Podcasts about tim13

  • 4PODCASTS
  • 5EPISODES
  • 25mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 3, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about tim13

Latest podcast episodes about tim13

Chlani
TOP 22 CHLANI TRENUTKOV 2022

Chlani

Play Episode Listen Later Jan 3, 2023 25:05


EPIZODA 61Poljubne donacije: https://tinyurl.com/2v66h9ycHvala za super leto, brez vas ni nas. Pred nami je novo in še boljše leto in upamo, da bomo skupaj še naprej ustavrjali super trenutke.TIMESTAMPS00:00 - Intro00:11 - Jure in kradljive opice01:25 - Robert Kladnik in "slušalke"02:12 - Rimanićeva "break up" zgodba06:55 - Kako pokazat rit08:07 - JunioR oceni Mene zebe09:55 - Maja Grintal je okusna11:00 - Masayah freestyle11:50 - Damjan Murko bullyja Mateja12:25 - Iskanje nove sovoditeljice13:09 - Nov sovoditelj Tim13:47 - Zmaga v Cannesu14:50 - Drill release party15:54 - Tič in torta16:35 - 1st anniversary podcasta17:06 - Gaja Prestor fuka na svoj komad17:46 - David Amaro poje18:07 - Nika Krmec roleplaya winxico19:26 - Biznis se dela v savni20:05 - Bullyjanje Anabel21:24 - Tina Mentol in bel madež22:15 - Chlani pri Predsedniku Pahorju23:46 - Sex Eva Lune na jetskiju24:55 - Srečno novo leto 2023SPREMLJAJTE NASYoutube: https://youtube.com/channel/UCiy2dirXGqygqSsiXZv9PpgInstagram: https://www.instagram.com/chlani.podcast/TikTok: https://www.tiktok.com/@chlani.podcastVODITELJIJure: https://www.instagram.com/juresavron/Matej: https://www.instagram.com/matejrimanic/Tim: https://www.instagram.com/mit.t.tim/O PODCASTUCHLANI. Prebrano »člani«, ne pa klani. Ampak člani česa? Ne, ne … Tukaj ne gre za članstvo v klubu ali organizaciji, niti v klanu. »Član« je slengovska beseda, ki jo predvsem mladi zelo pogosto uporabljajo na najlepšem delu Slovenije – na Obali. Torej, ker ste tukaj, naj vam izrečemo dobrodošlico: »Kje ste, člani!« Ogrodje novega slovenskega podcasta sestavljamo 3 mladi ustvarjalci. Zaradi bližine, ki smo jo med seboj ustvarili s pogostim druženjem in delom, podcastu zagotovimo avtentičnost in poskrbimo za sproščeno dinamiko. Na pocastih se nam pogosto pridružijo še zanimivi gosti, – znani in manj znani – ki popestrijo epizode s svojim unikatnim pogledom na življenje in atraktivno osebnostjo. Teme, ki jih obravnavamo, so lahko absurdne in nenavadne, vsekakor pa se dotaknemo tudi življenjskih tem.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Das Disulfidbrücken-Transfer-System der Mitochondrien

