POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
Bisher wurden sieben verschiedene TRPC-Kanäle (für „classical (oder canonical) transient receptor potential“) beschrieben, die in der Plasmamembran tierischer Zellen lokalisiert sind. Diese Kanäle gehören zu einer von sieben Familien der TRP-Ionenkanäle, deren Mitglieder an einer Vielzahl von physiologischen Funktionen im Körper beteiligt sind. Im Jahr 2005 konnten in Patienten, die an einer autosomal dominant vererbten Form der fokalen segmentalen Glomerulosklerose (FSGS) leiden, Mutationen der TRPC6-Kanäle identifiziert werden, die zu einer Überaktivität dieser Kanäle führen ( sog. “gain-of-function”-Mutationen). Etwas später (2006) wurden aber auch einige FSGS Patienten entdeckt, die keine „gain-of-function“-Mutationen im TRPC6 sondern funktionslose, sog. „loss of function“-Mutationen der Phospholipase Cɛ (PLCɛ) exprimierten. Diese Daten deuten auf eine funktionelle Interaktion zwischen TRPC6 und PLCɛ in Zellen der Niere hin, die bisher noch nicht näher untersucht worden ist. Beide Proteine könnten sich auch als Zielstrukturen für eine Pharmakotherapie der FSGS eignen. Die FSGS äußert sich durch eine Störung des glomerulären Filtrationsprozesses in der Niere, wodurch es unter anderem zu einer Proteinurie kommt. In vielen Fällen führt die FSGS terminal zur ESRD („end stage renal disease“), also zu einem akuten Nierenversagen. Glomeruli bilden die filtrierende Einheit der Niere, wobei der eigentliche Filter, welcher im Inneren des Glomerulus lokalisiert ist, aus Podozyten, Endothelzellen und der dazwischen befindlichen Basalmembran besteht. Da TRPC-Kanäle unter anderem in Podozyten exprimiert werden, liegt die Annahme nahe, dass diese Zellen durch den vermehrten Ca2+-Einstrom mutierter Kanäle bei der FSGS krankhaft verändert sein könnten. Aus diesem Grund wurden in dieser Arbeit Podozyten aus Wildtyp (WT)-Mäusen sowie TRPC6 (TRPC6-/-)- und PLCε (PLCε-/-)-gendefizienten Tieren isoliert und umfangreich durch den Nachweis podozytenspezifischer Markerproteine charakterisiert. Zellfunktionen wie Proliferation, Aktinstressfaserbildung, RhoA- und TRPC6-Aktivität wurden vergleichend in den Zellen der verschiedenen Genotypen analysiert. Es zeigte sich, dass PLCε zwar mit TRPC6 in Zellen des Nierenkortex interagieren kann, aber PLCε-/--Podozyten funktionell in ihrer Angiotensin II-induzierten Aktinstressfiberbildung und GTPγS-induzierten TRPC6-Aktivierung nicht von Wildtyp-Podozyten unterschieden werden konnten, was auf eine redundante Funktion der PLCε-vermittelten TRPC6-Aktivierung hindeutet. Eine Aktivierung von TRPC6 durch PLCε wird wahrscheinlich durch die Stimulation der wesentlich stärker exprimierten anderen PLC-Isoform PLCβ1, zumindest in Podozyten, überdeckt. Eine Expression der klonierten murinen TRPC6-FSGS-Mutanten in primär isolierten Wildtyp- und TRPC6-defizienten Podozyten war für die Zellen lethal, wodurch die Pathogenität eines erhöhten TRPC6-induzierten Ca2+-Einstroms für diese Zellen und damit den gesamten Nierenglomerulus in FSGS-Patienten noch einmal nachgewiesen werden konnte. In Zukunft könnten deswegen spezifische TRPC6-Inhibitoren eine Therapieoption zur Linderung der Symptome bei FSGS-Patienten sein.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 06/06
Desmosomen sind spezialisierte Haftstrukturen, die die Stabilisierung des Zellverbundes gegenüber Zug- und Scherkräften gewährleisten. Dazu binden desmosomale Cadherine extrazellulär an Haftmoleküle benachbarter Zellen und sind intrazellulär unter anderem über Desmoplakin (DP) und Plakoglobin (PG) an Keratinfilamenten verankert. Insbesondere für das desmosomale Cadherin Desmoglein 3 (Dsg3), das sowohl innerhalb als auch außerhalb der Desmosomen vorkommt, wurde eine wichtige Bedeutung als Adhäsionsprotein in Keratinozyten nachgewiesen. Trotz ihrer Funktion, Widerstand gegen hohe mechanische Belastungen zu vermitteln, sind