POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.02.08.527624v1?rss=1 Authors: Yeruva, S., Stangner, K., Jungwirth, A., Hiermaier, M., Shoykhet, M., Kugelmann, D., Hertl, M., Egami, S., Ishii, N., Koga, H., Hashimoto, T., Weis, M., Beckmann, B. M., Biller, R., Schuettler, D., Kaab, S., Waschke, J. Abstract: Aims: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. Methods and Results IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), western blot analysis and Triton-X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells, and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. Conclusion Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Matériel : lampe à halogène ou flash, bécher de 600 ml, bâton en verre, éprouvettes de 10 ml et de 5 ml, deux béchers de 150 ml, une cellule de 150 x 10 x 15 mm en verre ou plexiglas, pochoir en carton, lunettes et gants de protection Produits chimiques : Fe(NO3)3 x 9 H2O, acide oxalique, K3[Fe(CN)6] x H2O, Triton®-X-100 (détergent non-ionique, C14H22O(C2H4O)n), Cab-O-Sil® (poudre très fine de dioxyde de silicium) Solution A : 1,2 g Fe(NO3)3 x 9 H2O dans 100 ml d'eau Solution B : 0,8 g d'acide oxalique dans 100 ml d'eau Solution C : 10 ml de solution de K3[Fe(CN)6] x H2O à 3 % Procédure expérimentale : 11 g de poudre de silice (Cab-O-Sil) sont placés dans un bécher de 600 ml, et les solutions A, B et C sont ajoutées. Le mélange est bien remué afin d'obtenir une pâte homogène. Ensuite 3 ml de Triton-X-100 sont introduits. La pâte épaisse jaune est placée dans la cellule recouverte par un pochoir, et l'ensemble est éclairé par la lampe à halogène pour env. 5 secondes. On retire le pochoir, et on voit clairement une coloration bleue aux endroits exposés à la lumière : le mélange des solutions exposé à la lumière intense fait changer la couleur de jaune des complexes fer- acide oxalique vers le bleu intense typique du Bleu de Prusse. Une réaction photochimique est produite qui réduit les ions Fe3+ en ions Fe2+ en oxydant un ion oxalate 2 [Fe(C2O4)3]3– → 2 Fe2+ + 2 CO2 + 5 C2O42– (par réaction photochimique) puis les ions Fe2+ se complexent avec l'hexacyanoferrate (III) K+ + Fe2+ + [Fe(CN)6]3– → K[Fe3+Fe2+(CN)6] Elimination des déchets : les produits sont placés dans un bac pour métaux lourds. H.W. Roesky et W. Möckel, « Chemical Curiosities », page 210, 1996, Copyright Wiley-VCH Verlag GmbH and Co. KGaA. Traduit de l'anglais avec permission.
Sulphonylurea drugs stimulate glucose transport and metabolism in muscle and fat cells in vitro. The molecular basis for the insulin-mimetic extrapancreatic effects of these oral antidiabetic therapeutic agents is unknown at present. Here we demonstrate that incubation of 3T3 adipocytes with the novel sulphonylurea, glimepiride, causes a time- and concentration-dependent release of the glycosylphosphatidylinositol (GPI)-anchored ecto-proteins, 5'-nucleotidase, lipoprotein lipase and a 62 kDa cyclic AMP (cAMP)-binding protein from the plasma membrane into the culture medium. The change in the localization is accompanied by conversion of the membrane-anchored amphiphilic proteins into their soluble hydrophilic versions, as judged by pulse-chase experiments and Triton X-114 partitioning, and by appearance of anti-cross-reacting determinant (CRD) immunoreactivity of the released proteins as shown by Western blotting. Metabolic labelling of cells with myo-[14C]inositol demonstrates that inositol is retained in the major portion of released lipoprotein lipase and cAMP-binding ectoprotein. The identification of inositol phosphate after deamination of these proteins with nitrous acid suggests cleavage of their GPI membrane anchor by a GPI-specific phospholipase C. However, after longer incubation with glimepiride the amount of soluble versions of the GPI-proteins lacking inositol and anti-CRD immunoreactivity increases, which may be caused by additional drug-stimulated hydrolytic events within their GPI structure or C-termini. Since insulin also stimulates membrane release of these GPI-modified proteins, and in combination with glimepiride in a synergistic manner, sulphonylurea drugs may exert their peripheral actions in adipose tissue by using (part of) the insulin postreceptor signalling cascade at the step of activation of a GPI-specific phospholipase C.
Micellar complexes were prepared from bacteriochlorophyll a and bacteriopheophytin a with the cationic detergents, cetyltrimethyl ammonium bromide and cetylpyridinium chloride. These complexes have spectroscopic properties (absorption, circular dichroism) which are very different from the ones formed with non-ionic detergents like Triton X-100, and also with anionic detergents. Bacteriochlorophyll a forms two complexes: One is blue-shifted and has excitonically coupled Qy transitions. The second one is extremely red-shifted. The unusual properties are suggested to result from interactions of the positively charged head-group of the detergent with the tetrapyrrole.