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Mar 13, 2008


Nahezu alle mitochondrialen Proteine sind im Zellkern kodiert und werden im Zytosol synthetisiert. Die Komplexe, die den Import von Außenmembran-, Innenmembran- und Matrixproteinen katalysieren, sind relativ gut untersucht. Der Import von Proteinen des mitochondrialen Intermembranraums ist dagegen weniger gut verstanden. Im Rahmen dieser Arbeit wurde der Importmechanismus für lösliche Intermembranraumproteine untersucht, die durch konservierte Cysteinmotive charakterisiert sind. Nach Mia40 konnte Erv1 als zweite Komponente dieses Importweges identifiziert werden. Mia40 interagiert mit neu importierten Intermembranraumproteinen mit konservierten Cysteinmotiven über Disulfidbrücken. Die Ausbildung dieser Disulfidbrücken ist essentiell für den Import der Proteine. Erv1 interagiert direkt mit Mia40 und erhält es im oxidierten, aktiven Zustand. Nur Oxidiertes Mia40 wirkt als Importrezeptor, der ein gemischtes Disulfid mit neu importierten Proteinen bildet. Durch Isomerisierung überträgt Mia40 seine Disulfidbrücke schließlich auf das Substratprotein, was zur Reduktion von Mia40 und zur stabilen Faltung des Substratproteins führt. Um importkompetentes Mia40 zu regenerieren, muss die Oxidation von Mia40 durch Erv1 erfolgen. Da in früheren Arbeiten reduziertes Tim13 in vivo nachgewiesen wurde, wurde in dieser Arbeit untersucht, ob sich möglicherweise ein Reduktionsschritt an den Mia40-Erv1-abhängigen Importprozess anschließt. Das Intermembranraumprotein Hot13 wurde zuvor als Assemblierungsfaktor für die kleinen Tim-Proteine beschrieben. Im Rahmen dieser Arbeit konnte aber keine Reduktaseaktivität von Hot13 nachgewiesen werden. Hot13 ist allerdings in der Lage, die Oxidation von Mia40 wahrscheinlich durch die Bindung von Zink zu unterstützen. Die Oxidation des metallfreien Mia40 wird so vereinfacht. Auf der Suche nach einer Reduktase im mitochondrialen Intermembranraum wurden zwei neuartige Glutaredoxine identifiziert, Grx6 und Grx7. Grx6 und Grx7 wurden allerdings im cis-Golgi-Apparat lokalisiert und konnten somit für den Importprozess in Mitochondrien ausgeschlossen werden. Dennoch sind sie aufgrund der Lokalisation im sekretorischen Transportweg von besonderem Interesse und ihre Glutaredoxinaktivität konnte in vitro nachgewiesen werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Biogenesis of proteins of the mitochondrial intermembrane space

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Feb 18, 2008


All intermembrane space (IMS) proteins are synthesized in the cytosol and have to be imported into mitochondria. Many proteins of the IMS lack typical N-terminal targeting signals and are characterized by a small molecular mass and highly conserved cysteine residues present in characteristic patterns. These proteins cross the outer membrane of mitochondria via the TOM complex and need their cysteine residues for the efficient retention in the IMS. The aim of this study was to analyse whether specific factors are required for the import of these proteins into the mitochondrial IMS. The candidate protein, later termed Mia40 (mitochondrial intermembrane space import and assembly), was structurally and functionally characterized. The experiments presented here confirmed the mitochondrial location of Mia40 and determined its topology. Mia40 contains a classical N-terminal mitochondrial targeting signal followed by a hydrophobic segment. It is anchored in the inner membrane by a hydrophobic stretch and exposes a large C-terminal domain to the IMS. This domain harbours six highly conserved cysteine residues forming a CXC-CX9C-CX9C- motif (X represents non-cysteine amino acid residues). Since Mia40 is essential for viability of yeast, a strain harbouring the MIA40 gene under control of the glucose-repressible GAL10 promoter was used to study the function of Mia40 in mitochondria. Depletion of Mia40 resulted in strongly reduced levels of Tim13, Cox17 and of other IMS proteins with cysteine motifs, which was due to the impairment of their import into mitochondria. Mia40 is directly involved in the translocation of the small IMS proteins with conserved cysteine motifs: the newly imported IMS proteins form mixed disulfide intermediates with Mia40. In mitochondria, the majority of Mia40 is present in the oxidized state, thus allowing the formation of the mixed disulfide intermediates in an isomerization reaction. Subsequently, Mia40 transfers the disulfide bond from the mixed disulfide to the substrate proteins and thereby triggers the folding and the trapping of these proteins in the IMS. Mia40 is left in a partially reduced state and a reoxidation step is required for the next round of import. Erv1 is an essential FAD-containing sulfhydryl oxidase present in the IMS of fungi, plants and animals. The import of Tim13 was less efficient in mitochondria depleted of Erv1 and Mia40 interacted directly with Erv1 via disulfide bonds. In addition, the depletion of Erv1 affected the redox state of Mia40, which accumulated in a partially reduced state, suggesting that Erv1 is required for the recovery of the oxidized state of Mia40. Thus, Mia40 and Erv1 form a disulfide relay system mediating the import of small cysteine-rich proteins into the IMS. Erv1 passes its electrons further to cytochrome c, linking the import of small IMS proteins to the respiratory chain activity. Notably, Erv1 is not only a component but also a substrate of the disulfide relay system. It represents a novel type of substrate of the Mia40-mediated pathway. Thus, this pathway appears to be quite versatile and not limited to proteins with twin CX3C or twin CX9C motifs. The conserved cysteine residues in Mia40 are crucial for its function. Using single and double cysteine mutants of Mia40, it was possible to assign specific roles to each cysteine residue. In the oxidized state of Mia40 all cysteine residues form intramolecular disulfide bonds. The first two cysteine residues in the CPC motif compose a redox-sensitive disulfide bridge and breaking of this disulfide leads to Mia40 in the partially reduced state. The disulfide bond formed by the first two cysteine residues in Mia40 seems to be involved in the interaction with Erv1 and the substrate proteins, suggesting that it is essential for the catalysis of redox reactions of Mia40. The two other disulfide bonds connect the two CX9C fragments in Mia40 and most likely play a structural role. Taken together, the essential protein Mia40 is the central component of a novel translocation pathway. Mia40 together with Erv1 forms a disulfide relay system required for the import of small cysteine-rich proteins into the IMS of mitochondria.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Charakterisierung der mitochondrialen TIM22-Translokase des Menschen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Oct 12, 2004


