POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Bei Yersinia enterocolitica handelt es sich um einen humanpathogenen Keim, der ein Typ III Sekretionssystem (T3SS) zur Translokation von Effektorproteinen in Wirtszellen nutzt, um die Zellen zu paralysieren und der angeborenen Immunantwort zu entgehen. Die homologen Proteine YscM1 und YscM2, die bisher als funktionell äquivalent galten, wurden als Interaktionspartner der Phosphoenolpyruvatcarboxylase (PEPC) identifiziert. Die PEPC trägt durch die Bildung von Oxalacetat zur Auffüllung des Citratzyklus bei. Daher wurde die Interaktion der PEPC mit den YscM Proteinen in vivo und in vitro untersucht. Darüber hinaus wurden verschiedene weitere T3SS-Proteine aus Y. enterocolitica wie die Chaperone SycO, SycE und SycD und YscY/YscX charakterisiert und auf eine mögliche Verknüpfung zu den YscM Regulatoren überprüft. Das Ziel dieser Arbeit war die Charakterisierung verschiedener Regulatorproteine des Typ III Sekretionssystems, die ein regulatorisches Netzwerk bilden könnten.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Für die Assemblierung des bakteriellen Flagellums müssen die externen Untereinheiten an ihren Bestimmungsort transportiert werden. Dies geschieht wie bei allen Gram-negativen Bakterien auch in Escherichia coli mit Hilfe des flagellären Typ III-Sekretionssystems (fTTSS). Dabei ist der flagelläre Exportapparat mit seinen cytoplasmatischen Komponenten FliH, FliI und FliJ von Bedeutung. Der Exportapparat ist im Basalkörper des Flagellums lokalisiert und liefert die Energie für den Export der Substrate, wie z. B. das Hakenkappenprotein FlgD und das Hakenprotein FlgE. Die Substrate benötigen ihrerseits ein Signal für die Erkennung durch den Exportapparat. Im Rahmen dieser Arbeit konnten Interaktionen zwischen den löslichen Komponenten FliH, FliI und FliJ des flagellären Typ III-Sekretionssystems von E. coli K12 festgestellt werden. Zudem wurden begonnene Arbeiten zur Lokalisation und Beschaffenheit einer Erkennungssequenz für den Exportapparat beim Substrat FlgD weitergeführt und auch das Substrat FlgE näher untersucht. Mit Hilfe der Affinitätschromatographie konnte ein Komplex, bestehend aus FliH, FliI und FliJ, aus dem Cytosol von E. coli BL21 (DE3) präpariert werden. Dafür wurden zuvor die Gene fliH, fliI und fliJ zusammen in den Vektor pASK-IBA 45 kloniert und dann exprimiert. Parameter für Interaktionen und Affinitäten zwischen zuvor einzeln präpariertem FliH, FliI und FliJ konnten mit Hilfe von isothermaler Titrationskalorimetrie (ITC) und Surface Plasmon Resonance (SPR) ermittelt werden. Unter Verwendung eines bereits etablierten Testsystems für das fTTSS in E. coli CC181-Mutanten konnte der Export der Hybridproteine FlgDPhoA bzw. FlgEPhoA untersucht werden. Dabei wurden von FlgD auch N- oder C-terminale Verkürzungen sowie auf Nukleotid- oder Aminosäureebene veränderte Sequenzen eingesetzt. Die Untersuchungen ergaben ein Signal für den Export des Hakenkappenproteins FlgD auf Proteinebene und nicht auf der Ebene der mRNA. Zudem konnte das Exportsignal auf die N terminalen 71 Aminosäuren von FlgD eingegrenzt und eine Bedeutung des möglichen zweiten Startcodons an Position 52 in flgD für den Export ausgeschlossen werden. FlgE wurde in seiner gesamten Länge vom fTTSS transportiert. Im Gegensatz zu FlgD führten jedoch alle C-terminalen Verkürzungen von FlgE zum Transportverlust.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Die Pathogenität von Y. enterocolitica O:8 ist gekoppelt an das Vorhandensein des 70 kb großen Virulenzplasmides (pYV), das für die Gene eines Typ-III-Sekretionssystems kodiert und die Translokation von 6 Yop Effektorproteinen (YopE, YopH, YopM, YopO, YopP und YopT) in das Zytosol eukaryontischer Zellen ermöglicht. Intrazellulär interagieren Yop Proteine dabei mit verschiedenen Zellstrukturen und Signaltransduktionskaskaden, wodurch es zu einer Modulation der Immunantwort im Wirtsorganismus kommt. Durch systematische Mutagenese der yop-Gene und Untersuchung der yop Deletionsmutanten im Mausinfektionsmodell konnte in dieser Arbeit ein Einfluss der Yop Proteine auf die Virulenz und die Auslösung einer Immunantwort nachgewiesen werden. Die Translokation eines heterologen Antigens (YopE/LLO) durch das Typ-III-Sekretionssystem führte zur Induktion einer spezifischen CD4 und CD8 T-Zellantwort gegen Listeriolysin O (LLO) und ermöglichte die Verwendung von Y. enterocolitica als oralen Lebendimpfstoff zur Immunisierung gegen eine Listeria monocytogenes Wildtyp Infektion.