Podcasts about die biogenese

  • 5PODCASTS
  • 5EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 22, 2011LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about die biogenese

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
SUMO-abhängige Regulation der Ribosomenbiogenese am Beispiel des PELP1-TEX10-WDR18-Komplexes

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Jun 22, 2011


Die Biogenese eukaryotischer Ribosomen ist ein streng kontrollierter, dynamischer Prozess, der ein komplexes räumliches und zeitliches Zusammenspiel vieler verschiedener Proteine erfordert. Dabei wird zunächst ribosomale DNA mit Hilfe der RNA-Polymerase I im Nukleolus transkribiert. Das daraus resultierende rRNA-Vorläufer-Molekül wird anschließend umfassend prozessiert und modifiziert. Gleichzeitig assemblieren ribosomale Proteine mit der reifenden rRNA, um präribosomale Partikel zu bilden, die für weitere Reifungsschritte ins Nukleoplasma und Cytoplasma transportiert werden. Zum Verständnis des ribosomalen Reifungsprozesses haben bislang vor allem genetische und biochemische Studien in der Bäckerhefe beigetragen. In Säugerzellen sind dagegen die Komponenten der Ribosomenbiogenese wenig charakterisiert, und insbesondere unser Wissen über die Regulationsmechanismen ist lückenhaft. Die posttranslationale Modifikation mit dem ubiquitinähnlichen SUMO-Protein reguliert eine Vielzahl wichtiger zellulärer Prozesse. SUMO-spezifische Isopeptidasen der SENP-Familie katalysieren die Abspaltung von SUMO von Zielproteinen und kontrollieren damit das Gleichgewicht zwischen Modifikation und Demodifikation. Vorarbeiten zu dieser Arbeit haben eine entscheidende Rolle für die SUMO-Isopeptidase SENP3 während der nukleolären Schritte der Ribosomenbiogenese gezeigt. Allerdings waren die Substrate von SENP3 bei diesem Prozess weitgehend unbekannt. Im Rahmen dieser Arbeit wurde ein SENP3-assoziierter Proteinkomplex bestehend aus den Komponenten PELP1, TEX10 und WDR18 aufgereinigt. Als weitere Bindungspartner von PELP1 wurden außerdem MDN1 und LAS1L identifiziert. Durch RNAi-vermittelte Depletionsexperimente in Zellkultur konnte gezeigt werden, dass PELP1, TEX10 und WDR18, sowie die assoziierten Proteine MDN1 und LAS1L, ebenso wie SENP3 für die Reifung der 28S rRNA und den nukleolären Export der großen ribosomalen Untereinheit erforderlich sind. PELP1 und LAS1L wurden als SENP3-sensitive SUMOSubstrate charakterisiert. Darüberhinaus konnte gezeigt werden, dass das Gleichgewicht zwischen Sumoylierung und Desumoylierung die subnukleäre Lokalisierung des Komplexes kontrolliert. Sumoylierung führt zum Ausschluss aus dem Nukleolus, während Desumoylierung die nukleoläre Kompartimentierung fördert. Zusammengefasst zeigen die Ergebnisse der vorliegenden Arbeit, dass der Komplex aus den Proteinen PELP1, TEX10 und WDR18 die Ribosomenbiogenese reguliert. Außerdem deuten sie darauf hin, dass dessen SUMO-abhängige subzelluläre Verteilung Ablauf und Koordination der Ribosomenreifung kontrolliert.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Die Rolle des nucleostemin-Gens in dem Prozess der Ribosomenbiogenese

