Podcasts about unterraum

  • 2PODCASTS
  • 3EPISODES
  • 47mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 21, 2018LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about unterraum

Modellansatz
InfSup-Bedingung

Modellansatz

Play Episode Listen Later Jun 21, 2018 20:05


Am 6. Juni 2018 hat Dietmar Gallistl seine Antrittsvorlesung gehalten. Dies ist der traditionelle Abschluss jedes Habilitationsverfahrens an der KIT-Fakultät für Mathematik. Der Titel des Vortrags lautete: Die Stabilitätskonstante des Divergenzoperators und ihre numerische Bestimmung. Im Zentrum des Vortrags und des Gespräches mit Gudrun stand die Inf-sup-Bedingung, die u.a. in der Strömungsrechnung eine zentrale Rolle spielt. Das lineare Strömungsproblem (Stokesproblem) besteht aus einer elliptischen Vektor-Differentialgleichung für das Geschwindigkeitsfeld und den Gradienten des Drucks und einer zweiten Gleichung. Diese entsteht unter der Annahme, dass es zu keiner Volumenänderung im Fluid unter Druck kommt (sogenannte Inkompressibilität) aus der Masseerhaltung. Mathematisch ist es die Bedingung, dass die Divergenz des Geschwindigkeitsfeldes Null ist. Physikalisch ist es eine Nebenbedingung. In der Behandlung des Problems sowohl in der Analysis als auch in der Numerik wird häufig ein Lösungsraum gewählt, in dem diese Bedingung automatisch erfüllt ist. Damit verschwindet der Term mit dem Druck aus der Gleichung. Für das Geschwindigkeitsfeld ist dann mit Hilfe des Lax-Milgram Satzes eine eindeutige Lösung garantiert. Allerdings nicht für den Druck. Genau genommen entsteht nämlich ein Sattelpunktproblem sobald man den Druck nicht ausblendet. Dieses ist nicht wohlgestellt, weil man keine natürlichen Schranken hat. Unter einer zusätzlichen Bedingung ist es aber möglich, hier auch die Existenz des Druckes zu sichern (und zwar sowohl analytisch als auch später im numerischen Verfahren solange der endliche Raum ein Unterraum des analytischen Raumes ist). Diese heißt entweder inf-sup Bedingung oder aber nach den vielen Müttern und Vätern: Ladyzhenska-Babushka-Brezzi-Bedingung. Die Konstante in der Bedingung geht direkt in verschiedene Abschätzungen ein und es wäre deshalb schön, sie genau zu kennen. Ein Hilfsmittel bei der geschickten numerischen Approximation ist die Helmholtzzerlegung des L2. Diese besagt, dass sich jedes Feld eindeutig in zwei Teile zerlegen läßt, von der eines ein Gradient ist und der andere schwach divergenzfrei. Es lassen sich dann beide Teile getrennt betrachten. Man konstruiert den gemischten Finite Elemente Raum so, dass im Druck stückweise polynomielle Funktionen (mit Mittelwert 0) auftreten und und für den Raum der Geschwindigkeitsgradienten das orthogonale kompelemt der schwach divergenzfreien Raviart-Thomas-Elemente gewählt ist. Dietmar Gallistl hat in Freiburg und Berlin Mathematik studiert und promovierte 2014 an der Humboldt-Universität zu Berlin. Nach Karlsruhe kam er als Nachwuchsgruppenleiter im SFB Wellenphänome - nahm aber schon kurz darauf in Heidelberg die Vertretung einer Professur wahr. Zur Zeit ist er als Assistant Professor an der Universität Twente tätig. Literatur und weiterführende Informationen D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comp. (2018) Published online, https://doi.org/10.1090/mcom/3327 Ch. Bernardi, M. Costabel, M. Dauge, and V. Girault, Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal. 48 (2016), no. 2, 1250–1271. https://doi.org/10.1137/15M1044989 M. Costabel and M. Dauge, On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 873–898. https://doi.org/10.1007/s00205-015-0845-2 D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016

