POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Ein bedeutender Mechanismus zur Prävention und Regression von atherosklerotischen Läsionen ist die Abräumung von akkumulierten extrazellulären Lipiden in der Gefäßwand und deren Einschleusung in den reversen Cholesterintransport durch Makrophagen. Wichtigste molekulare Effektoren sind dabei Scavenger Rezeptoren wie CD36 und Cholesterin-Exporter wie ABCA1 und ABCG1. Deren Expression wird durch spezifische oxidierte Sterole, die die nukleären Transkriptionsfaktoren wie PPARgamma und LXRalpha aktivieren, induziert. Da hochdosierte lipidlösliche Antioxidantien diese regulatorischen Oxylipide beeinflussen könnten, war es Ziel dieser Arbeit am Makrophagen-Modell die Wirkung von hochdosiertem alpha-Tocopherol auf Signalwege und Schlüsselrezeptoren der Cholesterin-Homöostase zu untersuchen. Der Einfluss von alpha-Tocopherol und teilweise auch von gamma-Tocopherol wurde auf regulatorischer, transkriptioneller, translationeller und funktioneller Ebene mittels Realtime RT-PCR, Reportergen-Assays, FACS, Immunoblot und Lipidaufnahme- und Lipidefflux-Assays analysiert. Der LDL-R wurde durch hochdosiertes alpha-Tocopherol nicht beeinflusst, während die Expression des Scavenger Rezeptors CD36, konzentrationsabhängig sowohl auf mRNA-Ebene als auch auf Protein-Ebene durch alpha-Tocopherol beeinträchtigt wurde. Auf funktioneller Ebene verringerte alpha-Tocopherol die Aufnahme von [H³]-Cholesterin markiertem oxLDL durch Makrophagen. Der Effekt konnte ebenso mikroskopisch dargestellt werden. Die verminderte Expression von CD36 durch alpha-Tocopherol konnte zumindest teilweise durch eine dosisabhängige Verminderung der mRNA-Transkription von PPARγ und eine verminderte Aktivierung von PPARgamma im PPRE-Luziferase-Assay auch durch exogene Stimuli erklärt werden. gamma-Tocopherol hatte keinen vergleichbaren Effekt auf die CD36- und PPARgamma-spezifische mRNA, weswegen bereits auch ein direkter transkriptioneller Effekt von alpha-Tocopherol postuliert wurde. Die vermehrte zelluläre Aufnahme von oxidiertem LDL über Scavenger Rezeptoren wie CD36 induziert normalerweise auch eine vermehrte Einschleusung von Cholesterin in den reversen Cholesterintransport durch ABC-Exporter wie ABCA1 und ABCG1, wodurch die Schaumzellbildung zumindest verzögern werden kann. Diese Induktion der Cholesterin-Exporter wird durch oxidierte Sterole vermittelt, die LXRalpha aktivieren. Deshalb wurde ebenfalls eine mögliche Interferenz von hochdosiertem alpha-Tocopherol mit dem zellulären Cholesterin-Export untersucht. In der Tat wurde der Cholesterin-Efflux von Makrophagen auf delipidiertes HDL durch alpha-Tocopherol beeinträchtigt, wodurch der zelluläre Cholesterin-Bestand anstieg. Dieser Effekt zeigte auch mikroskopisch vermehrte Lipidgranula. Die Aktivierung des LXR-Response Elements im Luziferase-Assay durch exogene Stimuli wie 22-OHC oder oxidiertes LDL wurde durch alpha-Tocopherol ebenfalls negativ beeinflusst. Dadurch könnte die Reduktion der Expression von ABCA1 und ABCG1 auf mRNA-Ebene und von ABCA1 auf Proteinebene zumindest teilweise erklärt werden. Mit gamma-Tocopherol konnte nur eine geringe Reduktion auf mRNA Ebene, sowohl für ABCA1 als auch LXRalpha festgestellt werden. Bei der verminderten Expression von ABCA1 und ABCG1 durch hochdosiertes alpha-Tocopherol handelt es sich also wahrscheinlich um einen spezifischen, teilweise durch LXRalpha vermittelten Prozess. Es scheinen aber weitere Signalwege beteiligt zu sein: Unerwarteterweise wurde die Transkription und die Aktivierung von LXRalpha auch durch delipidiertes HDL stimuliert, was durch hochdosiertes alpha-Tocopherol ebenfalls dosisabhängig reduziert werden konnte. Nichtsdestotrotz war ABCA1 in Makrophagen nach Cholesterinverarmung durch delipidiertes HDL supprimiert. Die gefundenen Effekte von alpha-Tocopherol auf Schlüsselrezeptoren der Cholesterin-Homöostase in Makrophagen können zur Erklärung der enttäuschenden Resultate der Preventionsstudien mit hochdosiertem alpha-Tocopherol beitragen: Durch Hemmung des Scavenger Rezeptors CD36 reduziert alpha-Tocopherol zwar einerseits den ersten Schritt zur Schaumzellbildung um den Preis einer verzögerten Abräumung extrazellulärer Lipiddepots, alpha-Tocopherol verlangsamt aber auch durch Hemmung von ABCA1 und ABCG1, den endgültigen Abtransport von Cholesterin aus der Gefäßwand durch den reversen Cholesterin-Transport.