POPULARITY
Peer Kunstmann hat in Kiel Mathematik studiert und 1995 promoviert. In seiner Zeit an der Fakultät für Mathematik in Karlsruhe hat er sich 2002 habilitiert. Er arbeitet als Akademischer Oberrat dauerhaft in der Arbeitsgruppe Angewandte Analysis an unserer Fakultät. Gudrun hat das Gespräch über ein für beide interessantes Thema - das Stokesproblem - gesucht, weil beide schon über längere Zeit mit unterschiedlichen Methoden zu dieser Gleichung forschen. Das Stokesproblem ist der lineare Anteil der Navier-Stokes Gleichungen, dem klassischen Modell für Strömungen. Sie haben eine gewisse Faszination, da sie einfach genug erscheinen, um sie in ihrer Struktur sehr eingehend verstehen zu können, zeigen aber auch immer wieder, dass man sie nicht unterschätzen darf in ihrer Komplexität. Peers Interesse wurde zu Beginn seiner Zeit in Karlsruhe durch Matthias Hieber geweckt, der inzwischen an der TU Darmstadt tätig ist. Es zeigte sich seit damals als sehr aktives Forschungsgebiet, weshalb er auch immer wieder neu zu diesen Fragestellungen zurückgekehrt ist. Mit den klassischen Randbedingungen (konkret, wenn auf dem Rand vorgeschrieben wird, dass die Lösung dort verschwindet = homogene Dirichletbedingung) ist das Stokesproblem auffassbar als Laplaceoperator, der auf Räumen mit divergenzfreien Vektorfeldern agiert. Der Laplaceoperator ist sehr gut verstanden und die Einschränkung auf den abgeschlossenen Unterraum der Vektorfelder mit der Eigenschaft, dass ihre Divergenz den Wert 0 ergibt, lässt sich mit einer Orthogonalprojektion - der Helmholtzprojektion - beschreiben. Im Hilbertraumfall, d.h. wenn die Räume auf einer L^2-Struktur basieren und der Raum deshalb auch ein Skalarprodukt hat, weiß man, dass diese Projektion immer existiert und gute Eigenschaften hat. Für andere Räume ohne diese Struktur (z.B. -basiert für q nicht 2) hängt die Antwort auf die Frage, für welche q die Projektion existiert, von der Geometrie des Gebietes ab. Für beschränkte Gebiete geht vor allem die Glattheit des Randes ein. Das spiegelt sich auch auf der Seite des Laplaceproblems, wo die Regularität im Innern des Gebietes relativ elementar gezeigt werden kann, aber in der Nähe des Randes und auf dem Rand gehen in die Argumente direkt die Regularität des Randes ein. Mathematisch wird das Gebiet dabei mit Kreisen überdeckt und mit Hilfe einer sogenannten Zerlegung der Eins anschließend die Lösung für das ganze Gebiet zusammengesetzt. Für die Kreise, die ganz im Innern des Gebietes liegen, wird die Lösung auf den ganzen Raum mit dem Wert 0 fortgesetzt, weil die Behandlung des ganzen Raumes sehr einfach ist. Für Kreise am Rand, wird der Rand lokal glatt gebogen zu einer geraden Linie und (ebenfalls nach Fortsetzung mit 0) ein Halbraum-Problem gelöst. Natürlich liegt es in der Glattheit des Randes, ob das "gerade biegen" nur kleine Fehlerterme erzeugt, die sich "verstecken" lassen oder ob das nicht funktioniert. Für einen Rand, der lokal durch zweimal differenzierbare Funktion dargestellt werden kann, funktioniert diese Technik gut. Für Gebiete, die einen Rand haben, der lokal durch Lipschitzstetige Funktionen darstellbar ist, werden z.B. Randintegraldarstellungen direkt untersucht. Dort existiert die Helmholtzzerlegung für alle q im Intervall (wobei vom Gebiet abhängt). Durch die kleinen Fehlerterme, die in der Technik entstehen, wird es auch nötig, die Gleichung für die Divergenz zu untersuchen, wo keine 0 sondern eine beliebige Funktion (natürlich mit den entsprechenden Regularitätseigenschaften) als rechte Seite erlaubt ist. Ein Begriff, der eine wichtige Eigenschaft von partiellen Differentialgleichungen beschreibt, ist der der maximalen Regularität. Einfach ausgedrückt heißt das, wenn ich die rechte Seite in einem Raum vorgebe, ist die Lösung genau so viel regulärer, dass nach Anwendung des Differentialoperators das Ergebnis die Regularität der rechten Seite hat. Für das Laplaceproblem wäre also die Lösung v für jedes vorgegebene f so, dass und f im gleichen Raum sind. Diese Eigenschaft ist z.B. wichtig, wenn man bei nichtlinearen Problemen mit Hilfe von Fixpunktsätzen arbeitet, also z.B. den Operators iterativ anwenden muss. Dann sichert die maximale Regularität, dass man immer im richtigen Raum landet, um den Operator erneut anwenden zu können. Im Zusammenhang mit der Frage der maximalen Regularität hat sich der -Kalkül als sehr nützlich erwiesen. Ein anderer Zugang wählt statt der Operatorformulierung die schwache Formulierung und arbeitet mit Bilinearformen und Ergebnissen der Funktionalanalysis. Hier kann man vergleichsweise wenig abstrakt und in diesem Sinn elementar auch viel für das Stokes- und das Navier-Stokes Problem zeigen. Es gibt ein vorbildliches Buch von Hermann Sohr dazu. Literatur und weiterführende Informationen M. Geißert, P.C. Kunstmann: Weak Neumann implies H^\infty for Stokes, Journal Math. Soc. Japan 67 (no. 1), 183-193, 2015. P.C. Kunstmann: Navier-Stokes equations on unbounded domains with rough initial data, Czechoslovak Math. J. 60(135) no. 2, 297–313, 2010. H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser, 2001. M. Cannone: Ondelettes, Paraproduits et Navier-stokes, Diderot Editeur, 1995. G. Thäter, H. Sohr: Imaginary powers of second order differential operators and $L^q$ -Helmholtz decomposition in the infinite cylinder, Mathematische Annalen 311(3):577-602, 1998. P.C. Kunstmann, L. Weis: Maximal L_p-regularity for parabolic equations, Fourier multiplier theorems and H^\infty-calculus, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel and S. Piazzera), Springer Lecture Notes 1855, 65-311, 2004. P.C. Kunstmann, L. Weis: New criteria for the H^\infty-calculus and the Stokes operator on bounded Lipschitz domains, Journal of Evolution Equations, March 2017, Volume 17, Issue 1, pp 387-409, 2017. G.P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
How do populations evolve? This question inspired Alberto Saldaña to his PhD thesis on Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains. He considered an extended Lotka-Volterra models which is describing the dynamics of two species such as wolves in a bounded radial domain: For each species, the model contains the diffusion of a individual beings, the birth rate , the saturation rate or concentration , and the aggressiveness rate . Starting from an initial condition, a distribution of and in the regarded domain, above equations with additional constraints for well-posedness will describe the future outcome. In the long run, this could either be co-existence, or extinction of one or both species. In case of co-existence, the question is how they will separate on the assumed radial bounded domain. For this, he adapted a moving plane method. On a bounded domain, the given boundary conditions are an important aspect for the mathematical model: In this setup, a homogeneous Neumann boundary condition can represent a fence, which no-one, or no wolve, can cross, wereas a homogeneous Dirichlet boundary condition assumes a lethal boundary, such as an electric fence or cliff, which sets the density of living, or surviving, individuals touching the boundary to zero. The initial conditions, that is the distribution of the wolf species, were quite general but assumed to be nearly reflectional symmetric. The analytical treatment of the system was less tedious in the case of Neumann boundary conditions due to reflection symmetry at the boundary, similar to the method of image charges in electrostatics. The case of Dirichlet boundary conditions needed more analytical results, such as the Serrin's boundary point lemma. It turned out, that asymtotically in both cases the two species will separate into two symmetric functions. Here, Saldaña introduced a new aspect to this problem: He let the birth rate, saturation rate and agressiveness rate vary in time. This time-dependence modelled seasons, such as wolves behaviour depends on food availability. The Lotka-Volterra model can also be adapted to a predator-prey setting or a cooperative setting, where the two species live symbiotically. In the latter case, there also is an asymptotical solution, in which the two species do not separate- they stay together. Alberto Saldaña startet his academic career in Mexico where he found his love for mathematical analysis. He then