Micellar complexes were prepared from bacteriochlorophyll a and bacteriopheophytin a with the cationic detergents, cetyltrimethyl ammonium bromide and cetylpyridinium chloride. These complexes have spectroscopic properties (absorption, circular dichroism) which are very different from the ones formed with non-ionic detergents like Triton X-100, and also with anionic detergents. Bacteriochlorophyll a forms two complexes: One is blue-shifted and has excitonically coupled Qy transitions. The second one is extremely red-shifted. The unusual properties are suggested to result from interactions of the positively charged head-group of the detergent with the tetrapyrrole.
The insulin like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor has been detected in many cells and tissues. In the rat, there is a dramatic developmental regulation of IGF-II/M6P receptor expression, the receptor being high in fetal and neonatal tissues and declining thereafter. We have systematically studied the expression of the human IGF-II/M6P receptor protein in tissues from 10 human fetuses and infants (age 23 weeks gestation to 24 months postnatal). We have asked 1) whether there is differential expression among different organs, and 2) whether or not the human IGF-II/M6P receptor is developmentally regulated from 23 weeks gestation to 24 months postnatal. Protein was extracted from human tissues using a buffer containing 2% sodium dodecyl sulfate and 2% Triton X-100. Aliquots of the protein extracts were analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis and immunoblotting using an anti-IGF- II/M6P receptor antiserum (no. 66416) and 125I-protein A or an immunoperoxidase stain. IGF-II/M6P receptor immunoreactivity was detected in all tissues studied with the highest amount of receptor being expressed in heart, thymus, and kidney and the lowest receptor content being measured in brain and muscle. The receptor content in ovary, testis, lung, and spleen was intermediate. The apparent molecular weight of the IGF-II/M6P receptor (220,000 kilos without reduction of disulfide bonds) varied among the different tissues: in brain the receptor was of lower molecular weight than in other organs. Immunoquantitation experiments employing 125I-protein A and protein extracts from human kidney at different ages revealed a small, albeit not significant, difference of the receptor content between fetal and postnatal tissues: as in other species, larger amounts of receptor seemed to be present in fetal than in postnatal organs. In addition, no significant difference of the receptor content between human fetal liver and early postnatal liver was measured employing 125I-protein A- immunoquantitation in three fetal and five postnatal liver tissue samples. The distribution of IGF-binding protein (IGEBP) species, another abundant and major class of IGF binding principles, was also measured in human fetal and early postnatal lung, liver, kidney, muscle, and brain using Western ligand blotting with 125I-IGF-II: as with IGF-II/M6P receptor immunoreactivity there was differential expression of the different classes of IGFBPs in the various organs.
The external limiting membrane of the avian embryonic optic tectum is isolated by mechanically separating the neuronal mesencephalon from the overlying mesenchymal tissue. The preparation consists of a basal lamina which is covered on its neural side by endfeet of neuroepithelial cells and has attached to it on its meningeal side a collageneous stroma, containing blood vessels. The external limiting membrane can be flat-mounted on a piece of nitrocellulose filter as mechanical support. It covers an area between 0.3 and 1 the cm2, depending on the age of me donor embryo. The endfeet can be removed together with all cellular components of the meninges by treatment with 2% Triton-X-100 or with distilled water. The basal lamina itself is approximately 80 nm thick and consists of two laminae rarae and a central lamina densa. Immunohistochemical staining reveals that the basal lamina in the embryo, after isolation and after detergent extraction of the isolated preparation, contains type IV collagen, nidogen, laminin, and low density heparan sulfate proteoglycan as do other basement membranes. Antibodies against the neural cell adhesion molecule (N-CAM), chondroitin sulfate proteoglycan, and fibronectin fail to stain the external limiting membrane, but these proteins were clearly identified in the blood vessel-containing meninges or in the optic tectum. The flat-mounted external limiting membrane preparation was used as substrate to culture several different neural tissues of central and peripheral origin. Explants of neural crest cells, dorsal root ganglia, and sympathetic ganglia can be cultured on the external limiting membrane. All explants grow well on the basal lamina preparations whether the endfeet are attached or detergent-extracted prior to explantation; however, neurite outgrowth from sympathetic ganglia is reduced in the presence of the endfeet. Although the endfoot-lined external limiting membrane represents at least part of the immediate environment encountered by retinal axons as they invade the optic tectum and despite its excellent properties as a substrate for retinal axons in vitro, cues guiding the orientation of axons were not detected in the flat-mounted preparation.