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Dec 15, 2009


Die Biogenese von Ribosomen ist Voraussetzung für die Neusynthese von Proteinen und somit auch für Zellwachstum unabdingbar. In den Nukleoli der Zellen muss eine Vielzahl von Ribosomenbiogenese-Faktoren funktionell reguliert und koordiniert werden, damit reife 40S- und 60S- ribosomale Untereinheiten entstehen. Die vorliegende Arbeit geht der Frage nach, wie das nucleostemin (nst) Gen an dem zellulären Prozess der Ribosomenbiogenese partizipiert. Zur Beantwortung dieser Frage wurden mehrere Punkt- und Deletionsmutanten von nst kloniert, exprimiert und zuerst auf ihren intrazellulären Lokalisationsphänotyp hin überprüft. Dabei wurde festgestellt, dass die vorwiegend nukleoläre Lokalisation von NST durch den N-Terminus des Proteins, bestehend aus der basischen- und Coiled-Coil Domäne, vermittelt und durch zirkulär permutierte GTP-Bindemotive reguliert wird. Die Überexpression der nst Mutanten verursachte des Weiteren keine nukleoplasmatische Translokation des nukleolären Stressdetektorproteins Nucleophosmin (B23). Ein weiterer Überexpressionsphänotyp des nst Wildtyp-Gens ist eine signifikante Proliferationserhöhung in p53-positiven Zellen. Ein knock-down von nst resultiert in einer deutlichen Proliferationsinhibition von p53 positiven- als auch p53 negativen Zellen und einem p53 vermittelten G1/S-Phase Zellzyklusarrest. Auf Ebene der ribosomalen RNA induziert die temporäre Herabregulation von nst einen 32S-rRNA-Prozessierungsdefekt, welcher in verringerten de novo prozessierten 28S rRNA Mengen resultiert. In einem miRNA/siRNA basierten knock-down knock-in Experiment wurde der N-Terminus des Proteins zudem als minimale Funktionseinheit identifiziert: die Expression einer Mutante, bestehend aus der basischen und Coiled Coil Domäne, konnte den durch RNAi induzierten 32S-rRNA-Prozessierungsdefekt kompensieren. Der N-Terminus von NST sedimentiert zudem in einem Sucrose-Gradienten in Wildtyp-ähnlicher Manier, im Gegensatz zu einer NST Proteinvariante, welcher dieser Teil des Proteins fehlt. Eine Interaktion des NST-Proteins mit dem PeBoW-Komplex oder dem p53 Regulator Hdm-2 konnte nicht gezeigt werden. Diese Arbeit beschreibt somit NST als 32S rRNA-Prozessierungsfaktor und definiert den N-Terminus des Proteins als minimale Funktionseinheit während der Ribosomenbiogenese.

experiments arbeit dabei punkt expression prozess rna vielzahl gegensatz voraussetzung proteins gens die rolle manier zellen 60s mutante weiteren mutanten proteinen rnai 40s diese arbeit nst lokalisation zur beantwortung ddc:500 zellwachstum translokation wildtyp untereinheiten ddc:570 n terminus deletionsmutanten ribosomen eine interaktion die biogenese neusynthese ribosomenbiogenese
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Zellulärer Lipidimport durch Klasse B Scavenger Rezeptoren und die Biogenese von Membrandomänen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19

Play Episode Listen Later Jul 20, 2006


Phospholipids form the matrix of plasmamebranes (PM) consisting of an asymmetric lipid bilayer. The high amounts of sphingolipids and cholesterol in the PM are furthermore the basis to form liquid-ordered domains / rafts by saturated long chain fatty acid interactions. Hence, the lipid trafficking pathways enabling the membrane biogenesis and lateral segregation into membrane compounds remain largely undefined. Here we could demonstrate that the scavenger receptor CD36 selectively mediates the lipid uptake of sphingomyelin (SM) and phosphatidylcholine (PC) into PM in an endocytosis independent way. In human monocytes we could further show that the selective phospholipid uptake for SM, PC and phosphatidylethanolamine was almost exclusively promoted by CD36 and SR-BI. Whereas CD36 was mainly localized in rafts, we found about 2/3rds of SR-BI located in non-rafts. Thereby, the main cell entrance for phospholipids and cholesterol was mediated by SR-BI into non-raft compartments. SR-BI was then internalized by clathrin-coated pits and promoted the formation of intracellular microdomains in early endosomes by recruitment of the newly acquired raft lipids. Thus, we propose a leading role for SR-BI in generating new rafts by the incorporation of the raft building lipids SM and cholesterol. These may provide a pool for the regeneration of raft domains within the PM.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Untersuchungen zur Translokation und Insertion mitochondrialer Proteine über den Tim17-Tim23-Komplex

