Podcasts about skalarprodukt

  • 4PODCASTS
  • 10EPISODES
  • 50mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 11, 2019LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about skalarprodukt

Latest podcast episodes about skalarprodukt

Catch The Numbers Podcast
#023 Winkel & Orthogonalität bei Geraden & Ebenen berechnen | Formeln & Besonderheiten | ANALYTISCHE GEOMETRIE | Staffel 1

Catch The Numbers Podcast

Play Episode Listen Later Sep 11, 2019 6:46


Wenn du bei den Lagebeziehungen herausbekommen hast, dass sich Geraden und/oder Ebenen schneiden, dann kannst du noch den Schnittwinkel berechnen. Und das machst du wieder ganz einfach über die Winkelformel vom Skalarprodukt. Wie das genau geht und worauf du unbedingt achten solltest, erkläre ich dir in dieser Folge. Außerdem erfährst du, wie du ganz schnell nachweist, ob Geraden und/oder Ebenen senkrecht, also orthogonal, aufeinander stehen ;) Der Podcast soll in Zusammenarbeit mit DIR entstehen. Also lass mir sehr gerne deine Anregungen, Wünsche, Ideen, Fragen da. Das kannst du auf meiner Website www.catchthenumbers.de oder bei Instagram @catchthenumbers machen. Auf meiner Website findest du außerdem mein Coaching-Programm. Make Yourself proud! Deine Nadine :)

Catch The Numbers Podcast
#011 Winkel bei Vektoren & senkrechte Vektoren | ANALYTISCHE GEOMETRIE | Staffel 1

Catch The Numbers Podcast

Play Episode Listen Later Aug 30, 2019 5:23


Für die Winkelberechnung bei Vektoren brauchst du nur zwei Sachen lernen: einerseits die “Winkelformel”, mit der du den genauen Winkel zwischen zwei Vektoren berechnen kannst, und andererseits das Skalarprodukt, mit dem du ganz schnell überprüfen kannst, ob Vektoren senkrecht aufeinander stehen. Ein anderes Wort für senkrecht ist übrigens orthogonal. Der Podcast soll in Zusammenarbeit mit DIR entstehen. Also lass mir sehr gerne deine Anregungen, Wünsche, Ideen, Fragen da. Das kannst du auf meiner Website www.catchthenumbers.de oder bei Instagram @catchthenumbers machen. Auf meiner Website findest du außerdem mein Coaching-Programm. Make Yourself proud! Deine Nadine :)

Catch The Numbers Podcast
#009 Die 3 Arten der Multiplikation bei Vektoren | Skalarprodukt | Vektorprodukt | ANALYTISCHE GEOMETRIE | Staffel 1

Catch The Numbers Podcast

Play Episode Listen Later Aug 28, 2019 11:13


Bei Vektoren gibt es drei verschiedene Arten zu multiplizieren und zwei verschiedene Mal-Zeichen. Welche Arten es gibt, wann du sie benutzt und wie du rechnen musst, erfährst du in dieser Folge. Der Podcast soll in Zusammenarbeit mit DIR entstehen. Also lass mir sehr gerne deine Anregungen, Wünsche, Ideen, Fragen da. Das kannst du auf meiner Websitewww.catchthenumbers.de oder bei Instagram @catchthenumbers machen. Auf meiner Website findest du außerdem mein Coaching-Programm. Make Yourself proud! Deine Nadine :)

LMU Rechenmethoden 2013/14
14. Basistransformation II, Orthogonale & Unitäre Matrizen I

LMU Rechenmethoden 2013/14

Play Episode Listen Later Mar 13, 2018 90:41


Transformation einer linearen Abbildung. Reelles und komplexes Skalarprodukt, transponierte und hermitesch konjugierte einer Matrix

transformation matrix abbildung matrizen skalarprodukt
LMU Rechenmethoden 2013/14
4. Euklidischer Raum

LMU Rechenmethoden 2013/14

Play Episode Listen Later Mar 13, 2018 48:17


Skalarprodukt; Norm, Winkel, Orthogonalität, Orthonormalität, Gram-Schmidt, Metrik, komplexes Skalarprodukt

raum norm winkel metrik gram schmidt skalarprodukt
LMU Rechenmethoden 2013/14
Mathe-Vorkurs: Vorlesung 5 – Teil A