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Zur Strukturanalyse des Typ III-Sekretionssystems, kodiert von der Salmonella- Pathogenitätsinsel 2, wurden polyklonale Antikörper gegen rekombinante Proteine des Sekretionsapparates erzeugt. Zur Entfernung unspezifischer Bindungen wurden die polyklonalen Antiseren an eine CNBr-aktivierte Sepharose 4B, gekoppelt mit Salmonella- Lysaten, präadsorbiert. Anschließend konnten die Antiseren für verschiedene Immunoblotanalysen eingesetzt werden. Durch eine Membranfraktionierung mit N-Lauroyl-Sarcosin konnte die subzelluläre Lokalisation der Apparatsproteine SsaC, SsaN, SsaV und SsaB bestimmt werden. Dabei wurde SsaC in der äußeren, SsaN und SsaV in der inneren Membranfraktion nachgewiesen. SsaB war nur in der löslichen Fraktion detektierbar. Um mögliche Proteinkomplexe innerhalb des Sekretionsapparates zu identifizieren, wurde der membranpermeable Quervernetzer DSS eingesetzt. So konnten für das Sekretin-bildende Protein SsaC und für das putative Translokatorprotein SseD oligomere Strukturen nachgewiesen werden. Bei der Untersuchung der Effekte von Mutationen in verschiedenen SPI2-Genen auf die Synthese einzelner Proteine des Sekretionsapparates wurde deutlich, dass das Zwei- Komponenten-Regulationssystem SsrAB sowie alle untersuchten Apparatsproteine eine essentielle Rolle in der Synthese bzw. im Aufbau des Sekretionsapparates spielen. Lediglich eine Mutation in ssaV oder ssaG hatte einen weniger starken Effekt auf die Synthese der Apparatsproteine, so dass SsaC in Wildtyp-Mengen detektiert werden konnte. Darüber hinaus wurde die Synthese einzelner Proteine des Sekretionsapparates auch in Abhängigkeit des pH-Wertes analysiert. Nach einer Absenkung des pH-Wertes auf pH 5,8 nahmen die Proteinmengen weitaus stärker zu als ohne pH-Wert-Veränderung. Dabei konnte nachgewiesen werden, dass dieser Unterschied in den synthetisierten Proteinmengen, in Abhängigkeit des pH-Wertes, nicht auf eine verstärkte Transkription zurückzuführen ist und dass es sich um einen SPI2-spezifischen Effekt handelt. Die Kinetik des Aufbaus des Sekretionsapparates wurde anhand der Sekretion des putativen Translokatorproteins SseB bestimmt. 1 h nach der Absenkung des pH-Wertes auf pH 5,8 wurde eine intrazelluläre Akkumulation von SseB detektiert. Zu diesem Zeitpunkt konnte kein SseB auf der Zelloberfläche lokalisiert werden. Eine Sekretion von SseB wurde erst 3 h nach der Säure-Induktion beobachtet. Demzufolge muss der Sekretionsapparat in diesem Zeitraum vollständig aufgebaut und funktional intakt sein, um die pH-induzierte Sekretion zu ermöglichen. Das SPI2-Protein SsaB (SpiC) ist für die Sekretion der putativen Translokatorproteine SseB und SseC erforderlich. So könnte SsaB eine Komponente des Typ IIISekretionsapparates darstellen oder die Funktion eines Chaperones für die Effektorproteine, bzw. eines GSP-spezifischen Chaperones für das Sekretin-bildende Protein SsaC besitzen. Ebenso wäre es möglich, dass SsaB für die korrekte Lokalisation von SsaC in der äußeren Membran verantwortlich ist. Aus S. typhimurium konnten die als Nadel-Komplexe bezeichneten makromolekularen Strukturen, die den gesamten Sekretionsapparat darstellen, isoliert aber nicht eindeutig identifiziert werden. Da in einer SPI1-Mutante, die einen Defekt im Typ IIISekretionsapparat hat, keine Nadel-Komplexe mehr angereichert werden konnten, liegt die Vermutung nahe, dass es sich bei den Nadel-Komplexen, isoliert aus S. typhimurium- Wildtyp, um die SPI1-Strukturen handelt.