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Feb 18, 2005


Die Biogenese von Mitochondrien erfordert den Import von Präproteinen aus dem Cytosol in die mitochondrialen Subkompartimente. Der TIM23-Komplex der mitochondrialen Innenmembran ist für die Translokation von Präproteinen über die Innenmembran verantwortlich und vermittelt darüber hinaus die Insertion von Proteinen in die Innenmembran. Tim23 weist zwei funktionell unterscheidbare Domänen auf: Eine N-terminale hydrophile Rezeptordomäne im Intermembranraum und einen hydrophoben C-terminalen Bereich. Das phylogenetisch verwandte Tim17 ist ein sehr hydrophobes Protein, welches vier Transmembrandomänen ausbildet, die von zwei kurzen Enden im Intermembranraum flankiert werden. Die hydrophoben Bereiche von Tim17 und Tim23 bilden vermutlich den kanalbildenden Teil der Translokase. In der vorliegenden Arbeit wurde die Funktion von Tim17 bei der Translokation von Präproteinen über die Innenmembran untersucht. Es konnte eine kurze N-terminale Sequenz von 11 Aminosäureresten identifiziert werden, welche für die Funktionalität der TIM23-Translokase essentiell ist. Die Deletion dieser Sequenz beeinflusst die Integrität der bekannten Untereinheiten der TIM23-Translokase nicht, führt jedoch zu einer starken Beeinträchtigung der Translokation von Präproteinen über die mitochondriale Innenmembran. Durch gezielte Alanin-Punktmutagenese konnten zwei konservierte Aspartatreste in der Tim17-Sequenz identifiziert werden, welche für den Translokationsdefekt verantwortlich sind. Die Analyse weiterer Mutanten in Tim17 mit einzelnen oder wechselseitig ausgetauschten geladenen Aminosäureresten im Intermembranraum legen nahe, dass die konservierten negativen Ladungen in Tim17 mit den positiv geladenen Präsequenzen interagieren und dadurch die Translokation von Präproteinen durch den TIM23-Komplex regulieren. Diese Ergebnisse geben einen Einblick in eine Präprotein-abhängige Regulation der TIM23-Translokase über ein mögliches "Öffnen" und "Schließen" des Translokationskanals via Tim17. Die meisten Proteine der mitochondrialen Innenmembran, die als Präproteine mit mitochondrialen Präsequenzen im Cytosol synthetisiert werden, erreichen die Innenmembran auf einem von zwei alternativen Sortierungswegen: Dem "Stop-Transfer-Weg", auf dem Präproteine während der Translokation durch den TIM23-Komplex arretiert und lateral in die Innenmembran inseriert werden und dem Weg der "Konservativen Sortierung", auf dem die Proteine über Intermediate in der mitochondrialen Matrix in die Innenmembran inseriert werden. Folglich müssen diese Proteine entsprechende Sortierungssignale aufweisen, die entweder die laterale Membraninsertion (Stop-Transfer-Proteine) oder die die Translokation in die Matrix (konservativ sortierte Proteine) durch die TIM23-Translokase vermitteln. Das Sortierungsverhalten von mitochondrialen Innenmembranproteinen mit N-terminalen Präsequenzen, die zunächst für die initiale Translokation des N-Terminus der Proteine sorgen, wird von den Transmembrandomänen bestimmt. Um den Einfluss der Transmembrandomänen auf den Sortierungsweg zu untersuchen, wurden die entsprechenden Domänen von Stop-Transfer sortierten Proteinen und konservativ sortierten Proteinen wechselseitig ausgetauscht. In den chimären Proteinen bestimmten jeweils die eingeführten Transmembrandomänen das Sortierungsverhalten. Eine Untersuchung dieser Transmembrandomänen zeigte zwei systematische Unterschiede: Transmembrandomänen, die die konservative Sortierung vermitteln, weisen eine zumeist moderate Hydrophobizität auf und enthalten zumeist Prolinreste. Dagegen sind Stop-Transfer vermittelnde Transmembrandomänen typischerweise stärker hydrophob und frei von Prolinresten. Die Einführung von Prolinresten in die Transmembrandomänen von ursprünglich Stop-Transfer sortierten Proteinen führte zu deren Translokation in die Matrix. Umgekehrt führte die Mutagenese von Prolinresten in Transmembrandomänen ursprünglich konservativ sortierter Proteine zu deren Arretierung in der Innenmembran. Die Anwesenheit von Prolinresten in den Transmembrandomänen bestimmt demnach den Sortierungsweg dieser Innenmembranproteine. Zukünftige Studien werden zeigen, wie diese Sortierungssignale, welche eventuell eine von Prolinresten gebrochene hydrophobe Helix darstellen, von der TIM23-Translokase erkannt und entsprechend umgesetzt werden. Die Bedeutung von Prolinresten in Transmembrandomänen von konservativ sortierten Proteinen konnte durch Mutagenese sowohl in vitro als auch in vivo gezeigt werden. Diese Erkenntnis sollte sowohl in Vorhersagen von Proteinsortierungswegen als auch bei der zukünftigen Entwicklung mitochondrialer Proteine für gentherapeutische Ansätze zur Behandlung mitochondrialer Erkrankungen berücksichtigt werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Der TOM-Core-Komplex und die kanalbildende Komponente Tom40 der Proteintranslokase der äußeren Mitochondrienmembran von Neurospora crassa

