POPULARITY
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
This thesis focuses on the preparation of new chalcogen and silver compounds, which are in part extremely moisture sensitive or energetic materials. The reaction of SeF4 with Me3SiN3 at low temperatures resulted in the formation of the first binary selenium(iv) azide Se(N3)4. The reactions of [SeF5]– and [SeF6]2– with Me3SiN3 furnished the corresponding polyazidoselenites [Se(N3)5]– and [Se(N3)6]2–. All materials are extremely temperature sensitive. The preparation of the binary selenium(iv) cyanide Se(CN)4 was attempted by the reaction of SeF4 with Me3SiCN at low temperatures. However, selenium tetracyanide could not be detected by NMR spectroscopy; instead, the decomposition product Se(CN)2 was isolated and its crystal structure was redetermined. The binary selenium(iv) fluorides [SeF5]– and [SeF6]2–, used as starting materials for the syntheses of the binary selenium(iv) azide compounds, have been characterized with the help of multinuclear NMR spectroscopy and compared with the literature. In addition the crystal structure of the unknown selenium(iv) oxofluoride anion [SeOF3]– was obtained and compared with the known structures of [SOF3]– and [TeOF3]– . The reaction of organoselanes and -diselanes (R2Se and (RSe)2) with XeF2 furnished the corresponding organoselenium(iv) difluorides R2SeF2 (R = Me, Et, i-Pr, Ph, Mes (= 2, 4, 6-(Me)3C6H2), Tipp (= 2, 4, 6-(i-Pr)3C6H2), 2 -Me2NCH2C6H4), and trifluorides R0SeF3 (R0 = Me, i-Pr, Ph, Mes, Tipp, Mes* (= 2, 4, 6-(t-Bu)3C6H2), 2-Me2NCH2C6H4), respectively. In addition to characterization by multinuclear NMR spectroscopy, the first molecular structure of an organoselenium(iv) difluoride as well as the molecular structures of subsequent decomposition products have been determined. The substitution of fluorine atoms with Me3SiN3 leads to the corresponding organoselenium(iv) diazides R2Se(N3)2 (R = Me, Et, i-Pr, Ph, Mes, 2-Me2NCH2C6H4) and triazides R0Se(N3)3 (R0 = Me, i-Pr, Ph, Mes, Tipp, Mes*, 2-Me2NCH2C6H4), respectively. The organoselenium azides are extremely temperature-sensitive materials and can only be handled at low temperatures. The reaction of dibenzoselenophene (biphenSe) with halogenides or halogenidedonating compounds, respectively, furnished the corresponding organoselenium(iv) halogenides biphenSeF2, biphenSeCl2, biphenSeBr2, as well as the charge-transfer-adduct biphenSe·I2. Besides their NMR spectroscopic characterization, the molecular structures of the dichloride, dibromide, and the iodine-adduct could be determined. In analogy the reaction of dibenzo[1,2]diselenine with three equivalents of halogenide or halogenidedonating compound was examined. The syntheses of the triorganochalcogenonium dinitramide salts [Ph3Te][N(NO2)2], [Me3Te][N(NO2)2], [Ph3Se][N(NO2)2], [Me3Se][N(NO2)2], [Ph3S][N(NO2)2], and [Me3S][N(NO2)2], their characterization by multinuclear NMR spectroscopy, vibrational spectra, and single crystal structures were described. The syntheses of the compounds were achieved using [Ag(py)2][N(NO2)2] and [Ag(NCCH3)][N(NO2)2] as dinitramide transfer reagents. Besides those ionic salts, the preparation of the first covalent tellurium(iv) dinitramide compounds R2Te[N(NO2)2] (R = Me, Ph, Mes) and the synthesis of Me3SiN(NO2)2 was achieved. The latter was investigated as potential dinitramide transfer reagent. Furthermore the ionic sulfonium azides [Ph3S]N3 and [Me3S]N3 were prepared and the crystal structure of the triphenylsulfonium salt could be determined. The crystal structure of solvate-free silver dinitramide Ag[N(NO2)2] was elucidated