Desmosomen dynamische Strukturen, die einem stetigen Umbau unterliegen. Die Notwendigkeit einer genauen Regulierung des desmosomalen Auf- und Abbaus wird durch das Vorkommen zahlreicher vererbbarer und autoimmuner Erkrankungen unterstrichen. In der vorliegenden Arbeit wurden Mechanismen, die der geordneten Assemblierung der Desmosomen und der Disassemblierung nach Störung der desmosomalen Zell-Zell-Haftung unterliegen, untersucht. Im ersten Teil der vorliegenden Studien standen die Vorgänge der Desmosomenbildung in humanen Keratinozyten im Fokus. Adhärenskontakte und deren Zusammenwirken mit Actinfilamenten spielen eine wichtige Rolle in der Ausbildung der Desmosomen. Für die Actin-Bindeproteine Adducin und Cortactin wurde durch siRNA-Interferenzstudien eine essentielle Funktion für die Vermittlung der desmosomalen Zell-Zell-Haftung nachgewiesen. Die siRNA-induzierte Depletion von Adducin verursachte eine Reduktion der zytoskelettal-gebundenen Dsg3-Moleküle, was mit einer reduzierten Membranmobiltät korrelierte. Für Cortactin wurde eine direkte Interaktion mit Dsg3 mittels zweier unabhängiger molekularbiologischer Methoden nachgewiesen. Dies deutet auf eine direkte Rolle des Cortactins in der Regulierung der Desmosomen hin. Die siRNA-induzierte Depletion von E-Cadherin führte zum Verlust der membranständigen Lokalisation von Dsg3 und zu einer verminderten Verankerung der Dsg3-Moleküle innerhalb der zytoskelettalen Proteinfraktion. Es wurde ein Signalkomplex aus extradesmosomalen Dsg3, E-Cadherin und der Tyrosinkinase Src identifiziert, dessen Stabilität durch Src reguliert wurde. Hierbei wurden Dsg3 und E-Cadherin an Tyrosinresten durch Src phosphoryliert, deren Aktivität sowohl für die Inkorporation von Dsg3 in die Desmosomen als auch für die Reifung der Desmosomen zu stabilen Haftkontakten essentiell war. Im zweiten Teil der vorliegenden Arbeit wurden die Prozesse der desmosomalen Disassemblierung nach Inkubation mit Pemphigus vulgaris-Autoantikörpern (PV-IgG) analysiert.PV ist eine etablierte Modellerkrankung zur Untersuchung der Desmosomen-vermittelten Zelladhäsion in Keratinozyten. Die Bindung der gegen Dsg1 und Dsg3 gerichteten PV-IgGs induziert eine Reduktion der Dsg3-Proteinmengen und eine Aktivierung verschiedener Signalwege, u.a. von RhoA und PKC. Da diese Signalwege ebenfalls Adducin regulieren und PV-IgGs eine Umorganisierung des Actin-Zytoskeletts verursachen, die durch exogene Aktivierung von RhoA verhindert wird, wurde das Zusammenspiel von PV-IgGs, RhoA und Adducin untersucht. Die protektive Wirkung der RhoA-Aktivierung auf die Zell-Zell-Haftung und die Verteilung von Dsg3 nach Applikation der PV-IgGs war sowohl von der Expression als auch von der Phosphorylierung von Adducin an Serin726 abhängig. Interessanterweise verursachten PV-IgGs über den Ca2+-Einstrom und über PKC, unabhangig von RhoA, eine schnelle Phosphorylierung von Adducin an Serin726. Die durch den Ca2+-Einstrom- und PKC-vermittelte Phosphorylierung von Adducin könnte somit einen Rettungsmechanismus der Keratinozyten darstellen, der in Reaktion auf die PV-IgG-Bindung einsetzt und die desmosomale Assemblierung induziert. Ferner wurde die reduzierte Verankerung der Keratinfilamente an Desmosomen, ein weiteres Merkmal der PV-Pathogenese, mit der Aktivität von PKC korreliert. Keratinfilamente, die einer dynamischen Regulierung durch p38MAPK unterliegen, lösen sich in Reaktion auf PV-IgGs von den Desmosomen und akkumulieren perinukleär. Dieses Phänomen der Zytokeratin-Retraktion wurde durch Inkubation mit Tandempeptid (TP), das die Transinteraktion von Desmogleinen stärkt, verhindert. Zusammenfassend liefern die in dieser Arbeit gewonnenen Daten neue Erkenntnisse über die Mechanismen des desmosomalen Umsatzes. Adducin und E-Cadherin nehmen eine essentielle Rolle in der Ausbildung und Aufrechterhaltung der desmosomalen Haftstrukturen ein. Untersuchungen der pathogenen Effekte der PV-IgGs unterstreichen die hohe Relevanz eines intakten Actin- und Keratin-Stützgerüsts für die interzelluläre Haftung von Keratinozyten. Diese Befunde könnten in Zukunft auch von medizinischer Relevanz für die Therapie von Pemphigus-Patienten sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
