Podcasts about gad67

  • 5PODCASTS
  • 10EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 7, 2022LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about gad67

Latest podcast episodes about gad67

PaperPlayer biorxiv neuroscience
Dissecting the cellular basis of age-related cognitive dysfunction: Chronic chemogenetic inhibition of somatostatin-positive interneurons in the dentate gyrus hilus induces memory impairments

PaperPlayer biorxiv neuroscience

Play Episode Listen Later Oct 7, 2022


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.10.05.511002v1?rss=1 Authors: Lyu, J., Nagarajan, R., Kambali, M., Wang, M., Rudolph, U. Abstract: The cellular basis of age-related impairments of hippocampal function is not fully understood. In order to evaluate the role of somatostatin-positive (Sst+) interneurons in the dentate gyrus hilus in this process, we chemogenetically inhibited Sst+ interneurons in the dentate gyrus (DG) hilus. Chronic chemogenetic inhibition (CCI) of these neurons resulted in increased c-Fos staining in the DG hilus, a decrease in the percentage of Gad67- and of Sst-expressing neurons in the DG, and increased microglial activation in DG, CA3, and CA1. Total dendritic length and spine density were reduced in DG and CA1, suggesting reduced dendritic complexity. Behaviorally, the recognition index in an object recognition task and the percentage of spontaneous alternations in the Y maze were decreased, while in both initial and reversal learning in the Morris water maze the latencies to find the hidden platform were increased, suggesting cognitive dysfunction. Our findings establish a causal role for a reduced function of Sst+ interneurons in the DG hilus for cognitive decline and suggest that this reduced function may contribute to age-related impairments of learning and memory. Our CCI mice may represent a cellularly defined model of hippocampal aging. Copy rights belong to original authors. Visit the link for more info Podcast created by PaperPlayer

PaperPlayer biorxiv biophysics
Fast volumetric mapping of human brain slices

PaperPlayer biorxiv biophysics

Play Episode Listen Later Oct 27, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.27.357186v1?rss=1 Authors: Pesce, L., Laurino, A., Gavryusev, V., Mazzamuto, G., Sancataldo, G., Scardigli, M., Roffilli, M., Silvestri, L., Costantini, I., Pavone, F. S. Abstract: We still lack a detailed map of the anatomical disposition of neurons in the human brain. A complete map would be an important step for deeply understanding the brain function, providing anatomical information useful to decipher the neuronal pattern in healthy and diseased conditions. Here, we present several important advances towards this goal, obtained by combining a new clearing method, advanced Light Sheet Microscopy and automated machine-learning based image analysis. We perform volumetric imaging of large sequentially stained human brain slices, labelled for two different neuronal markers NeuN and GAD67, discriminating the inhibitory population and reconstructing the brain connectivity. Copy rights belong to original authors. Visit the link for more info

PaperPlayer biorxiv neuroscience
Striatal seeding of protofibrillar alpha-synuclein causes cortical hyperreactivity in behaving mice

PaperPlayer biorxiv neuroscience

Play Episode Listen Later Sep 29, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.28.314526v1?rss=1 Authors: Blumenstock, S., Sun, F., Marinkovic, P., Sgobio, C., Liebscher, S., Herms, J. Abstract: Alpha-synucleinopathies are characterized by self-aggregation of the protein alpha-synuclein (a-syn), causing alterations on the molecular and cellular level. To unravel the impact of trans-neuronal spreading and templated misfolding of a-syn on the microcircuitry of remotely connected brain areas, we investigated cortical neuron function in awake mice 9 months after a single intrastriatal injection of a-syn preformed fibrils (PFFs), using in vivo two-photon calcium imaging. We found altered function of layer 2/3 cortical neurons in somatosensory cortex (S1) of PFF-inoculated mice, as witnessed by an enhanced response to whisking and increased synchrony, accompanied by a decrease in baseline Ca2+ levels. Stereological analyses revealed a reduction in GAD67-positive inhibitory cells in S1 in PFF-injected brains. These findings point to an impaired excitation/inhibition balance as an important pathomechanism in alpha-synucleinopathies and demonstrate a clear association between the spread of toxic proteins and the initiation of altered neuronal function in remotely connected areas. Copy rights belong to original authors. Visit the link for more info