The reaction of several plant chlorophyll-protein complexes with NaBH4 has been studied by absorption spectroscopy. In all the complexes studied, chlorophyll b is more reactive than Chi a, due to preferential reaction of its formyl substituent at C-7. The complexes also show large variations in reactivity towards NaBH4 and the order of reactivity is: LHCI > PSII complex > LHCII > PSI > P700 (investigated as a component of PSI). Differential pools of the same type of chlorophyll have been observed in several complexes. Parallel work was undertaken on the reactivity of micellar complexes of chlorophyll a and of chlorophyll b with NaBH4 to study the effect of aggregation state on this reactivity. In these complexes, both chlorophyll a and b show large variations in reactivity in the order monomer > oligomer > polymer with chlorophyll b generally being more reactive than chlorophyll a. It is concluded that aggregation decreases the reactivity of chlorophylls towards NaBH4 in vitro, and may similarly decrease reactivity in naturally-occurring chlorophyll-protein complexes.
Mitochondrial porin, the outer membrane pore-forming protein, was isolated in the presence of detergents and converted into a water- soluble form. This water-soluble porin existed under nondenaturing conditions as a mixture of dimers and oligomers. The proportion of dimers increased with decreasing porin concentration during conversion. Water-soluble porin inserted spontaneously into artificial bilayers as did detergent-solubilized porin. Whereas the latter form had no specific requirements for the lipid composition of the bilayer, water- soluble porin inserted only into membranes containing a sterol, and only in the presence of very low concentrations of Triton X-100 (0.001% w/v) in the solution bathing the bilayer. The channels formed by water- soluble porin were indistinguishable from those formed by detergent- purified porin with respect to specific conductance and voltage dependence of conductance. Water-soluble porin bound tightly in a saturable fashion to isolated mitochondria. The bound form was readily accessible to added protease, indicating its presence on the mitochondrial surface. The number of binding sites was in the range of 5-10 pmol/mg of mitochondrial protein. Water-soluble porin apparently binds to a site on the assembly pathway of the porin precursor, since mitochondria whose binding sites were saturated with the water-soluble form did not import porin precursor synthesized in a cell-free system.
Tue, 1 Jan 1985 12:00:00 +0100 http://epub.ub.uni-muenchen.de/2168/ http://epub.ub.uni-muenchen.de/2168/1/2168.pdf Scheer, Hugo; Paulke, B.; Gottstein, J. Scheer, Hugo; Paulke, B. und Gottstein, J. (1985): Long-wavelength absorbing forms of bacteriochlorophylls. II. Structural requirements for formation in Triton X-100 micelles and in aqueous methanol and acetone. In: Blauer, G. und Sund, H. (Hrsg.), Optical properties and structure of tetrapyrro
Sat, 1 Jan 1983 12:00:00 +0100 http://epub.ub.uni-muenchen.de/2901/ http://epub.ub.uni-muenchen.de/2901/1/066.pdf Gottstein, J.; Scheer, Hugo Gottstein, J. und Scheer, Hugo (1983): Long-wavelength-absorbing forms of bacteriochlorophyll a in solutions of Triton X-100. In: Proceedings of the National Academy of Sciences of the USA, Vol. 80: pp. 1887-1892.
A new procedure is described for the preparation of highly purified and stable secretory vesicles from adrenal medulla. Two forms of acetylcholinesterase, a membrane bound form as well as a soluble form, were found within these vesicles. The secretory vesicles, isolated by differential centrifugation, were further purified on a continuous isotonic Percoll™ gradient. In this way, secretory vesicles were separated from mitochondrial, microsomal and cell membrane contamination. The secretory vesicles recovered from the gradient contained an average of 2.26 μmol adrenalin/mg protein. On incubation for 30 min at 37°C in media differing in ionic strength, pH, Mg2+ and Ca2+ concentration, the vesicles released less than 20% of total adrenalin. Acetylcholinesterase could hardly be detected in the secretory vesicle fraction when assayed in isotonic media. However, in hypotonic media (
Biosynthesis of isocitrate lyase, a tetrameric enzyme of the glyoxysomal matrix, was studied in Neurospora crassa, in which the formation of glyoxysomes was induced by a substitution of sucrose medium by acetate medium. * 1. Translation of Neurospora mRNA in reticulocyte lysates yields a product which has the same apparent molecular weight as the subunit of the functional enzyme. Using N-formyl[35S]methionyl tRNAMetf as a label, the translation product shows the same apparent size which indicates that the amino terminus has no additional 'signal'-type sequence. * 2. Read-out systems employing free and membrane-bound polysomes show that only free ribosomes are active in the synthesis of isocitrate lyase. * 3. Isocitrate lyase synthesized in reticulocyte lysate is released into the supernatant and is soluble in a monomeric form. It interacts with Triton X-100 to form mixed micells in contrast to the functional tetrameric form. * 4. Transfer of isocitrate lyase synthesized in vitro into isolated glyoxysomes is suggested by results of experiments in which supernatants from reticulocyte lysates are incubated with a particle fraction isolated from acetate-grown cells. No transfer occurs when particles from non-induced cells are employed. Resistance to added proteinase is used as a criterion for transmembrane transfer. The data support a post-translational transfer mechanism for isocitrate lyase. They suggest that isocitrate lyase passes through a cytosolic precurscr pool as a monomer and is transferred into glyoxysomes.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.