TRPA1 ist ein Kationenkanal aus der Familie der "transient receptor potential" (TRP)-Kanäle. Die Expression und Funktion dieses Ionenkanals wurde bisher hauptsächlich in neuronalen Zellen, insbesondere in Schmerzneuronen, untersucht. Dort übt TRPA1 eine Warnfunktion aus und fungiert als Sensormolekül für Reizstoffe. Dementsprechend wird TRPA1 durch eine Reihe von irritativen oder toxischen Substanzen direkt aktiviert, z. B. durch Allylisothiocyanat (AITC), Formalin, Zigarettenrauch, Tränengas oder Ozon. Im Einklang mit dieser Funktion wurde eine neuronale Expression von TRPA1 in vielen Grenzflächen des Körpers, z. B. in der Haut, im Gastrointestinaltrakt oder in der Lunge gefunden. Im Respirationstrakt konnte TRPA1 in sensorischen Nervenendigungen in den luftleitenden Atemwegen nachgewiesen werden, wo seine Aktivierung durch inhalative Schadstoffe mit entzündlichen und asthmatoiden Reaktionen in Verbindung gebracht wird. Im Gegensatz zur gut charakterisierten Rolle von TRPA1 in Neuronen ist bisher noch relativ wenig über die Expression von TRPA1 in non-neuronalen Zellen bekannt. Auch eine Funktion von TRPA1 in Tumoren ist bisher weitgehend unerforscht. In dieser Arbeit wurde eine Reihe von Zelllinien des Kleinzelligen Bronchialkarzinoms (engl.: "small cell lung cancer", SCLC) im Hinblick auf die Expression von TRP-Kanälen und im Speziellen von TRPA1 untersucht. Dabei zeigte sich, dass TRPA1 in SCLC-Zelllinien exprimiert wird und seine Aktivierung zur Stimulierung von Tumor-relevanten Signalkaskaden führt. Die Aktivierung von TRPA1 durch AITC oder durch ein wässriges Extrakt aus Zigarettenrauch führte in diesen Zellen zu einer Erhöhung der intrazellulären Calciumionenkonzentration ([Ca2+]i). Diese Ca2+-Erhöhung erwies sich als transmembranärer Ca2+-Einstrom und konnte von TRPA1-Inhibitoren blockiert werden. Darüber hinaus führte die TRPA1-abhängige Erhöhung der [Ca2+]i zu einer Aktivierung der extrazellulär signalregulierten Kinase ERK1/2 über einen Src-abhängigen Mechanismus. Des Weiteren wirkte eine TRPA1-Aktivierung in SCLC-Zellen anti-apoptotisch und förderte das Überleben der Zellen in serumfreiem Medium. Umgekehrt hatte die siRNA-vermittelte Herunterregulierung von TRPA1 eine schwere Wachstumsreduzierung von SCLC-Zellen in semisolidem Medium zur Folge. Die potentielle tumorbiologische Relevanz dieser Befunde wird durch die Tatsache unterstrichen, dass in humanen Tumorproben von Patienten mit SCLC eine gegenüber non-SCLC-Proben und normalem Lungengewebe deutlich erhöhte TRPA1-Expression zu verzeichnen war. Interessanterweise fand sich eine funktionelle Expression von TRPA1 außerdem auch in zwei Pankreaskarzinom-Zelllinien sowie einer Lungenzelllinie mit Alveolarzell-Typ-II-Charakteristika. Die Tatsache, dass eine Aktivierung von TRPA1 das Überleben von SCLC-Zellen förderte, weist auf potentielle Tumor-promovierende Wirkungen von TRPA1-Aktivatoren hin. Bekanntermaßen stimulieren zahlreiche Inhaltsstoffe des Tabakrauchs den TRPA1-Kanal und Nikotinabusus ist einer der Hauptfaktoren bei der Entstehung des SCLC. Insofern weist die vorliegende Untersuchung auf einen möglichen neuen Signalweg hin, der neben den etablierten genotoxischen Effekten von Tabakrauch für die Entstehung von Lungentumoren wichtig ist. Weiterhin sind die hier vorgestellten Befunde ein Anknüpfungspunkt für weitere Studien zur Rolle von TRPA1 im Pankreaskarzinom und in epithelialen Zellen in der Lunge.