did his Ph.D. in Frankfurt, and now he is a Post-Doc in the Mathematical Department at the University of Brussels. Literature and additional material A. Saldaña, T. Weth: On the asymptotic shape of solutions to Neumann problems for non-cooperative parabolic systems, Journal of Dynamics and Differential Equations,Volume 27, Issue 2, pp 307-332, 2015. A. Saldaña: Qualitative properties of coexistence and semi-trivial limit profiles of nonautonomous nonlinear parabolic Dirichlet systems, Nonlinear Analysis: Theory, Methods and Applications, 130:31 46, 2016. A. Saldaña: Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains, PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany, 2014. A. Saldaña, T. Weth: Asymptotic axial symmetry of solutions of parabolic equations in bounded radial domains, Journal of Evolution Equations 12.3: 697-712, 2012.
How do populations evolve? This question inspired Alberto Saldaña to his PhD thesis on Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains. He considered an extended Lotka-Volterra models which is describing the dynamics of two species such as wolves in a bounded radial domain: For each species, the model contains the diffusion of a individual beings, the birth rate , the saturation rate or concentration , and the aggressiveness rate . Starting from an initial condition, a distribution of and in the regarded domain, above equations with additional constraints for well-posedness will describe the future outcome. In the long run, this could either be co-existence, or extinction of one or both species. In case of co-existence, the question is how they will separate on the assumed radial bounded domain. For this, he adapted a moving plane method. On a bounded domain, the given boundary conditions are an important aspect for the mathematical model: In this setup, a homogeneous Neumann boundary condition can represent a fence, which no-one, or no wolve, can cross, wereas a homogeneous Dirichlet boundary condition assumes a lethal boundary, such as an electric fence or cliff, which sets the density of living, or surviving, individuals touching the boundary to zero. The initial conditions, that is the distribution of the wolf species, were quite general but assumed to be nearly reflectional symmetric. The analytical treatment of the system was less tedious in the case of Neumann boundary conditions due to reflection symmetry at the boundary, similar to the method of image charges in electrostatics. The case of Dirichlet boundary conditions needed more analytical results, such as the Serrin's boundary point lemma. It turned out, that asymtotically in both cases the two species will separate into two symmetric functions. Here, Saldaña introduced a new aspect to this problem: He let the birth rate, saturation rate and agressiveness rate vary in time. This time-dependence modelled seasons, such as wolves behaviour depends on food availability. The Lotka-Volterra model can also be adapted to a predator-prey setting or a cooperative setting, where the two species live symbiotically. In the latter case, there also is an asymptotical solution, in which the two species do not separate- they stay together. Alberto Saldaña startet his academic career in Mexico where he found his love for mathematical analysis. He then did his Ph.D. in Frankfurt, and now he is a Post-Doc in the Mathematical Department at the University of Brussels. Literature and additional material A. Saldaña, T. Weth: On the asymptotic shape of solutions to Neumann problems for non-cooperative parabolic systems, Journal of Dynamics and Differential Equations,Volume 27, Issue 2, pp 307-332, 2015. A. Saldaña: Qualitative properties of coexistence and semi-trivial limit profiles of nonautonomous nonlinear parabolic Dirichlet systems, Nonlinear Analysis: Theory, Methods and Applications, 130:31 46, 2016. A. Saldaña: Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains, PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany, 2014. A. Saldaña, T. Weth: Asymptotic axial symmetry of solutions of parabolic equations in bounded radial domains, Journal of Evolution Equations 12.3: 697-712, 2012.