Ursache dafür ist eine Peptidsequenz von 27 Aminosäuren, die sich mit Hilfe der Circularpermutanten eindeutig identifizieren läßt. Sie führt bei der Circularpermutante CP 2.6. zu einer stabilen Expression im Intermembranraum und beim Wildtyp sowie bei der Circularpermutante CP 2.7. zu einem Verharren in der inneren Membran. Bei Mitochondrien konnte zuvor noch nie eine importunterbrechende Peptidsequenz nachgewiesen werden. Sie sollte sich zur stabilen Expression von Proteinen im Intermembranraum einsetzen lassen. In der (modellierten) Raumstruktur der PH-Domäne interagieren 19 der 27 Aminosäuren in einem Faltblatt/turn/Faltblatt-Motiv. Sie könnten als stabile Subdomäne den Import unterbrechen. Diese Interpretation ergänzt ein Modell zur Translokation von Präproteinen, wonach das Präprotein vom Intermembranraum schrittweise durch die innere Membran (bzw. den TIM-Komplex) in die Matrix diffundiert und dort arretiert wird. Dadurch wird die Rückdiffusion verhindert. Die Unterbrechung des weiteren Imports währt solange, bis aufgrund des thermodyamischen Gleichgewichts die Peptidsequenz vor der Membran entfaltet vorliegt und dann in die Matrix diffundieren kann. Ergänzende Experimente zum mitochondrialen Import sind in Vorbereitung. In dieser Arbeit konnte die PH-Domäne mit ihren Mutanten somit als Substrat für die Untersuchung von Transportprozessen etabliert werden. Die zukünftige Anwendung dieser Mutanten auf weitere Transportsysteme liegt dabei auf der Hand. Die Bibliothek randomisierter PH-Domäne wird in Kooperation mit anderen Arbeitskreisen zur Selektion spezifisch bindender und inhibierender Mutanten eingesetzt.