Podcast appearances and mentions of cal day

  • 16PODCASTS
  • 28EPISODES
  • 57mAVG DURATION
  • ?INFREQUENT EPISODES
  • Aug 6, 2019LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about cal day

Latest podcast episodes about cal day

Dublin Inquirer Podcast
Music at Marrowbone Books: Cal Day Folger

Dublin Inquirer Podcast

Play Episode Listen Later Aug 6, 2019 36:33


In this episode, Cal Folger Day talks to Martin Cook about her journey from playing classical music on the piano and sticking strictly to the sheet music, to writing her own songs and arranging verbatim pop operas – and she performs some of her songs for an audience at Marrowbone Books in the Coombe.   

Fiat Vox
41: At Berkeley, nobody stuffs a bird like Carla Cicero

Fiat Vox

Play Episode Listen Later Sep 25, 2018 5:03


After Lux — one of the peregrine falcons born on the Campanile — died last year after striking a window of Evans Hall, the campus community was heartbroken. But Carla Cicero, the staff curator of birds at UC Berkeley's Museum of Vertebrate Zoology, has given the peregrine a new purpose. Lux is now one of 750,000 specimens — birds, amphibians, reptiles and mammals — at the museum used for research at Berkeley and across the world. Lux is the 4,287th specimen that Carla has prepped for the museum in the past 30 years. Although the museum is closed to the public, for one day a year — Cal Day, in April — people are invited in to see special displays.See photos and read the story on Berkeley News. See acast.com/privacy for privacy and opt-out information.

berkeley lux cicero stuffs campanile vertebrate zoology cal day berkeley news evans hall
UC Berkeley (Video)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

UC Berkeley (Video)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Climate Change (Audio)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Climate Change (Audio)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Climate Change (Video)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Climate Change (Video)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Energy (Video)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Energy (Video)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

California Issues (Video)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

California Issues (Video)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

California Issues (Audio)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

California Issues (Audio)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

UC Berkeley (Audio)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

UC Berkeley (Audio)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Public Policy Channel (Audio)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Public Policy Channel (Audio)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Public Policy Channel (Video)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Public Policy Channel (Video)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

Energy (Audio)
California and the Climate Fight: Cal Day 2017 -- UC Public Policy Channel

Energy (Audio)

Play Episode Listen Later Jun 19, 2017 59:19


With the US’s commitment to the Paris Agreement in question and the future of federal climate change policy unclear, what steps should California take to remain at the forefront of climate action policy? UC Berkeley’s Meredith Fowlie, Sol Hsiang, and Carol Zabin join in a discussion moderated by Center for Environmental Public Policy Executive Director Ned Helme about California’s policy options given potential conflicts with the Trump administration on issues of climate change and the environment. This presentation was part of Cal Day 2017, sponsored by the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 32366]

California Issues (Video)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

California Issues (Video)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

Public Policy Channel (Audio)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

Public Policy Channel (Audio)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

Climate Solutions (Video)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

Climate Solutions (Video)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

Climate Solutions (Audio)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

Climate Solutions (Audio)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

Public Policy Channel (Video)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

Public Policy Channel (Video)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

California Issues (Audio)
Water Policy and the Drought: Balancing Competing Interests to Stay Afloat -- UC Public Policy Channel

California Issues (Audio)

Play Episode Listen Later Nov 9, 2015 53:34


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and David Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. Presented by the Center on Civility & Democratic Engagement at the Goldman School of Public Policy at UC Berkeley. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Show ID: 30123]

California Issues (Video)
Water Policy and the Drought: Full Version Including QandA

California Issues (Video)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

California Issues (Audio)
Water Policy and the Drought: Full Version Including QandA

California Issues (Audio)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

Climate Solutions (Audio)
Water Policy and the Drought: Full Version Including QandA

Climate Solutions (Audio)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

Climate Solutions (Video)
Water Policy and the Drought: Full Version Including QandA

Climate Solutions (Video)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

Public Policy Channel (Audio)
Water Policy and the Drought: Full Version Including QandA

Public Policy Channel (Audio)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

Public Policy Channel (Video)
Water Policy and the Drought: Full Version Including QandA