LMU Rechenmethoden 2013/14

Play Episode Listen Later Mar 13, 2018 139:30


Vektoren: geometrische Definition, Komponenten, Skalarprodukt, Vektorprodukt

Modellansatz
Stokes Operator

Modellansatz

Play Episode Listen Later Jun 29, 2017 74:01


Peer Kunstmann hat in Kiel Mathematik studiert und 1995 promoviert. In seiner Zeit an der Fakultät für Mathematik in Karlsruhe hat er sich 2002 habilitiert. Er arbeitet als Akademischer Oberrat dauerhaft in der Arbeitsgruppe Angewandte Analysis an unserer Fakultät. Gudrun hat das Gespräch über ein für beide interessantes Thema - das Stokesproblem - gesucht, weil beide schon über längere Zeit mit unterschiedlichen Methoden zu dieser Gleichung forschen. Das Stokesproblem ist der lineare Anteil der Navier-Stokes Gleichungen, dem klassischen Modell für Strömungen. Sie haben eine gewisse Faszination, da sie einfach genug erscheinen, um sie in ihrer Struktur sehr eingehend verstehen zu können, zeigen aber auch immer wieder, dass man sie nicht unterschätzen darf in ihrer Komplexität. Peers Interesse wurde zu Beginn seiner Zeit in Karlsruhe durch Matthias Hieber geweckt, der inzwischen an der TU Darmstadt tätig ist. Es zeigte sich seit damals als sehr aktives Forschungsgebiet, weshalb er auch immer wieder neu zu diesen Fragestellungen zurückgekehrt ist. Mit den klassischen Randbedingungen (konkret, wenn auf dem Rand vorgeschrieben wird, dass die Lösung dort verschwindet = homogene Dirichletbedingung) ist das Stokesproblem auffassbar als Laplaceoperator, der auf Räumen mit divergenzfreien Vektorfeldern agiert. Der Laplaceoperator ist sehr gut verstanden und die Einschränkung auf den abgeschlossenen Unterraum der Vektorfelder mit der Eigenschaft, dass ihre Divergenz den Wert 0 ergibt, lässt sich mit einer Orthogonalprojektion - der Helmholtzprojektion - beschreiben. Im Hilbertraumfall, d.h. wenn die Räume auf einer L^2-Struktur basieren und der Raum deshalb auch ein Skalarprodukt hat, weiß man, dass diese Projektion immer existiert und gute Eigenschaften hat. Für andere Räume ohne diese Struktur (z.B. -basiert für q nicht 2) hängt die Antwort auf die Frage, für welche q die Projektion existiert, von der Geometrie des Gebietes ab. Für beschränkte Gebiete geht vor allem die Glattheit des Randes ein. Das spiegelt sich auch auf der Seite des Laplaceproblems, wo die Regularität im Innern des Gebietes relativ elementar gezeigt werden kann, aber in der Nähe des Randes und auf dem Rand gehen in die Argumente direkt die Regularität des Randes ein. Mathematisch wird das Gebiet dabei mit Kreisen überdeckt und mit Hilfe einer sogenannten Zerlegung der Eins anschließend die Lösung für das ganze Gebiet zusammengesetzt. Für die Kreise, die ganz im Innern des Gebietes liegen, wird die Lösung auf den ganzen Raum mit dem Wert 0 fortgesetzt, weil die Behandlung des ganzen Raumes sehr einfach ist. Für Kreise am Rand, wird der Rand lokal glatt gebogen zu einer geraden Linie und (ebenfalls nach Fortsetzung mit 0) ein Halbraum-Problem gelöst. Natürlich liegt es in der Glattheit des Randes, ob