PaperPlayer biorxiv neuroscience
Brief sensory deprivation triggers plasticity of neurotransmitter-synthesising enzyme expression in genetically labelled olfactory bulb dopaminergic neurons

PaperPlayer biorxiv neuroscience

Play Episode Listen Later Jun 4, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.06.03.132555v1?rss=1 Authors: Byrne, D. J., Lipovsek, M., Grubb, M. S. Abstract: In the glomerular layer of the olfactory bulb, local dopaminergic interneurons play a key role in regulating the flow of sensory information from nose to cortex. These dual dopamine- and GABA-releasing cells are capable of marked experience-dependent changes in the expression of neurotransmitter-synthesising enzymes, including tyrosine hydroxylase (TH). However, such plasticity has most commonly been studied in cell populations identified by their expression of the enzyme being studied, and after long periods of sensory deprivation. Here, instead, we used brief 1- or 3-day manipulations of olfactory experience in juvenile mice, coupled with a conditional genetic approach that labelled neurons contingent upon their expression of the dopamine transporter (DAT-tdTomato). This enabled us to evaluate the potential for faster changes in neurotransmitter-synthesising enzyme expression in an independently identified population of neurons. Our labelling strategy showed good specificity for olfactory bulb dopaminergic neurons, whilst also revealing a minority sub-population of non-dopaminergic DAT-tdTomato cells that expressed the calcium-binding protein calretinin. Crucially, the proportions of these neuronal subtypes were not affected by brief alterations in sensory experience. Short-term olfactory manipulations also produced no significant changes in immunofluorescence for the GABA-synthesising enzyme GAD67. However, in bulbar DAT-tdTomato neurons brief sensory deprivation was accompanied by a transient drop in immunofluorescence for the dopamine-synthesising enzyme dopa decarboxylase (DDC), and a sustained decrease in TH expression. Careful characterisation of an independently identified, genetically labelled neuronal population therefore enabled us to uncover experience-dependent changes in neurotransmitter-synthesising enzyme expression that are more rapid than previously appreciated. Copy rights belong to original authors. Visit the link for more info

Medizin - Open Access LMU - Teil 13/22
Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors

Medizin - Open Access LMU - Teil 13/22

Play Episode Listen Later Jan 1, 2003


The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA(A) receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function. Copyright (C) 2003 S. Karger AG, Basel.

Medizin - Open Access LMU - Teil 10/22
Gad65 is recognized by t-cells, but not by antibodies from nod-mice

Medizin - Open Access LMU - Teil 10/22

Play Episode Listen Later Jan 1, 1994


Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes.

Medizin - Open Access LMU - Teil 10/22
Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

Medizin - Open Access LMU - Teil 10/22

Play Episode Listen Later Jan 1, 1994


By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity.

Medizin - Open Access LMU - Teil 10/22
Baculovirus-Mediated Expression of Human 65 kDa and 67 kDa Glutamic Acid Decarboxylases in SF9 Insect Cells and Their Relevance in Diagnosis of Insulin-Dependent Diabetes Mellitus

Medizin - Open Access LMU - Teil 10/22

Play Episode Listen Later Jan 1, 1993


cDNAs coding for the full-length human 65 and 67 kDa glutamic acid decarboxylases (GAD65 and GAD67) were amplified from pancreas and hippocampus cDNA libraries by polymerase chain reaction, respectively. Both cDNAs were inserted into a baculovirus vector which mediated highly efficient expression of the human GAD65 and GAD67 with histidine-hexapeptides as affinity ligands at their C-termini in Spodoptera frugiperda (Sf9) cells. The recombinant GAD proteins were purified to homogeneity by affinity chromatography using a metal-chelating matrix. The infected Sf9 insect cells expressed the recombinant human GAD65 and GAD67 with natural-like conformations, as confirmed by measurement of their enzyme activities as well as their fully restored autoantigenicities. Immunoprecipitation of metabolically labeled infected Sf9 cells demonstrated the autoantigenic potential of the recombinant GAD proteins. The practicability of using recombinant GAD65 and GAD67 derived from the baculovirus expression system for the development of an immunoassay for the diagnosis of insulin-dependent diabetes mellitus is discussed.