by X-Ray diffraction for the first time. Additionally, in order to achieve a safe handling of the compound, the complete sensitivity data was obtained. The reaction of silver azide with triphenylsulfonium or tetraphenylphosphonium azide results in the formation of the binary silver-nitrogen compound, the novel diazidoargentate(i) anion [Ag(N3)2]– ,initially discovered as a surprising by-product during the preparation of a sulfonium azide. The disproportionation product of the donor-stabilized tellurenyl fluoride 2-Me2NCH2C6H4TeF, the tellurium(iv) trifluoride 2-Me2NCH2C6H4TeF3, could be identified by multinuclear NMR spectroscopy. In addition, the crystal structure of 2-Me2NCH2C6H4TeF3, the second structural characterized tellurium(iv) trifluoride, has been determined. Furthermore the syntheses of the new tellurium(iv) difluoride, (2-Me2NCH2C6H4)2TeF2, and corresponding tellurium(iv) diazide, (2-Me2NCH2C6H4)2Te(N3)2 as well as the tellurium(iv) triazide, 2-Me2NCH2C6H4Te(N3)3, and their characterization by spectroscopic methods were reported. During these investigations rather interesting crystal structures of an organotelluronium salt ([(2-Me2NCH2C6H4)2TeOH]2[SiF6]), a monomeric organotellurium(iv) oxide ((2-Me2NCH2C6H4)2TeO), and an unusual tellurium(vi) species([(2-Me2N(H)CH2C6H4)2TeOF3]2[SiF6]) were elucidated.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
This thesis focuses on the experimental and theoretical investigation of tellurium pseudohalides, especially azides. Tellurium tetraazide, Te(N3)4, was prepared directly from TeF4 with Me3SiN3 as an extremely sensitive solid; and azidation of pentafluorotellurate(iv) TeF5- gave the pentaazidotellurate(iv) anion. The crystal structure of the pyridinium salt [pyH][Te(N3)5] consists of [Te(N3)5]- units, considerably distorted from ideal square pyramidal symmetry and linked by Te-N interactions between two anions. The labile tellurium cyanide species Te(CN)2 and Te(CN)4 have been prepared by treatment of tellurium(iv) tetrahalides with cyanide. Both are thermosensitive solids and in addition, the tetracyanide was found to be pyrophoric. Fluorination of R2Te (R = 2,4,6-Me3C6H2 (= Mes), 2,4,6-iPr3C6H2 (= Trip)) with xenon difluoride afforded the sterically demanding diorganotellurium(iv) difluorides R2TeF2. The reaction of R2TeF2 (R = Me, Ph, Mes, Trip) with trimethylsilyl cyanide resulted in the formation of either R2Te(CN)2 (R = Ph, Mes) or the tellanes R2Te (R = Me, Trip). The crystal structure of Te(CN)2, a binary tellurium cyanide and (Mes2TeCN)2O have been determined. All structures of Te(CN)2, Te(CN)4, and Te(CN)6 have been calculated at various levels of theory. The perfluoroaryl tellurolates C6F5TeLi and 4-CF3C6F4TeLi were prepared. These intermediates were identified by NMR spectroscopy and may form, depending on the reaction conditions, either the corresponding ditellanes (C6F5Te)2 and (4-CF3C6F4Te)2 by subsequent oxidation, or a telluranthrene (C6F4Te)2 depending on the reaction conditions. The halogenation products of (C6F4Te)2, (C6F4Te)2F4, (C6F4Te)2Cl4, (C6F4Te)2Br4, as well as the azidation product (C6F4Te)2(N3)4 were synthesized. Furthermore, in pursuit of our recent work on tellurium azides, the syntheses and properties of R2Te(N3)2 (R = CF3, C6F2H3) and RTe(N3)3 (R = CF3 and C6F5) are reported. The crystal structures of (CF3C6F4Te)2, (C6F4Te)2Br4, and (C6F2H3)2Te(N3)2 were determined. The reaction of azide with organotellurium(vi) halides Ph5TeBr and (biphen)2TeF2 (biphen = 2,2'-biphenyldiyl) resulted in the formation and isolation of Ph5TeN3 and (biphen)2Te(N3)2, which are the first