das "gerade biegen" nur kleine Fehlerterme erzeugt, die sich "verstecken" lassen oder ob das nicht funktioniert. Für einen Rand, der lokal durch zweimal differenzierbare Funktion dargestellt werden kann, funktioniert diese Technik gut. Für Gebiete, die einen Rand haben, der lokal durch Lipschitzstetige Funktionen darstellbar ist, werden z.B. Randintegraldarstellungen direkt untersucht. Dort existiert die Helmholtzzerlegung für alle q im Intervall (wobei vom Gebiet abhängt). Durch die kleinen Fehlerterme, die in der Technik entstehen, wird es auch nötig, die Gleichung für die Divergenz zu untersuchen, wo keine 0 sondern eine beliebige Funktion (natürlich mit den entsprechenden Regularitätseigenschaften) als rechte Seite erlaubt ist. Ein Begriff, der eine wichtige Eigenschaft von partiellen Differentialgleichungen beschreibt, ist der der maximalen Regularität. Einfach ausgedrückt heißt das, wenn ich die rechte Seite in einem Raum vorgebe, ist die Lösung genau so viel regulärer, dass nach Anwendung des Differentialoperators das Ergebnis die Regularität der rechten Seite hat. Für das Laplaceproblem wäre also die Lösung v für jedes vorgegebene f so, dass und f im gleichen Raum sind. Diese Eigenschaft ist z.B. wichtig, wenn man bei nichtlinearen Problemen mit Hilfe von Fixpunktsätzen arbeitet, also z.B. den Operators iterativ anwenden muss. Dann sichert die maximale Regularität, dass man immer im richtigen Raum landet, um den Operator erneut anwenden zu können. Im Zusammenhang mit der Frage der maximalen Regularität hat sich der -Kalkül als sehr nützlich erwiesen. Ein anderer Zugang wählt statt der Operatorformulierung die schwache Formulierung und arbeitet mit Bilinearformen und Ergebnissen der Funktionalanalysis. Hier kann man vergleichsweise wenig abstrakt und in diesem Sinn elementar auch viel für das Stokes- und das Navier-Stokes Problem zeigen. Es gibt ein vorbildliches Buch von Hermann Sohr dazu. Literatur und weiterführende Informationen M. Geißert, P.C. Kunstmann: Weak Neumann implies H^infty for Stokes, Journal Math. Soc. Japan 67 (no. 1), 183-193, 2015. P.C. Kunstmann: Navier-Stokes equations on unbounded domains with rough initial data, Czechoslovak Math. J. 60(135) no. 2, 297–313, 2010. H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser, 2001. M. Cannone: Ondelettes, Paraproduits et Navier-stokes, Diderot Editeur, 1995. G. Thäter, H. Sohr: Imaginary powers of second order differential operators and $L^q$ -Helmholtz decomposition in the infinite cylinder, Mathematische Annalen 311(3):577-602, 1998. P.C. Kunstmann, L. Weis: Maximal L_p-regularity for parabolic equations, Fourier multiplier theorems and H^infty-calculus, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel and S. Piazzera), Springer Lecture Notes 1855, 65-311, 2004. P.C. Kunstmann, L. Weis: New criteria for the H^infty-calculus and the Stokes operator on bounded Lipschitz domains, Journal of Evolution Equations, March 2017, Volume 17, Issue 1, pp 387-409, 2017. G.P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.