Public Policy Channel (Video)

Play Episode Listen Later Nov 6, 2015 90:05


Scientists agree that California’s droughts are cyclical and appear to be growing worse. While some technologies have been developed to address shortages, water policy remains a divisive issue in the Golden State, and not necessarily along traditional Republican-Democratic party lines. Instead, the splits are evident between agricultural and urban industries, the Central Valley and coastal communities, and environmentalists and fracking proponents, among others. Join moderator Dick Beahrs, State Water Resources Control Board Chair Felicia Marcus, former US Representative Mel Levine and Davd Sedlak, director of the Institute for Environmental Science and Engineering at UC Berkeley for a timely discussion on finding bipartisan solutions to ensure a sustainable water supply in California. This web-only version contains the Q&A that followed the presentations. Series: "Richard and Rhoda Goldman School of Public Policy at UC Berkeley" [Public Affairs] [Science] [Show ID: 30276]

Spectrum
Cathryn Carson & Fernando Perez, Part 1 of 2

Spectrum

Play Episode Listen Later Apr 4, 2014 30:00


Cathryn Carson is an Assoc Prof of History, and the Ops Lead of the Social Sciences D- Lab at UC Berkeley. Fernando Perez is a research scientist at the Henry H. Wheeler Jr. Brain Imaging Center at U.C. Berkeley. Berkeley Institute for Data Science.TranscriptSpeaker 1: Spectrum's next. Speaker 2: Okay. [inaudible] [inaudible]. Speaker 1: Welcome to spectrum the science [00:00:30] and technology show on k a l x Berkeley, a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Hi, good afternoon. My name is Brad Swift. I'm the host of today's show this week on spectrum we present part one of our two part series on big data at cal. The Berkeley Institute for Data Science or bids is only [00:01:00] four months old. Two people involved with shaping the institute are Catherine Carson and Fernando Perez and they are our guests. Catherine Carson is an associate professor of history and associate dean of social sciences and the operational lead of the social sciences data lab at UC Berkeley. Fernando Perez is a research scientist at the Henry H. Wheeler Jr Brain imaging center at UC Berkeley. He created the ipython project while a graduate student in 2001 [00:01:30] and continues to lead the project here is part one, Catherine Carson and Fernando Perez. Welcome to spectrum. Thanks for having us and I wanted to get from both of you a little bit of a short summary about the work you're doing now that you just sort of your activity that predates your interest in data science. Speaker 4: Data Science is kind of an Ale defined term I think and it's still an open question precisely what it is, but in a certain sense all of my research has been probably under the umbrella [00:02:00] of what we call today data science since the start. I did my phd in particle physics but it was computational in particle physics and I was doing data analysis in that case of models that were competitionally created. So I've sort of been doing this really since I was a graduate student. What has changed over time is the breadth of disciplines that are interested in these kinds of problems in these kinds of tools and that have these kinds of questions. In physics. This has been kind of a common way of working on writing for a long time. Sort of the deep intersection [00:02:30] between computational tools and large data sets, whether they were created by models or collected experimentally is something that has a long history in physics. Speaker 4: How long the first computers were created to solve differential equations, to plot the trajectories of ballistic missiles. I was one of the very first tasks that's computers were created for so almost since the dawn of coats and so it's really only recently though that the size of the data sets has really jumped. Yes, the size has grown very, [00:03:00] very large in the last couple of decades, especially in the last decade, but I think it's important to not get too hung up on the issue of size because I think when we talk about data science, I like to define it rather in the context of data that is large for the traditional framework tools and conceptual kind of structure of a given discipline rather than it's raw absolute size because yes, in physics for example, we have some of the largest data sets in existence, things like what the LHC creates [00:03:30] for the Higgs Boson. Those data sets are just absolute, absurdly large, but in a given discipline, five megabytes of data might be a lot depending on what it is that you're trying to ask. And so I think it's more, it's much, much more important to think of data that has grown larger than a given discipline was used in manipulating and that therefore poses interesting challenges for that given domain rather than being completely focused on the raw size of the data. Speaker 1: I approached this from an angle that's actually complimentary to Fernando in part because [00:04:00] my job as the interim director of the social sciences data laboratory is not to do data science but to provide the infrastructure, the setting for researchers across the social sciences here who are doing that for themselves. And exactly in the social sciences you see a nice exemplification of the challenge of larger sizes of data than were previously used and new kinds of data as well. So the social sciences are starting to