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Das natürliche Vitamin Nikotinsäure wird seit 1955 in pharmakologischer Dosierung als Medikament zur Behandlung von Dyslipidämien und bei arteriosklerotischen Gefäßveränderungen verwendet. Von Nikotinsäure konnte als erstem Medikament bereits 1975 im Coronary Drug Project nachgewiesen werden, dass es die Mortalität nach Myokardinfarkt signifikant und anhaltend reduziert. Nikotinsäure senkt den LDL-Plasmaspiegel und erhöht den HDL-Spiegel. Während der Nikotinsäureeffekt auf LDL vielfach untersucht wurde, ist über den Mechanismus der HDL-Erhöhung bisher wenig bekannt. Nikotinsäure stimuliert massiv die PGD2-Synthese in vivo. Der Hauptmetabolit von PGD2, das 15-deoxy-Δ12,14-Prostaglandin J2, wurde kürzlich als wichtigster endogener Aktivator des nukleären Transkriptionsfaktors PPAR erkannt. PPAR ist entscheidend an der Regulation des Scavenger Rezeptors CD36 und des zellulären Cholesterinexporters ABCA-1 beteiligt. Diese Rezeptoren dominieren die zelluläre Aufnahme modifizierter LDL-Partikel und die Ausschleusung zellulären Cholesterins auf HDL-Partikel und damit die Cholesterinhomöostase in Monozyten/Makrophagen in der Gefäßwand. Deshalb war es Ziel der Arbeit an einem Makrophagenmodell zu untersuchen, ob Nikotinsäure Scavenger-Rezeptoren und zelluläre Cholesterin-Transporter tatsächlich beeinflusst und so über einen gesteigerten reversen Cholesterintransport aus der Peripherie zur Leber seinen klinischen Nutzen vermitteln könnte. Als Modelle wurden die differenzierte humane Monozytenlinie MM6, die humane hepatische Linie HepG2 und frisch präparierte humane Monozyten verwendet. Die Expression der Scavenger Rezeptoren CD36, SR-BI, LOX-1, des LDL-R, des Cholesterinexporters ABCA-1, des Transkriptionsfaktors PPAR und von -Aktin wurden durch reverse Transkription der spezifischen mRNAs, nachfolgende PCR und Quantifizierung der Amplifikate über HPLC bestimmt. Die Proteinexpression von CD36 und PPAR wurden mittels spezifischer Antikörper nach Fluoreszenzmarkierung im FACS gemessen. Die Änderung des zellulären Cholesteringehalts durch Inkubationen mit Nikotinsäure, oxLDL und delipidiertem HDL wurde nach zellulärer Lipidextraktion in einem adaptierten enzymatischen Assay gemessen. Im Makrophagenmodell stimulierte die Inkubation der Zellen mit Nikotinsäure schon nach 3 h und mindestens bis 48 h anhaltend die Transkription von PPAR, des PPAR abhängigen Scavenger-Rezeptors CD36 und des zellulären Cholesterinexporters ABCA-1. Dagegen blieb die Transkription des ApoB-spezifischen LDL-R und des Scavenger-Rezeptors LOX-1 unverändert. Vergleichbare Effekte waren auch am Hepatozytenmodell nachweisbar. Die Effekte auf die PPAR und CD36 Expression waren tendenziell auch auf Proteinebene nachweisbar. Die Stimulation von CD36 und ABCA-1 durch Nikotinsäure konnte auf RNA-Ebene auch an frisch präparierten peripheren Monozyten von Normalpersonen nachgewiesen werden. Die funktionelle Bedeutung der Nikotinsäureeffekte wurde in einem Cholesterin-Aufnahme und Efflux-Assay überprüft. Dabei reduzierte die Inkubation mit Nikotinsäure den zellulären Cholesteringehalt basal und unter oxLDL-Exposition und steigerte den zellulären Cholesterin-Efflux auf delipidiertes HDL. Diese neuen Effekte der Nikotinsäure auf mehrere Lipid-Rezeptoren und -Transporter können Lipidablagerungen in der Gefäßintima reduzieren, der Schaumzellbildung entgegenwirken und durch vermehrte Einschleusung von zellulärem Cholesterin in den reversen Cholesterintransport zurück zur Leber die HDL-Spiegel erhöhen. Diese peripheren Effekte der Nikotinsäure ergänzen die Effekte von Statinen und liefern ein Rational für einen potentiell überadditiven klinischen Nutzen durch die Kombinationstherapie, die gegenwärtig klinisch geprüft wird.