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 7, 2001


Die Biogenese von Mitochondrien erfordert den Eintransport cytosolisch synthetisierter Vorstufenproteine über die mitochondriale Außenmembran. Der TOM-Komplex in der Außenmembran erkennt die in die Mitochondrien zu importierenden Vorstufenproteine, bindet sie, ermöglicht den Transfer von zumindest Teilen davon über die mitochondriale Außenmembran und die Integration von Membranproteinen in die Außenmembran. Auf der Grundlage bestehender Untersuchungen des TOM-Holo-Komplexes wurden in dieser Arbeit verschiedene Subkomplexe des TOM-Komplexes aus Neurospora crassa isoliert, biochemisch und biophysikalisch charakterisiert. Zudem wurde eine neue Komponente des TOM-Komplexes identifiziert: Tom5, eine kleine Komponente von etwa 5 kDa mit Sequenzhomologie zu Tom5 von Saccharomces cerevisiae. Der in dieser Arbeit isolierte TOM-Core-Komplex besteht aus den Protein-untereinheiten Tom40, Tom22, Tom7, Tom6 und Tom5; gegenüber dem TOM-Holo-Komplex fehlen ihm die Rezeptorkomponenten Tom70 und Tom20. Der TOM-Core-Komplex weist eine Molekülmasse von ca. 400 kDa und eine Stöchimetrie der Komponenten Tom40 : Tom22 : Tom7 : Tom6 von 8 : 4 : 2 : 1-2 auf. Er kann in vitro präsequenzabhängig bis zu 8 Vorstufen-proteine pro Komplex binden. Elektronenmikroskopische Bilder des TOM-Core- Komplexes zeigen eine symmetrische Doppelringstruktur mit zwei durchgehenden Poren von etwa 2,1 nm Durchmesser. Der TOM-Core-Komplex bildet in Übereinstimmung damit Kanäle mit zwei Leitfähigkeits-niveaus, die zwei Poren entsprechen. Die Bevorzugung von Kationen und die Eigenschaft, durch mitochondriale, positiv geladene Präpeptide selektiv und spezifisch inhibiert zu werden, belegen die Rolle des TOM-Core-Komplexes bei der Proteintranslokation. TOM-Core-Komplex, dessen hydrophile Domänen von Tom22 und den kleinen Toms durch limitierte Proteolyse weitgehend abgedaut wurden, zeigte in den durchgeführten Untersuchungen nahezu identische Binde-, Kanal- und Struktureigenschaften wie der unbehandelte Core-Komplex. Die Grundstruktur der Proteintranslokase der mitochondrialen Außenmembran Zusammenfassung - 132 - kann somit hinreichend durch Tom40 und die membrandurchspannenden Domänen von Tom22, Tom7, Tom6 und Tom5 stabil gebildet werden. Weiterführende Experimente mit isoliertem Tom40 bestätigten dies. So bildet isoliertes Tom40 oligomere Strukturen mit einer mittleren Molekülmasse von ca. 350 kDa. Tom40 zeigte sich in Transmissions-EM-Bildern überwiegend als Einlochpartikel. In Übereinstimmung hiermit weisen die vom Tom40- Komplex gebildeten Kanäle eine Leitfähigkeit von nur der Hälfte der Leitfähigkeit des TOM-Core-Komplexes mit zwei Poren auf. Ein kleiner Teil des isolierten Tom40 bildet Zweilochpartikel. Tom40 ist also in der Lage, die Grundstruktur des TOM-Komplexes zu bilden, wie sie für den TOM-Core-Komplex gefunden wurde. Infrarot- und Circulardichroismus-Spektren von isoliertem Tom40 führen zu dem Schluß, daß ein einzelnes Tom40-Protomer keinen Kanal mit β -Barrel-Struktur bilden kann, sondern daß dazu mehrere Tom40 zusammenwirken müssen.