pick up say on [00:04:30] sensor data that has been placed in environmental settings in order to monitor human behavior. And social scientists can then use that in order to design tests around it or to develop ways of interpreting it to answer research questions that are not necessarily anticipated by the folks who put the sensors in place or accessing data that comes out of human interactions online, which is created for entirely different purposes [00:05:00] but makes it possible for social scientists to understand things about human social networks. Speaker 1: So the challenges of building capacity for disciplines to move into new scales of data sets and new kinds of data sets. So one of the ones that I've been seeing as I've been building up d lab and that we've jointly been seeing as we tried to help scope out what the task of the Berkeley Institute for data science is going to be. How about the emergence [00:05:30] of data science? Do you have a sense of the timeline when you started to take note of its feasibility for social sciences? Irrespective of physics, which has a longer history. One of the places that's been driving the conversations in social sciences, actually the funding regime in that the existing beautifully curated data sets that we have from the post World War Two period survey data, principally administrative data on top of that, [00:06:00] those are extremely expensive to produce and to curate and maintain. Speaker 1: And as the social sciences in the last only five to 10 years have been weighing the portfolio of data sources that are supported by funding agencies. We've been forced to confront the fact that the maintenance of the post World War Two regime of surveying may not be feasible into the future and that we're going to have to be shifting to other kinds of data that are generated [00:06:30] for other purposes and repurposing and reusing it, finding new ways to, to cut it and slice it in order to answer new kinds of questions that weren't also accessible to the old surveys. So one way to approach it is through the infrastructure that's needed to generate the data that we're looking at. Another way is simply to look at the infrastructure on campus. One of the launching impetuses for the social sciences data laboratory was in fact the budget cuts of 2009 [00:07:00] here on campus. When we acknowledged that if we were going to support cutting edge methodologically innovative social science on this campus, that we were going to need to find ways to repurpose existing assets and redirect them towards whatever this new frontier in social science is going to be. Speaker 5: You were listening to spectrum on k a l x Berkeley, Catherine Carson and Fernando Perez, our guests. [00:07:30] They are part of the Berkeley Institute for data science known as big [inaudible]. Speaker 4: Fernando, you sort of gave us a generalized definition of data science. Do you want to give it another go just in case you evoke something else? Sure. I want to leave that question slightly on answer because I feel that to some extent, one of the challenges we have as an intellectual effort that we're trying to tackle at the Brooklyn [00:08:00] instead for data science is precisely working on what this field is. Right. I don't want to presuppose that we have a final answer on this question, but at least we, we do know that we have some elements to frame the question and I think it's mostly about an intersection. It's about an intersection of things that were being done already on their own, but that were being done often in isolation. So it's the intersection of methodological work whereby that, I mean things like statistical theory, applied mathematics, computer science, [00:08:30] algorithm development, all of the computational and theoretical mathematical machinery that has been done traditionally, the questions arising from domain disciplines that may have models that may have data sets, that may have sensors that may have a telescope or that may have a gene sequencing array and where are they have their own theoretical models of their organisms or galaxies or whatever it is and where that data can be inscribed and the fact that tools need to be built. Speaker 4: Does data doesn't get analyzed by blackboards? Those data gets analyzed by software, but this is software that is deeply woven [00:09:00] into the fabric of these other two spaces, right? It's software that has to be written with the knowledge of the questions and the discipline and the domain and also with the knowledge of the methodology, the theory. It's that intersection of this triad of things of concrete representation in computational machinery, abstract ideas and methodologies and domain questions that in many ways creates something new when the work has to be done simultaneously with enough depth and enough rigor on all [00:09:30] of these three directions and precisely that intersection is where now the bottleneck is proving to be because you can have the ideas, you can have the questions, you can have the data, you can have the the fear m's, but if you can't put it all together into working concrete tools that you can use efficiently and with a reasonably rapid turnaround, you will not be able to move forward. You will not be able to answer the questions you want to answer about your given discipline and so that embodiment of that intersection is I think where the challenge is opposed. Maybe there is something new called [00:10:00] data