Modellansatz
Adiabatische Quantencomputer

Modellansatz

Play Episode Listen Later Sep 14, 2016 79:16


Im Anschluss ihres Erasmus-Auslandsjahr in Lyon hat sich Alexandra Krause als angehende Physikerin in den Bereich der Quanteninformatik vertieft. Dazu hat sie im Rahmen der Gulasch Programmiernacht (GPN16) des Entropia e.V. in der Hochschule für Gestaltung und dem ZKM in Karlsruhe über Quantum Speedup (video) vorgetragen und Zeit gefunden, uns auch im Podcast etwas über das Thema zu erzählen. Im Gegensatz zur klassischen Physik gelten in der Quantenmechanik eigene Regeln: So geht es hier um Teilchen in der Größenordnung von Atomen, wo die Begriffe Teilchen und Welle verschwimmen und der quantenmechanische Zustand unbeobachtet nur noch als Zustandsgemisch beschrieben werden kann. Genau diese Eigenschaft will man sich beim Quantencomputer zu Nutze machen, wo gegenüber dem klassischen digitalen Computer, der immer auf einzelnen festen Zuständen in Bits mit Logikgattern rechnet, der Quantenrechner pro Schritt in Qubits auf allen Zuständen gleichzeitig operiert. Das eigentliche Ergebnis erhält man dort erst bei der Messung, wodurch sich der reine Zustand des Quantensystems einstellt. Der Grover-Algorithmus ist eine bekannte Anwendung für einen Quantencomputer, der Datenbanken schneller als klassische Verfahren durchsuchen kann. Der Shor-Algorithmus kann hingegen mit einer Quanten-Fouriertransformation in polynomialer Zeit Zahlen in ihre Primfaktoren zerlegen kann. Damit werden viele assymetrische Kryptoverfahren wie das RSA-Verfahren obsolet, da sie auf der Schwierigkeit der klassischen Faktorisierung basieren. Shor hat in der gleichen Publikation auch ein Verfahren zur effizienten Berechnung von diskreten Logarithmen auf Quantencomputern veröffentlicht, so dass auch Kryptoverfahren auf elliptischen Kurven durch Quantencomputer gebrochen werden, die neben dem RSA-Verfahren Basis für viele Kryptowährungen sind. Zum jetzigen Zeitpunkt ist es der Experimentalphysik noch nicht gelungen, allgemeine Quantensysteme in einer Größe zu erschaffen, die für sinnvolle Anwendungen der Verfahren erforderlich wären. Die Schwierigkeit liegt darin, den Quantenzustand einzelner Qubits von der Umwelt abzukoppeln und nur für die Berechnung zu verwenden, wenn doch alles in der Umgebung in Bewegung ist. In der Größe weniger Qubits, die allgemeine Quantencomputer bisher erreichen konnten, wurden Zahlen wie 15 und 21 erfolgreich faktorisiert. Eine Hoffnung besteht hier auf dem adiabatischen Quantencomputer auf Basis adiabatischen Theorems, der von der Firma D-Wave Systems gebaut, und 2011 mit unvergleichlich vielen 128 Qubits auf den Markt gebracht wurde. Das Problem ist dabei, dass adiabatischen Quantencomputer im normalen Arbeitszustand keine universellen Quantencomputer sind, und hauptsächlich Optimierungsprobleme lösen können. Universelle Quantencomputer können im Circuit model anschaulich jedes herkömmliches Programm abbilden: Jedes klassische Logik-Gatter kann durch Hinzufügen weiterer Ausgänge reversibel werden, und dann als eine unitäre Abbildung oder Matrizen im Quantencomputer realisiert werden. Unitäre Abbildungen sind lineare Abbildungen mit der Eigenschaft, dass sie das komplexe Skalarprodukt zweier Vektoren nach der Abbildung erhalten, d.h. Vektoren behalten die gleiche Länge, und zwei Vektoren