Modellansatz
Stokes Operator

Modellansatz

Play Episode Listen Later Jun 29, 2017 74:01


Peer Kunstmann hat in Kiel Mathematik studiert und 1995 promoviert. In seiner Zeit an der Fakultät für Mathematik in Karlsruhe hat er sich 2002 habilitiert. Er arbeitet als Akademischer Oberrat dauerhaft in der Arbeitsgruppe Angewandte Analysis an unserer Fakultät. Gudrun hat das Gespräch über ein für beide interessantes Thema - das Stokesproblem - gesucht, weil beide schon über längere Zeit mit unterschiedlichen Methoden zu dieser Gleichung forschen. Das Stokesproblem ist der lineare Anteil der Navier-Stokes Gleichungen, dem klassischen Modell für Strömungen. Sie haben eine gewisse Faszination, da sie einfach genug erscheinen, um sie in ihrer Struktur sehr eingehend verstehen zu können, zeigen aber auch immer wieder, dass man sie nicht unterschätzen darf in ihrer Komplexität. Peers Interesse wurde zu Beginn seiner Zeit in Karlsruhe durch Matthias Hieber geweckt, der inzwischen an der TU Darmstadt tätig ist. Es zeigte sich seit damals als sehr aktives Forschungsgebiet, weshalb er auch immer wieder neu zu diesen Fragestellungen zurückgekehrt ist. Mit den klassischen Randbedingungen (konkret, wenn auf dem Rand vorgeschrieben wird, dass die Lösung dort verschwindet = homogene Dirichletbedingung) ist das Stokesproblem auffassbar als Laplaceoperator, der auf Räumen mit divergenzfreien Vektorfeldern agiert. Der Laplaceoperator ist sehr gut verstanden und die Einschränkung auf den abgeschlossenen Unterraum der Vektorfelder mit der Eigenschaft, dass ihre Divergenz den Wert 0 ergibt, lässt sich mit einer Orthogonalprojektion - der Helmholtzprojektion - beschreiben. Im Hilbertraumfall, d.h. wenn die Räume auf einer L^2-Struktur basieren und der Raum deshalb auch ein Skalarprodukt hat, weiß man, dass diese Projektion immer existiert und gute Eigenschaften hat. Für andere Räume ohne diese Struktur (z.B. -basiert für q nicht 2) hängt die Antwort auf die Frage, für welche q die Projektion existiert, von der Geometrie des Gebietes ab. Für beschränkte Gebiete geht vor allem die Glattheit des Randes ein. Das spiegelt sich auch auf der Seite des Laplaceproblems, wo die Regularität im Innern des Gebietes relativ elementar gezeigt werden kann, aber in der Nähe des Randes und auf dem Rand gehen in die Argumente direkt die Regularität des Randes ein. Mathematisch wird das Gebiet dabei mit Kreisen überdeckt und mit Hilfe einer sogenannten Zerlegung der Eins anschließend die Lösung für das ganze Gebiet zusammengesetzt. Für die Kreise, die ganz im Innern des Gebietes liegen, wird die Lösung auf den ganzen Raum mit dem Wert 0 fortgesetzt, weil die Behandlung des ganzen Raumes sehr einfach ist. Für Kreise am Rand, wird der Rand lokal glatt gebogen zu einer geraden Linie und (ebenfalls nach Fortsetzung mit 0) ein Halbraum-Problem gelöst. Natürlich liegt es in der Glattheit des Randes, ob das "gerade biegen" nur kleine Fehlerterme erzeugt, die sich "verstecken" lassen oder ob das nicht funktioniert. Für einen Rand, der lokal durch zweimal differenzierbare Funktion dargestellt werden kann, funktioniert diese Technik gut. Für Gebiete, die einen Rand haben, der lokal durch Lipschitzstetige Funktionen darstellbar ist, werden z.B. Randintegraldarstellungen direkt untersucht. Dort existiert die Helmholtzzerlegung für alle q im Intervall (wobei vom Gebiet abhängt). Durch die kleinen Fehlerterme, die in der Technik entstehen, wird es auch nötig, die Gleichung für die Divergenz zu untersuchen, wo keine 0 sondern eine beliebige Funktion (natürlich mit den entsprechenden Regularitätseigenschaften) als rechte Seite erlaubt ist. Ein Begriff, der eine wichtige Eigenschaft von partiellen Differentialgleichungen beschreibt, ist der der maximalen Regularität. Einfach ausgedrückt heißt das, wenn ich die rechte Seite in einem Raum vorgebe, ist die Lösung genau so viel regulärer, dass nach Anwendung des Differentialoperators das Ergebnis die Regularität der rechten Seite hat. Für das Laplaceproblem wäre also die Lösung v für jedes vorgegebene f so, dass und f im gleichen Raum sind. Diese Eigenschaft ist z.B. wichtig, wenn man bei nichtlinearen