POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 06/06
Diese Arbeit beschäftigt sich mit der Expression des astrozytenspezifischen Enzyms Glutaminsynthetase in Ergänzung zum gliaspezifischen Marker Repo, um Gliazellen, die mit der embryonalen Entwicklung des Zentralkomplexes in Schistocerca gregaria assoziiert sind, zellulär und molekular zu charakterisieren. Der Zentralkomplex ist ein modulares System neuropiler Strukturen im Mittelhirn aller Insekten, und ist in vielen Verhaltensvorgängen wie Laufen, Fliegen, Stridulation und Ernährung involviert. In der Heuschrecke entwickeln sich die Neuropile des Zentralkomplexes im Laufe der Embryogenese und sind zum Zeitpunkt des Schlüpfens funktionsfähig. Trotz großer Kenntnisse neuronaler Aspekte über die Entwicklung des Zentralkomplexes verbleibt die Funktion der Gliazellen unklar. In dieser Arbeit wurde das Expressionsmuster des astrozytenspezifischen Enzyms Glutaminsynthetase (GS) und des gliaspezifischen Homöobox Gens reversed polarity (repo) in Kombination mit der negativen Expression des neuron-spezifischen Markers Meerrettich Peroxidase (HRP) zur Identifizierung glialer Zellen benutzt. Doppelfärbungen zeigen, dass alle GS-positiven Zellen, die mit dem Zentralkomplex assoziiert sind, gleichzeitig Repo-positiv sind. Zum ersten Mal konnte ich durch diese Kombination nicht nur Zellkörper, sondern auch Projektionen (Gliapodien) der Gliazellen sichtbar machen. Während der Embryogenese, also noch vor der Entwicklung des Zentralkomplexes, formen Gliazellen eine zusammenhängende Population, die aus der Pars intercerebralis in die Region der Faserbündel einwandert. Anschließend verteilen sich die Gliazellen neu und umhüllen jedes der einzelnen Module des Zentralkomplexes. Innerhalb der einzelnen Neuropile des Zentralkomplexes sind keine glialen Zellkörper zu finden. Rekonstruktionen einzelner Zellen zeigen Populationen von Gliazellen, die ausgedehnte umhüllende Projektionen um die Neuropile des Zentralkomplexes, wie den Zentralkörper, senden, während eine andere Population von Gliazellen säulenartige Verzweigungen in den Zentralkörper hinein projiziert. Solche Verzweigungen in den Modulen des Zentralkomplexes sind erst nach Fertigstellung der Neuroarchitektur zu erkennen. Daher kann man annehmen, dass diese Verzweigungen auf ein zuvor entstandenes Gerüst von Neuronen oder Tracheen projizieren. Höchstwahrscheinlich sind diese Gliaprojektionen in die Transmitterregulation innerhalb des Neuropils involviert. Da Gliazellen weitreichende Projektionen (Gliapodien) in und um die Mittelhirnneuropile senden, wurden in gefrorenen Hirnschnitten intrazelluläre Injektionen durchgeführt um zu erforschen, ob diese Gliazellen ein zelluläres Netzwerk via Zellkopplung im Verlauf der Embryogenese bilden. Färbungen individueller Zellen, die an vier unterschiedlichen Injektionsstellen um den Zentralkörper lokalisiert sind, zeigen eine Population gekoppelter Zellen, deren Anzahl und räumliche Verteilung stereotypisch für jeden der Injektionspunkte ist. Darüber hinaus sind sie sowohl bei 70%igem wie auch bei einem embryonalen Entwicklungsstand von 100% miteinander vergleichbar. Anschließende immunhistochemische Experimente bestätigen, dass es sich bei den gekoppelten Zellen um astrozytenähnliche Gliazellen handelt. Durch Hinzufügen von n-Heptanol in das Puffermedium wurde die Zellkopplung verhindert. Da die Zellkopplung auch ohne direkten intersomalen Kontakt auftritt, könnten die erheblichen Verzweigungen der Gliapodien, die sich im Laufe der Embryogenese ausbreiten, involviert sein. Durch die Datenerhebung aller Injektionspunkte kann darauf geschlossen werden, dass die Gliazellen, welche den Zentralkörper umrunden, ein Netzwerk gekoppelter Gliazellen bilden, das als Positionierungssystem der sich entwickelnden Neuropile des Zentralkomplexes dient.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06