behalten den gleichen Winkel zueinander. Der Nachteil des reversiblen Ansatzes ist jedoch, dass dafür womöglich viele Bits benötigt werden, wenn man die Abbildungen nicht zuvor zusammenfassen kann. Theoretisch kann der adiabatische Quantencomputer auch universell sein, nur ist dazu ideal eine ungestörte Umgebung Voraussetzung, was in Realität nicht erreicht werden kann. Es verbleiben Optimierungsprobleme, die über den Hamiltonoperator abgebildet werden können: physikalische Prozesse möchten den energetisch niedrigsten Zustand zu erreichen. Ein Beispiel sind hier Minimalflächen, wie sie von Seifenhäuten und Seifenblasen angenommen werden- und auch zum Bau des Olympiageländes in München genutzt wurden. Im Schülerlabor für Mathematik in Karlsruhe kann man auch viele Experimente dazu durchführen. Wenn man ein Optimierungsproblem lösen möchte, so sind lokale Minima ein Problem- in ihrer Umgebung erscheinen sie als Lösung, sie sind es jedoch insgesamt betrachtet nicht. Eine Möglichkeit die lokalen Minima zu umgehen ist das Verfahren des Simulated Annealing. Hier wird durch externe Störquellen begünstigt, dass lokale Minima verlassen werden, um das globale Minimum zu erreichen. In Quantensystemen spielt hier beim Quantum Annealing zusätzlich der Tunneleffekt eine besondere Rolle, wodurch die Störung noch leichter von lokalen Minima hinweg streut. Dadurch ist das Quantum Annealing prinzipiell und aus der Theorie schneller- oder zumindest nicht langsamer- als das Simulated Annealing. Dabei ist das Quantum Annealing natürlich nur auf einem Quantencomputer effizient umsetzbar. Das ist dabei ein Beispiel für eine Quantensimulation auf einem Quantencomputer in dem Forschungsfeld, das sich mit der Abbildung und Simulation von Quantensystemen befasst. Damit ist der adiabatische Quantencomputer auf eine kleinere Klasse von lösbaren Problemen beschränkt, jedoch soll er dieses mit einer erheblichen höheren Anzahl von Qubits durchführen können- zur Zeit der Aufnahme waren dies mit dem D-Wave Two etwa 512 Qubits. Die Frage, ob diese adiabatischen Quantencomputer mit dieser großen Anzahl von Qubits wirklich als Quantencomputer arbeiten, wurde wissenschaftlich diskutiert: Im Artikel Evidence for quantum annealing with more than one hundred qubits legen die Autoren dar, dass der betrachtete adiabatische Quantencomputer starke Anzeichen für die tatsächliche Umsetzung des Quantum Annealing zeigt. In wie weit jedoch nun eine quantenbedingte Beschleunigung feststellen ist, diskutieren T. Rønnow und Mitautoren in der Arbeit Defining and detecting quantum speedup. Sie erhielten das ernüchternde Ergebnis, dass eine Beschleunigung durch Nutzung des betrachteten Quantensystems nicht eindeutig nachgewiesen werden konnte. Dagegen argumentierten V. Denchev et al. in What is the Computational Value of Finite Range Tunneling?, dass eine 100'000'000-fache Beschleunigung mit hoher Wahrscheinlichkeit gegenüber einem Einprozessor-System nachgewiesen werden kann. Ein Problem bei der Analyse ist, dass die betrachteten Algorithmen für den Quantencomputer in den Bereich der probabilistischen Algorithmen fallen, die Ergebnisse also eine Fehlerwahrscheinlichkeit besitzen, die durch mehrfache Ausführung verringert werden kann. In der Kryptographie werden probabilistische Primzahltests sehr häufig eingesetzt, die auch in