Die TIM22-Translokase in der mitochondrialen Innenmembran vermittelt die Insertion von polytopen Innenmembranproteinen mit internen Signalsequenzen wie der mitochondrialen Metabolit-Carrier. Dabei unterstützt eine Gruppe von strukturell verwandten Proteinen mit charakteristischem Metallbindungsmotiv (Cys4-Motiv) die Passage der hydrophoben Vorstufenproteine über den Intermembranraum. Dies sind in der Hefe Tim9, Tim10 und Tim12 sowie Tim8 und Tim13. Die Familie dieser kleinen Tim-Proteine ist evolutionär konserviert. Im Menschen wurden sechs Mitglieder dieser Proteinfamilie identifiziert: Tim9, Tim10a und Tim10b sowie DDP1, DDP2 und Tim13. Im Rahmen dieser Arbeit wurden die Komponenten der TIM22-Translokase der Säugetiere strukturell und funktionell charakterisiert. Bei ihnen handelt es sich ebenfalls um mitochondriale Intermembranraumproteine. Sie sind in der Lage, mittels der vier konservierten Cysteinreste ein Zn2+-Ion zu binden und damit vermutlich eine Zinkfinger-Struktur auszubilden. Mutationen, die zu einem Verlust des DDP1 Proteins führen, sind die Ursache für das Mohr-Tranebjaerg Syndrom, einer neurodegenerativen Erkrankung, die sich im Wesentlichen durch Taubheit und Dystonie auszeichnet. Eine Punktmutation im DDP1-Gen, die zu einem Austausch eines der konservierten Cysteine führt (DDP1C66W), verursacht den Verlust der Zinkbindungskapazität und resultiert in einem fehlgefalteten, instabilen Protein. Es wurde gezeigt, dass das mutierte DDP1 nicht mehr in der Lage ist, mit seinem Partnerprotein Tim13 zu interagieren und keinen funktionellen DDP1-Tim13 Komplex ausbilden kann. Die menschlichen Proteine der Tim9 und Tim10-Gruppen, Tim9, Tim10a und Tim10b sind wie ihre homologen Hefeproteine in zwei hetero-oligomeren Komplexen organisiert, einem 70 kDa-Komplex bestehend aus Tim9 und Tim10a sowie einem 450 kDa Tim9-10a-10b-Komplex. Beide Komplexe sind fest mit der Innenmembran assoziiert. Tim10b zeigt eine geringere Sequenzhomologie zu Hefe-Tim10 als Tim10a. Es liegt genauso wie Tim12 nur in dem hochmolekularen Komplex vor und weist die stärkste Membranassoziation auf. Es zeigt damit strukturelle Ähnlichkeit zu Tim12. Aufgrund der Membranassoziation der kleinen TIM-Komplexe entfällt aber wahrscheinlich die Funktion des Tim12 als Vermittler zwischen dem löslichen Komplex und der Membran. Tim9, Tim10a und Tim10b sind wie die Hefe-Proteine am Import von mitochondrialen Carriern beteiligt. Die Bindung an Translokationsintermediate von Carrier-Vorstufenproteinen erfolgt in Abhängigkeit von zweiwertigen Kationen wie Zn2+. Die Struktur des TIM22-Komplexes weist signifikante Unterschiede zu der aus der Hefe bekannten Organisation auf. Humanes Tim22 ist im Vergleich zu Hefe-Tim22 wenig konserviert. Es liegt kein stabiler Komplex vor, der Tim22 und die kleinen Tim-Proteine enthält. Sie befinden sich vermutlich in dynamischer Interaktion mit Tim22, die wahrscheinlich nur während der Translokation eines Vorstufenproteins auftritt. Bisher ist kein Komplexpartner des humanen Tim22 bekannt. Homologe zu Tim54 und Tim18, den membranintegralen Komplexpartnern des Tim22, wurden in menschlichen Datenbanken nicht identifiziert. Aufgrund der veränderten strukturellen Organisation ist das menschliche Tim22 nicht in der Lage, mit den Proteinen aus der Hefe funktionell zu kooperieren. Es hat vermutlich eine Anpassung an veränderte Substratspezifizitäten stattgefunden, die auch die Beteiligung weiterer bisher unidentifizierter Komponenten der TIM22-Translokase einschließen könnte. Ein neues Intermembranraumprotein menschlicher Mitochondrien, Cmi1, ist an der Biogenese der kleinen Tim-Proteine beteiligt. Eine Überexpression im Hefesystem führt zur signifikanten Erhöhung der Proteinmengen von kleinen Tim-Proteinen im mitochondrialen Intermembranraum. Cmi1 unterstützt vermutlich die rasche stabile Faltung der neu importierten kleinen Tim-Proteine. Da Cmi1 in der Lage ist, Metall-Ionen zu binden vermittelt es möglicherweise den Transfer von Zink-Ionen.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