Die α-Synuclein-Aggregation ist ein charakteristisches pathologisches Schlüsselereignis bei neurodegenerativen Erkrankungen, wie Morbus Parkinson (MP) und Demenz mit Lewy- Körperchen (DLB). Neuere Untersuchungen weisen darauf hin, dass α-Synuclein-Oligomere die wesentliche neurotoxische Spezies darstellen. Der zugrundeliegende Mechanismus konnte dabei noch nicht vollständig geklärt werden. In der vorliegenden Arbeit wurde der Effekt verschiedener α-Synuclein-Oligomer-Präparationen auf die synaptische Übertragung in autaptischen neuronalen Kulturen untersucht. Applikationen von großen α-Synuclein- Oligomeren erhöhten selektiv die Amplitude von evozierten AMPA-Rezeptor-vermittelten synaptischen Strömen innerhalb von Minuten. Die Applikation von kleinen Oligomere erhöhte die Amplitude hingegen nicht. Die Amplituden der NMDA-Rezeptor-vermittelten synaptischen Ströme wurden von keiner der beiden Oligomerspezies beeinflusst. Die Biotinylierung von AMPA-Rezeptoren in akuten Hirnschnitten zeigte eine gesteigerte Rezeptorinsertion. Dies deutet auf einen postsynaptischen Mechanismus hin, bei dem die Ca2+-Konzentration erhöht wird. Weiterhin konnte bei den großen α-Synuclein-Oligomeren eine Veränderung an der Präsynapse beobachtet werden. Sowohl die Frequenz der spontanen postsynaptischen Ströme (sEPSCs) in kultivierten Neuronen als auch die synaptische Vesikelausschüttung in Synaptosomenpräparationen wurden nach Applikation großer α- Synuclein-Oligomere erhöht. Um zu untersuchen, ob α-Synuclein-Oligomere, induziert durch die synaptische Transmission, einen Effekt auf das neuronale Überleben hatten, wurden MTT-Assays durchgeführt. Es konnte ein Anstieg der Glutamat-Toxizität in Gegenwart von großen α-Synuclein-Oligomeren gezeigt werden, was auf einen exzitatorischen Mechanismus im neuronalen Überleben hindeutet.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Der häufigste neuronale Verbindungstyp im Riechkolben (Bulbus olfactorius) der Säuger ist die reziproke dendrodendritische Synapse zwischen den glutamatergen Mitralzellen (den Prinzipalneuronen des Bulbus) und den GABAergen Körnerzellen. Die dendritische Kalziumdynamik der axonlosen Körnerzellen ist aufgrund ihrer dendritischen Freisetzung von besonderem Interesse und zeichnet sich durch einen ungewöhnlich langsamen Verlauf aus. Zwei mögliche Ursachen dafür stehen im Zentrum dieser Dissertation: (1) Der unspezifische Kationenstrom ICAN, der in Körnerzellen nach synaptisch evozierten Aktionspotenzialen beobachtet wird, und (2) die endogene Kalziumdynamik der Körnerzellen. Diese Phänomene wurden mittels Zwei-Photonen-Laser-Scan-Mikroskopie und simultaner Einzelzellableitung in akuten Hirnschnitten von adulten Mäusen untersucht. In dieser Arbeit wurde die molekulare Identität von ICAN als Kombination aus TRPC1 und TRPC4 (transient receptor potential classic) vermittels Tieren mit Deletionen der entsprechenden Gene aufgeklärt (Kollaboration mit Prof. Marc Freichel, Homburg). Im Vergleich zum Wildtyp fehlten in der TRPC1/4 Doppeldeletion ICAN und der assoziierte langsame Ca2+-Einstrom. Damit wurde erstmals eine synaptische Funktion von TRPC-Kanälen im Bulbus nachgewiesen. Weiterhin wurde ein bislang unbekannter Aktivierungsweg von TRPC-Kanälen entdeckt, nämlich über NMDA-Rezeptoren. Bezüglich der endogenen Kalziumdynamik wurde festgestellt, dass nicht etwa eine große Pufferkapazität dem langsamen Abbau von Ca2+-Signalen zugrunde liegt, sondern vielmehr eine geringe Extrusionsrate. Damit sind beide Mechanismen – TRPC-Kanäle und endogene Kalziumdynamik – für den langsamen Verlauf von Ca2+-Transienten in Körnerzellen mitverantwortlich.