tellurium(vi)-pseudohalide species. In addition to spectroscopic data, both crystal structures have been determined. Furthermore, the stability of possible Te(vi) species with higher azide contents PhxTe(N3)6-x and MexTe(N3)6-x as well as the syntheses and properties of their Ph/MexTeFy precursors were investigated, including the crystal structure determination of trans-Ph2TeF4. Ab initio and density functional studies of all molecules regarding the structures and electronic populations were performed. The first tellurium compounds containing the extremely bulky tris(phenyldimethylsilyl)methyl (Tpsi) and 2,6-bis(2,4,6-tri{isopropylphenyl)phenyl (2,6-Trip2C6H3) moieties have been synthesized and isolated. Careful oxidation of the tellurolate TpsiTeLi resulted in the formation of the crowded ditellane (TpsiTe)2; subsequent iodination gave the alkanetellurenyl iodide TpsiTeI. In a similar fashion, the terphenyl substituted ditellane (2,6-Trip2C6H3Te)2 and the arenetellurenyl iodide 2,6-Trip2C6H3TeI were prepared. Reaction of the tellurenyl iodides TpsiTeI, 2,6-Trip2C6H3TeI, as well as TripTeI, Mes*TeI and the donor-stabilized 2-Me2NCH2C6H4TeI with AgN3 resulted in the formation and isolation of the corresponding tellurenyl azides TpsiTeN3, TripTeN3, Mes*TeN3, 2,6-Trip2C6H3TeN3, and 2-Me2NCH2C6H4TeN3. Furthermore, the tris(ethyldimethylsilyl)methyl (Tesi) tellurium compounds (TesiTe)2, TesiTeI, and TesiTeN3 have been prepared, but could not be isolated in pure form. The crystal structures of TpsiTeLi, (TpsiTe)2, TpsiTeN3, 2,6-Trip2C6H3TeI, 2,6-Trip2C6H3TeN3, and 2-Me2NCH2C6H4TeN3 have been determined by X-ray diffraction. Additionally, computational studies of the molecules for which experimental structural data were available, were performed.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Hauptteil dieser Arbeit werden Synthese und Charakterisierung neuer Azidverbindungen des Elementes Bor beschrieben. Anhand der Azidierung von Catecholborchlorid konnte gezeigt werden, daß sich das kommerziell erhältliche Me3SiN3 am besten für den Aufbau von Boraziden eignet. Durch die Reaktion von 9-BBN-Cl mit Me3SiN3 sollte 9-BBN-N3 (7) dargestellt werden. Dabei zeigte sich jedoch, daß es unter Eliminierung von N2 überraschenderweise zur Bildung des Umlagerungsproduktes 8 kommt. Um die Bildung von 8 zu verstehen, wurde die Reaktion 11B NMR spektroskopisch bei tiefen Temperaturen untersucht. Dabei konnte gezeigt werden, daß sich bei Temperaturen unter −30 °C zuerst das erwartete 9-BBN-N3 (7) bildet, welches bei höheren Temperaturen unter N2-Abspaltung zu 8 weiterreagiert. Für die Bildung von 8 wurde ein „Synchronmechanismus“ vorgeschlagen, bei dem das α-N Atom der Azidgruppe des intermediär gebildeten 9-BBN-N3 (7) zunächst an das Boratom eines weiteren 9-BBN-N3 (7) Moleküls koordiniert. Gleichzeitig kommt es, unter Eliminierung von N2 zur Bildung einer B−N Bindung. Ein zweiter denkbarer Mechanismus („Iminoboranmechanismus“) fordert das Entstehen eines zyklischen Iminoborans, welches sich durch Addition eines 9-BBN-N3 (7) Moleküls stabilisiert. In einem großen Teil dieser Arbeit wurde eine Reihe von Boraziden mit elektronenziehenden Substituenten untersucht. Dabei wurde zunächst das bereits in der Literatur beschriebene (BF2N3)3 (10) durch Reaktion von BF3 mit Me3SiN3 dargestellt und schwingungs- und NMR-112 spektroskopisch charakterisiert. Es konnte gezeigt werden, daß 10 bereits in Lösung als Trimer vorliegt. Dies ist mit den quantenmechanischen Studien im Einklang, welche zeigen, daß die Trimerisierung von BF2N3 (→ (BF2N3)3) gegenüber der Dimerisierung [→ (BF2N3)2] sowie der Dismutierung (→ BF3, B(N3)3) bevorzugt ist. Einen weiteren elektronenziehenden Substituenten stellt die Pentafluorphenylgruppe (C6F5) dar. Es konnten alle möglichen Kombinationen Pentafluorphenyl-substituierter Borazide sowie deren Pyridin-Addukte synthetisiert und vollständig charakterisiert werden, wobei neue oligomere Festkörperstrukturen erhalten wurden. (C6F5)2BCl [(C6F5)2BN3]2 Me3SiN3 Py [Ph4P][N3] [PPh4][(C6F5)2B(N3)2] 11a 12 13 - Me3SiCl (C6F5)2BN3 Py . Es konnte gezeigt werden, daß sich (C6F5)2BN3 (11) im Festkörper unter Ausbildung von Dimeren [(C6F5)2BN3)]2 (11a) stabilisiert. Somit kann 11a als erstes Beispiel eines substituierten N,N´-Diazo-diazadiboratacyclobutans angesehen werden. Durch Reaktion mit Pyridin oder [Ph4P][N3] konnten 12 und 13 erhalten werden. Im Gegensatz zu 11a, liegt C6F5B(N3)2 (14) im Feststoff als Trimer [C6F5B(N3)2]3 (14a) vor. C6F5BCl2 [C6F5B(N3)2]3 - Me3SiCl Me3SiN3 C6F5B(N3)2 [Ph4P][N3] Py [Ph4P][C6F5B(N3)3] C6F5B(N3)2 Py . 14a 14 15 > 35-37 °C < 35-37 °C An dem Beispiel von 14a konnte der Unterschied von verbrückenden und terminalen Azidgruppen in einem Molekül untersucht werden. Wie durch Ramanspektroskopie gezeigt werden konnte, dissoziiert 14a bei seinem Schmelzpunkt 35−37 °C reversibel in seine Monomere 14. Durch Umsetzungen mit Pyridin und [Ph4P][N3] wurden das Pyridin-Addukt 15 und das Pentafluorphenyltriazidoborat 16 erhalten. Da die Pentafluorphenyl-substituierten Borazide 11a und 14a im Festkörper oligomer vorliegen, wurde der Einfluß der schwächer elektronenziehenden o-Difluorphenyl- und o- Fluorphenyl Substituenten (RF = 2,6-F2C6H3, 2-FC6H4) auf die Struktur der Borazide (RF)2BN3 (23, 24) und RFB(N3)2 (26, 27) untersucht. Die für die den Aufbau der Borazide benötigten nicht beschriebenen Ausgangsverbindungen (RF)2BCl (19, 20) und RFBCl2 (21, 22) wurden durch Reaktion von (RF)2SnMe2 (17, 18) mit BCl3 erhalten. Dabei konnte gezeigt werden, daß (2,6-F2C6H3)2BN3 (23) wie 11a im Festkörper als Dimer vorliegt. Aufgrund von ramanspektroskopischen Untersuchungen, wurde auch für 2,6-F2C6H3B(N3)2 (26) eine oligomere Struktur vorausgesagt. Im Gegensatz dazu ist die 2-FC6H4-Gruppe zu wenig elektronegativ, sodaß (2-FC6H4)2BN3 (24) und 2-FC6H4B(N3)2 (27) keine Oligomerisierungstendenzen zeigen. Ein weiteres im Festkörper monomer vorliegendes Azid ist 2,4,6- [(CF3)3C6H2]2BN3 (25). In diesem Fall verhindern sperrige Nonafluormesityl-Substituenten eine Oligomerisierung. Die hochenergetischen Bortriazid-Addukte B(N3)3·Chin (42), [B(N3)3]2·Pyr (43) sowie das Tetraazidoborat [B(N3)4]− als Li[B(N3)4] (44) und [tmpH2][B(N3)4] (46) konnten synthetisiert und vollständig charakterisiert werden. Im Fall von 46 wurde das [B(N3)4]− Anion in einem neuen Weg aus tmpB(N3)2 und HN3 dargestellt. Begleitend zu den experimentellen Untersuchungen wurden auch quantenmechanische Rechnungen durchgeführt, die gute Übereinstimmung mit den experimentell erhaltenen Daten zeigen. Die starke Lewis-Säure (C6F5)3B (32) wurde in einer Eintopfreaktion aus C6F5Li und BCl3 in Hexan bei −78 °C in guten Ausbeuten erhalten. Die alternative Literatursynthese aus C6F5MgBr und BF3·OEt2 in Diethylether liefert eine ganze Reihe an Nebenprodukten, von denen [(C6F5)2BOH]3 (33a) und (C6F5)2BOEt (34) isoliert und charakterisiert werden konnten. 