The molecular basis of the Mohr-Tranebjaerg syndrome: A structural and functional analysis of the proteins DDP1 and Tim13 Mohr-Tranebjaerg syndrome is a mitochondrial disorder caused by a defects in the biogenesis of the human TIM23 translocase Tim8 and Tim13 of yeast belong to a family of evolutionary conserved zinc finger proteins that are organised in hetero-oligomeric complexes in the mitochondrial intermembrane space (IMS). The TIM8-13 complex assists the import of Tim23, the major component of the translocase for matrix-targeted proteins. Mutations in DDP1/TIMM8A, the gene encoding the human homolog of Tim8, cause the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder. This work shows that DDP1 and human Tim13 are zinc binding proteins which together form a 70 kDa complex in the intermembrane space of human mitochondria. Similar to yeast, the human DDP1-hTim13 complex facilitates import of yeast and human Tim23. It has been additionally analysed the structural and functional consequences of a MTS-missense mutation (C66W) directly affecting the conserved Cys4 metal binding motif. In this connection the C66W mutation impairs the ability to bind zinc. As a consequence, the mutated DDP1 loses its ability to assemble into a hetero-oligomeric complex with its partner protein human Tim13. Thus, it was suggested that an assembly defect of DDP1 is the molecular basis of Mohr-Tranebjaerg syndrome in patients carrying the C66W mutation.