Medizin - Open Access LMU - Teil 10/22
Prevalence of autoantibodies to the 65- and 67-kD isoforms of glutamate decarboxylase in insulin-dependent diabetes mellitus

Medizin - Open Access LMU - Teil 10/22

Play Episode Listen Later Jan 1, 1993


We investigated the presence of autoantibodies to baculovirus-expressed human recombinant 65- and 67-kD isoforms of glutamate decarboxylase (GAD65 and GAD67) in insulin-dependent diabetes mellitus (IDDM). In the immunoprecipitation test using [35S]methionine-labeled GADs antibodies to GAD65 were detected in 13/15 (87%) islet cell antibody (ICA)-positive and in 1/35 (2.9%) ICA-negative first-degree relatives of patients with IDDM, in 6/11 (54.5%) ICA-positive nondiabetic schoolchildren, and in 35/50 (70%) patients with newly diagnosed IDDM. GAD67 antibodies were positive only in five (33%) of the ICA-positive relatives (P < 0.05) and in nine (18%) IDDM patients at onset (P < 0.00001). After onset of IDDM antibodies to GAD65 and GAD67 declined but were still positive in 25 and 9.4% of subjects with long-standing IDDM (> 10 yr). In all study groups antibodies to GAD67 were only detected in GAD65 antibody-positive sera. An immunotrapping enzyme activity assay for GAD65 antibodies was positive in 64/75 (85.3%) of sera that were GAD antibody positive in the immunoprecipitation test (r = 0.870, P < 0.0001). In two (2.7%) sera GAD65 antibodies that block GAD enzyme activity were found. Our data suggest that antibodies to GAD65 but not to GAD67 represent sensitive markers for preclinical and overt IDDM. The immunotrapping assay here described represents a valuable technique for specific and sensitive screening for GAD antibodies.

Medizin - Open Access LMU - Teil 10/22
Cytoplasmic islet cell antibodies recognize distinct islet antigens in IDDM but not in stiff man syndrome

Medizin - Open Access LMU - Teil 10/22

Play Episode Listen Later Jan 1, 1993


Cytoplasmic islet cell antibodies are well-established predictive markers of IDDM. Although target molecules of ICA have been suggested to be gangliosides, human monoclonal ICA of the immunoglobulin G class (MICA 1-6) produced from a patient with newly diagnosed IDDM recognized glutamate decarboxylase as a target antigen. Here we analyzed the possible heterogeneity of target antigens of ICA by subtracting the GAD-specific ICA staining from total ICA staining of sera. This was achieved 1) by preabsorption of ICA+ sera with recombinant GAD65 and/or GAD67 expressed in a baculovirus system and 2) by ICA analysis of sera on mouse pancreas, as GAD antibodies do not stain mouse islets in the immunofluorescence test. We show that 24 of 25 sera from newly diagnosed patients with IDDM recognize islet antigens besides GAD. In contrast, GAD was the only islet antigen recognized by ICA from 7 sera from patients with stiff man syndrome. Two of these sera, however, recognized antigens besides GAD in Purkinje cells. In patients with IDDM, non-GAD ICA were diverse. One group, found in 64% of the sera, stained human and mouse islets, whereas the other group of non-GAD ICA was human specific. Therefore, mouse islets distinguish two groups of non-GAD ICA and lack additional target epitopes of ICA besides GAD. Longitudinal analysis of 6 sera from nondiabetic ICA+ individuals revealed that mouse-reactive ICA may appear closer to clinical onset of IDDM in some individuals.