32 bildet mit einer Reihe von ausgewählten Stickstoffdonoren stabile 1:1 Additionsverbindungen, wobei die Addukte 37−41 vollständig charakterisiert werden konnten. Durch Reaktion von 32 mit [Me4N][N3] wurde 35 als letztes noch fehlendes Glied in der Serie der Pentafluorphenyl substituierten Azidoborate dargestellt. Es konnte gezeigt werden, daß in 38 entgegen der Basizität Cyanamid über den Nitril- Stickstoff koordiniert. Weiterhin konnte gezeigt werden, daß 11B sowie 19F NMR Spektroskopie einen guten Hinweis auf die B−N Bindungsstärke liefern. Dabei zeigt sich der Trend, daß eine schwache B−N Koordination (lange B−N Bindung) einen Tieffeldshift sowohl im 11B als auch im 19F NMR Spektrum, im Vergleich einem Hochfeldshift bei einer starken B−N Bindung (kurze B−N Bindung), bewirkt. Im letzten Teil dieser Arbeit wurden Synthese, Charakterisierung und Untersuchungen zur elektrophilen Fluorierungskapazität von [(ClCN)3F][BF4] (50) beschrieben. Aus quantenmechanischen Berechnungen wurde ein FPDEB3LYP Wert (Fluorine Plus Detachment Energy) von 226.8 kcal mol−1 erhalten, welcher zeigt, daß 50 ein starkes oxidatives Fluorierungsmittel darstellt. Dies wurde qualitativ anhand der Fluorierung ausgewählter Aromaten experimentell bestätigt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Synthese, Struktur und Enthalogenierung von Monosupersilylsilanen; Disilene, Cyclosilane, tetrahedro -Silane Die als Vorstufen sperrig substituierter Disilane R*X2Si–SiX2R*, Disilene R*XSi=SiXR* und Disiline R*Si≡SiR* wichtigen Monosupersilylsilane R*SiX3 (R* = SitBu3 = Supersilyl; X = H, F, Cl, Br, I, Me, Ph, tBu, OR, OTf) lassen sich durch Verbindungsaufbau (Austausch von Hal in Halogensilanen gegen R*) und durch Verbindungsumwandlung (z.B. Austausch von Hal oder H in Disilanen gegen H, Hal, Nucleophil Nu), darstellen: Laut Röntgenstrukturanalysen von R*SiPhCl2, R*SiI3, R*SiPh3 und R*SitBu3 sind die Si-Si- Bindungslängen – sterisch bedingt – vergleichsweise groß (239.9, 243.3, 245.0 und 268.6 pm), wächst die Sperrigkeit der Substituenten in Richtung Cl < I < Ph < tBu und nehmen die van-der- Waals-Wechselwirkungen zwischen tBu und X in der Reihenfolge I < tBu < Ph zu. Die Enthalogenierung von Supersilylmonohalogensilanen R*RHSiCl (R = H, Me, Ph) mit Alkalimetallen führt – wohl auf dem Wege über Silanide – unter Salzabspaltung zu den Disilanen R*H2Si–SiH2R*, R*MeHSi–SiHMeR* und R*PhSiH2. Das unterschiedliche Verhalten von R*PhHSiCl beruht darauf, daß Basen wie z.B. R*PhHSiNa aus dem Edukt das Silylen R*PhSi in Freiheit setzen, das seinerseits wieder in Si-H-Bindungen insertiert. Die Umsetzung von R*RClSiH (R = H, Me, Ph) mit R*Na führt für R = H quantitativ zu R*2SiH2, für R = Me in hohen Ausbeuten zu R*2MeSiH (z.T. erfolgt Reduktion zu R*MeHSi– SiHMeR) und für R = Ph zu R*2PhSiNa (NaR* vorgelegt) bzw. zu R*PhClSi–SiHPhR (R*PhHSiCl vorgelegt). In letzterem Falle tritt wiederum das Silylen R*PhSi (abgefangen mit Et3SiH bzw. R*PhClSiH) als Zwischenstufe auf: Die Enthalogenierung von Supersilyldi- bzw. Trihalogensilanen R*XSiHal2 (X = H, Me, Ph, Hal) liefert über Silylenoide R*XSiHalM bzw. Silylene R*XSi, die in Si-H bzw. Si-M-Bindungen insertieren (im letzten Fall bis zu dreimal) Disilane bzw. Di-, Tri- und Tetrasilanide. Als End- produkte entstehen etwa das Disilen R*PhSi=SiPhR* (X = Ph) und Cyclotri– bzw. –tetrasilane (R*XSi)n (n = 3, 4; X = H, Hal). Überschüssiges Enthalogenierungsmittel liefert Tetrasupersilyl- tetrahedro-tetrasilan R*4Si4. Synthese, Struktur und Enthalogenierung von 1,2 -Disupersilyldisilanen; Disilene Der Zugang zu 1,2-Disupersilyldisilanen R*XX’Si–SiXX’R* (X/X’ = H, Cl, Br, I, CN, Me, Ph; Diastereomere für X ≠ X’), den Vorstufen für Disilene (Disiline?), erfolgt durch Verbindungsaufbau (Kopplung von Monosupersilylsilanen bzw. Insertion von Supersilylsilylenen in Si-H / Si-Na-Bindungen von Supersilylsilanen / -silaniden) oder durch Verbindungsumwandlung (Austausch von H/Hal, Hal/H, R*/Hal, oder Addition von HHal bzw. Hal2 an >Si=Si