diese Klasse der Algorithmen fallen. So wurde im ersten Paper das Verhalten des Quantencomputers in einer Vielzahl von Versuchen mit simulierten Algorithmen verglichen und mit hoher Wahrscheinlichkeit festgestellt, dass der D-Wave-Rechner tatsächlich den Quantum Annealing Algorithmus ausführt. Über den D-Wave-Rechner ist bekannt, dass die einzelnen Qubits durch supraleitende Ringe abgebildet sind und die beiden Stromlaufrichtungen die superpositionierten Zustände darstellen. Die Kopplung zwischen Qubits und nach außen erfolgt durch Spulen, die über die entstehenden Magnetfelder mit den Strömen in den Ringen interagieren. Die Kopplung zwischen Qubits wird damit durch die parametrisierte Kopplung der Spulen realisiert. Für klassische Algorithmen und parallelisierte Computersysteme beschreibt der Begriff des Speedup die Effizienzsteigerung durch Nutzung einer erhöhten Parallelisierung. Je nach Algorithmus gibt es nach Amdahls Gesetz logische Grenzen, wo weitere Parallelisierung keine Gewinn mehr erzielt. Entsprechend besteht der Wunsch den Begriff des Quantum Speedup analog zu definieren und nachzuweisen: Diesen Ansatz verfolgten T. Rønnow und Mitautoren und definierten verschiedene Klassen von Quantum Speedup, wobei der adiabatische D-Wave Quantencomputer für sie nur Anzeichen für ein potentielles Speed-up ergab. Das ist ein ernüchterndes Ergebnis, wobei die Autoren klar weiteren Forschungsbedarf sahen. Hier war das Paper von V. Denchev und Mitautoren eine große Überraschung, wo dem D-Wave 2X Rechner mit hoher Wahrscheinlichkeit eine Beschleunigung von 10^8 nachgesagt wurde. Neben den Annealing-Verfahren kam hier auch Quantum Monte Carlo zum Einsatz. Im Ergebnis erhielten sie für die Annealing-Verfahren ein asymptotisches Speed-Up, das sich für größere Problemstellungen einstellt, für Quantum Monte Carlo eine von der Problemgröße unabhängige Beschleunigung gegenüber einem klassischen Single-core Rechner. Diese Aussagen trafen aber schnell auf Widerstand und den Nachweis, dass ein im Paper betrachtetes Problem mit anderen Algorithmen teilweise auf einem klassischen Rechner vielfach schneller gelöst werden kann als auf dem Quantencomputer. Literatur und weiterführende Informationen S. Boixo, et al.: Evidence for quantum annealing with more than one hundred qubits, Nature Physics 10.3: 218-224, 2014. T. Rønnow, et al.: Defining and detecting quantum speedup, Science 345.6195: 420-424, 2014. V. Denchev, et al.: What is the Computational Value of Finite Range Tunneling? arXiv preprint arXiv:1512.02206, 2015. R. Harris, R., et al.: Compound Josephson-junction coupler for flux qubits with minimal crosstalk, Physical Review B 80.5: 052506, 2009. S. Ritterbusch: Digitale Währungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 32, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. http://modellansatz.de/digitale-waehrungen E. Dittrich: Schülerlabor, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 103, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/schuelerlabor Bernd Fix: Post-Quantum Krypto, Afra-Berlin.de, Vortrag am 13.12.2013. F. Rieger, F. von Leitner: Fnord Jahresrückblick, 32c3, Vortrag am 29.12.2015. S. Aaronson: Google, D-Wave, and the case of the factor-10^8 speedup for WHAT? Blog-Post mit Updates 16.5.2013-16.12.2015. Quantum Annealing Solver für den Laptop