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Der häufigste neuronale Verbindungstyp im Riechkolben (Bulbus olfactorius) der Säuger ist die reziproke dendrodendritische Synapse zwischen den glutamatergen Mitralzellen (den Prinzipalneuronen des Bulbus) und den GABAergen Körnerzellen. Die dendritische Kalziumdynamik der axonlosen Körnerzellen ist aufgrund ihrer dendritischen Freisetzung von besonderem Interesse und zeichnet sich durch einen ungewöhnlich langsamen Verlauf aus. Zwei mögliche Ursachen dafür stehen im Zentrum dieser Dissertation: (1) Der unspezifische Kationenstrom ICAN, der in Körnerzellen nach synaptisch evozierten Aktionspotenzialen beobachtet wird, und (2) die endogene Kalziumdynamik der Körnerzellen. Diese Phänomene wurden mittels Zwei-Photonen-Laser-Scan-Mikroskopie und simultaner Einzelzellableitung in akuten Hirnschnitten von adulten Mäusen untersucht. In dieser Arbeit wurde die molekulare Identität von ICAN als Kombination aus TRPC1 und TRPC4 (transient receptor potential classic) vermittels Tieren mit Deletionen der entsprechenden Gene aufgeklärt (Kollaboration mit Prof. Marc Freichel, Homburg). Im Vergleich zum Wildtyp fehlten in der TRPC1/4 Doppeldeletion ICAN und der assoziierte langsame Ca2+-Einstrom. Damit wurde erstmals eine synaptische Funktion von TRPC-Kanälen im Bulbus nachgewiesen. Weiterhin wurde ein bislang unbekannter Aktivierungsweg von TRPC-Kanälen entdeckt, nämlich über NMDA-Rezeptoren. Bezüglich der endogenen Kalziumdynamik wurde festgestellt, dass nicht etwa eine große Pufferkapazität dem langsamen Abbau von Ca2+-Signalen zugrunde liegt, sondern vielmehr eine geringe Extrusionsrate. Damit sind beide Mechanismen – TRPC-Kanäle und endogene Kalziumdynamik – für den langsamen Verlauf von Ca2+-Transienten in Körnerzellen mitverantwortlich.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Hintergrund und Ziele der Arbeit: Die Freisetzung von Serotonin aus enterochromaffinen (EC-)Zellen der Darmschleimhaut ist das Schlüsselereignis bei der Regulation der enterischen Motilität und Sekretion. Im Rahmen dieser Arbeit sollte untersucht werden, ob nasale olfaktorische Rezeptoren auch in EC-Zellen der menschlichen Darmschleimhaut exprimiert werden, und ob deren Liganden – Duftstoffe und Gewürze – hier eine Serotoninfreisetzung bewirken können. Methoden: Die Expression der olfaktorischen Rezeptoren wurde durch RT-PCR in mittels Laser-assistierter Mikrodissektion gewonnenen humanen EC-Zellen, in humanen Dünndarmbiopsaten sowie in einer von humanen EC-Zellen abstammenden Karzinoidzelllinie (BON) analysiert. Die Aktivierung von EC-Zellen durch Duftstoffe wurde durch digitales Fluoreszenz-Imaging mit dem Ca2+-bindenden Farbstoff Fluo-4 untersucht. Die Serotoninfreisetzung wurde im Zellkulturüberstand durch Serotonin-ELISA sowie mittels Amperometrie unter Verwendung von direkt auf Einzelzellen platzierten Carbonfaser-Mikroelektroden gemessen. Ergebnisse: Es wurden vier olfaktorische Rezeptoren (OR73, hOR17-7/11, OR1G1 und hOR17-210) in mikrodissektierten humanen EC-Zellen, Dünndarmbiopsaten und der Karzinoidzelllinie (BON) exprimiert gefunden. Die hierauf durchgeführten funktionellen Untersuchungen ergaben, dass die Liganden der identifizierten olfaktorischen Rezeptoren einen Ca2+-Einstrom, eine Anhebung des intrazellulären Ca2+-Spiegels und eine nachfolgende Serotoninfreisetzung aus den Zellen bewirken. Schlussfolgerungen: Die Ergebnisse der vorliegenden Arbeit weisen darauf hin, dass Duftstoffe und Gewürze im luminalen Kompartiment des menschlichen Gastrointestinaltrakts über die Stimulation von olfaktorischen Rezeptoren auch in vivo eine Serotoninfreisetzung aus EC-Zellen bewirken könnten. Da Serotonin als wichtigster Regulator von Darmmotilität und -sekretion fungiert und pathophysiologisch eine wesentliche Rolle u. a. bei Erbrechen, Diarrhoe und dem Reiz-darmsyndrom spielt, könnten die in dieser Arbeit erstmals beschriebenen intestinalen olfaktorischen Rezeptoren mögliche neue Ziele in der Pharmakotherapie von Erkrankungen und Motilitätsstörungen des Gastrointestinaltrakts darstellen.