Problemen mit Hilfe von Fixpunktsätzen arbeitet, also z.B. den Operators iterativ anwenden muss. Dann sichert die maximale Regularität, dass man immer im richtigen Raum landet, um den Operator erneut anwenden zu können. Im Zusammenhang mit der Frage der maximalen Regularität hat sich der -Kalkül als sehr nützlich erwiesen. Ein anderer Zugang wählt statt der Operatorformulierung die schwache Formulierung und arbeitet mit Bilinearformen und Ergebnissen der Funktionalanalysis. Hier kann man vergleichsweise wenig abstrakt und in diesem Sinn elementar auch viel für das Stokes- und das Navier-Stokes Problem zeigen. Es gibt ein vorbildliches Buch von Hermann Sohr dazu. Literatur und weiterführende Informationen M. Geißert, P.C. Kunstmann: Weak Neumann implies H^\infty for Stokes, Journal Math. Soc. Japan 67 (no. 1), 183-193, 2015. P.C. Kunstmann: Navier-Stokes equations on unbounded domains with rough initial data, Czechoslovak Math. J. 60(135) no. 2, 297–313, 2010. H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser, 2001. M. Cannone: Ondelettes, Paraproduits et Navier-stokes, Diderot Editeur, 1995. G. Thäter, H. Sohr: Imaginary powers of second order differential operators and $L^q$ -Helmholtz decomposition in the infinite cylinder, Mathematische Annalen 311(3):577-602, 1998. P.C. Kunstmann, L. Weis: Maximal L_p-regularity for parabolic equations, Fourier multiplier theorems and H^\infty-calculus, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel and S. Piazzera), Springer Lecture Notes 1855, 65-311, 2004. P.C. Kunstmann, L. Weis: New criteria for the H^\infty-calculus and the Stokes operator on bounded Lipschitz domains, Journal of Evolution Equations, March 2017, Volume 17, Issue 1, pp 387-409, 2017. G.P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 02/02
Generalized and efficient outlier detection for spatial, temporal, and high-dimensional data mining

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 02/02

Play Episode Listen Later Dec 20, 2013


Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Datenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, statistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion, Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identifizieren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler, ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipulierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikationen experimental als ``klar besser'' dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und damit die Methode an geänderte Anforderungen und Datentypen anpassen kann. Um die Vorteile der modularisierten Struktur zu zeigen, werden (i) zahlreiche bestehende Algorithmen in dem Schema formalisiert, (ii) neue Module hinzugefügt, um die Robustheit, Effizienz, statistische Aussagekraft und Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Methoden kombiniert werden können, (iii) Module modifiziert, um bestehende und neue Algorithmen auf andere, oft komplexere, Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimensionale Räume, (iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen, (v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung verbessert. Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit kleinen Erweiterungen modifiziert, um die Robustheit und die Nutzbarkeit der Bewertung zu verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erkennung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorithmen nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Verwendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition einer Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer bewertet wurde. Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden -- in annähernd linearer statt in quadratischer Zeit --, indem man approximative Nachbarschaften bei geringem Verlust an Präzision und Effektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in einer Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern erkennen kann. Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das spezifische Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen selbst auf großen Datensätzen effizient ausgeführt werden.