Modellansatz
Helmholtzzerlegung

Modellansatz

Play Episode Listen Later Mar 17, 2016 39:02


Jens Babutzka hat Anfang 2016 seine Promotion an der KIT-Fakultät für Mathematik verteidigt. Das Gespräch dreht sich um einen Teil seiner Forschungsarbeit - dem Nachweis der Gültigkeit der sogenannten Helmholtz Zerlegung im Kontext von Gebieten mit einer sich periodisch wiederholenden Geometrie. Das lässt sich für die Untersuchung von photonischen Kristallen ausnutzen unter der Wirkung einer Zeit-harmonischen Wellengleichung. Für die Untersuchung von partiellen Differentialgleichungen auf Lösbarkeit, Eindeutigkeit der Lösungen und deren Regularität gibt es verschiedene Grundwerkzeuge. Eines ist die Helmholtz Zerlegung. Falls sie in einem Raum möglich ist, kann man jedes Vektorfeld des Raumes eindeutig aufteilen in zwei Anteile: einen Gradienten und einen zweiten Teil, der unter der Anwendung der Divergenz das Ergebnis Null hat (man nennt das auch divergenzfrei). Wann immer Objekte miteinander skalar multipliziert werden, von denen eines ein Gradient ist und das andere divergenzfrei, ist das Ergebnis Null. Anders ausgedrückt: sie stehen senkrecht aufeinander. Die Untersuchung der partiellen Differentialgleichung lässt sich dann vereinfachen, indem eine Projektion auf den Teilraum der divergenzfreien Funktionen erfolgt und erst im Anschluss die Gradienten wieder "dazu" genommen, also gesondert behandelt werden. Da die Eigenschaft divergenzfrei auch physikalisch als Quellenfreiheit eine Bedeutung hat und alle Gradienten wirbelfrei sind, ist für verschiedene Anwendungsfälle sowohl mathematisch als auch physikalisch motivierbar, dass die Aufteilung im Rahmen der Helmholtz Zerlegung hilfreich ist. Im Kontext der Strömungsmechanik ist die Bedingung der Divergenzfreiheit gleichbedeutend mit Inkompressibilität des fließenden Materials (dh. Volumina ändern sich nicht beim Einwirken mechanischer Kräfte). Für das Maxwell-System kann es sowohl für das magnetische als auch für das elektrische Feld Divergenzfreiheitsbedingungen geben. Ob die Helmholtz Zerlegung existiert, ist im Prinzip für viele Räume interessant. Grundbausteine für die Behandlung der partiellen Differentialgleichungen im Kontext der Funktionalanalysis sind die Lebesgue-Räume . Eine (verallgemeinerte) Funktion ist in , wenn das Integral (des Betrags) der q-ten Potenz der Funktion über Omega existiert. Eine Sonderrolle spielt hier der Fall , weil dieser Raum ein Skalarprodukt hat. Das gibt ihm eine sehr klare Struktur. Darüber hinaus ist er zu sich selbst dual. Unter anderem führt das dazu, dass die Helmholtz Zerlegung in für beliebige Gebiete mit genügend glattem Rand immer existiert. Wenn nicht ist, sind Gebiete bekannt, in denen die Helmholtz Zerlegung existiert, aber auch Gegenbeispiele. Insbesondere bei der Behandlung von nichtlinearen Problemen reicht es aber häufig nicht, sich auf den Fall zu beschränken, sondern die Helmholtz Zerlegung für möglichst viele wird eine wesentliche Voraussetzung für die weitere Theorie. Das liegt u.a. an der dann verfügbaren Einbettung in Räume mit punktweisen Eigenschaften. Jens Babutzka hat in seiner Promotion unter anderem bewiesen, dass die Helmholtz Zerlegung für -Räume für die Gebiete mit einer sich periodisch wiederholenden Struktur gilt. Mathematisch muss er hierfür nachweisen, dass das schwache Neumannproblem immer eine (bis auf Konstanten) eindeutige Lösung hat in . Dabei hilft ihm die periodische Struktur der Geometrie. Mithilfe eines erst kürzlich bewiesenen Theorems von Bernhard Barth über Blochoperatoren kann er das Problem auf eine Familie von Phasenoperatoren auf der (beschränkten) periodischen Zelle reduzieren. Falls diese Operatoren regulär genug sind, lassen sie sich fortsetzen von auf . Anschließend überprüft er, ob die so erzeugte Abbildung auch wirklich die Helmhotz Zerlegung ist. Hier ist ein wesentliches Hilfsmittel, dass unendlich glatte Funktionen mit kompaktem Träger dicht in den Teilräumen liegen. Außerdem ist die Fouriertheorie in der besonderen Form der Blochoperatoren hilfreich. Sie hilft später auch beim Auffinden des Spektrums des betrachteten Wellenoperators. Für beschränkte Gebiete hängt es im Wesentlichen von der Glattheit des Randes ab, ob die Helmholtz Zerlegung in gilt. Das liegt u.a. daran, dass man in der Lage sein muss, eine eindeutige Normalenrichtung für jeden Punkt des Randes zu finden. Für Knicke im Rand kann es hier Probleme geben, die dazu führen, dass das schwache Neumann Problem nur noch für in einem kleineren Intervallbereich lösbar ist, und nicht mehr für alle zwischen und wie das bei glattem Rand der Fall ist. Literatur und weiterführende Informationen A. Figotin and P. Kuchment: Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals, SIAM J. Appl. Math., 56, 1561–1620, 1995. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations - Steady-State Problems, Springer, 2011. B. Barth: The Bloch Transform on Lp-Spaces, KIT-Dissertation, 2013. W. Dörlfer e.a: Photonic Crystals: Mathematical Analysis and Numerical Approximation, Birkhäuser, 2011. M. Geissert e.a.: Weak Neumann implies Stokes, Journal für die reine und angewandte Mathematik 669, 75–100, 2012. Quellen für physikalische Grundlagen A. Birner e.a.: Photonische Kristalle, Physikalische Blätter 55 (1999), 27-33, 1999. Photonische Kristalle

Abi Tour  - Abi leicht gemacht
Folge 23 - Vektoren II - Längen und Winkel

Abi Tour - Abi leicht gemacht

Play Episode Listen Later Mar 26, 2009 11:44


Hallo und herzlich Willkommen zur 23ten Folge des Abitour Podcasts. Heute gehen wir ein wenig weiter in der Vektorrechnung und beschäftigen uns ein wenig mit der Berechnung von Längen von Vektoren, auch Betrag genannt. Danach beschäftigen wir uns mit den Winkeln zwischen zwei Vektoren, und mit welcher Formal man den ausrechnet. Dazu muss man natürlich auch nochmal das Skalarprodukt behandeln. Viel Spaß! Olli und Sven