science. I'd actually like to suggest that Speaker 1: the indefinable character of data science is actually not a negative because it's an intersection in a way that we're all still very much struggling. How to define it. I won't underplay that exactly in that it's an intersection. It points to the fact that it's not an intellectual thing that we're trying to get our heads around. It's a platform for activity for doing kinds of research that are either enabled or hindered by the [00:10:30] existing institutional and social structures that the research is getting done in, and so if you think of it less as a kind of concept or an intellectual construct and more of a space where people come together, either a physical space or a methodological sharing space, you realize that the indefinable ness is a way of inviting people in rather than drawing clear boundaries around it and saying, we know what this is. It is x and not Speaker 4: why [00:11:00] Berkeley Institute for data science is that where it comes in this invitation, this collection of people and the intersection. That's sort of the goal of it. Speaker 1: That's what we've been asked to build it as not as uh, an institute in the traditional sense of there are folks inside and outside, but in the sense of a meeting point and a crossing site for folks across campus. That's [00:11:30] something that's been put in front of us by the two foundations who have invested in a significant sum of money in us. That's the Gordon and Betty Moore Foundation and the Alfred p Sloan Foundation. And it's also become an inspiring vision for those of us who have been engaged in the process over the last year and a half of envisioning what it might be. It's an attempt to address the doing of data science as an intersectional area within a research university that has existing structures [00:12:00] and silos and boundaries within it. Speaker 4: And to some extent you try to deconstruct the silos and leverage the work done by one group, share it with another, you know, the concrete mechanisms are things that we're still very much working on it and we will see how it unfolds. There's even a physical element that reflects this idea of being at a crossroads, which is that the university was willing to commit to [inaudible] the physical space of one room in the main doe library, which is not only physically [00:12:30] at the center of the university and that is very important because it does mean that it is quite literally at the crossroads. It is one central point where many of us walk by frequently, so it's a space that is inviting in that sense too to encounters, to stopping by to having easy collaboration rather than being in some far edge corner of the campus. Speaker 4: But also intellectually the library is traditionally the store of the cultural and scientific memory of an institution. And so building this space in the library is a way of signaling [00:13:00] to our community that it is meant to be a point of encounter and how specifically those encounters will be embodied and what concrete mechanisms of sharing tools, sharing coach, showing data, having lecture series, having joint projects. We're in the process of imagining all of that and we're absolutely certain that we'll make some mistakes along the way, but that is very much the intent is to have something which is by design about as openly and as explicitly collaborative as we can make it and I think [00:13:30] in that sense we are picking up on many of the lessons that Catherine and her team at the d lab have already learned because the d lab has been in operation here in Barrows Hall for about a year and has already done many things in that direction and that at least I personally see them as things in the spirit of what bids is attempting to do at the scale of the entire institution. D Lab has been kind of blazing that trail already for the last year in the context of the social sciences and to the point where their impact has actually spread beyond the social sciences because so many of the things that they were doing or were [00:14:00] found to have very thirsty customers for the particular brand of lemonade that they were selling here at the lab. And their impact has already spread beyond the social sciences. But we hope to take a lot of these lessons and build them with a broader scope. Speaker 1: And in the same way BYD sits at the center of other existing organizations, entities, programs on campus, which are also deeply engaged in data science. And some of them are research centers, others of them are the data science masters program in the School of information where [00:14:30] there is a strong and deliberate attempt to think through how in a intelligent way to train people for outside the university doing data science. So all of these centers of excellence on campus have the potential to get networked in, in a much more synergistic way with the existence of bids with is not encompassing by any means. All of the great work that's getting done in teaching research around data science on this campus Speaker 6: [00:15:00] spectrum is a public affairs show on k a l x Berkeley. Our guests are Cathryn Carson and Fernando Perez. In the next segment they talk about challenges in Berkeley Institute for Data Science Phase Speaker 2: [inaudible]Speaker 3: and it seems that that eScience does happen best in teams and multidisciplinary [00:15:30] teams or is that not really the case? Speaker 1: I think we've been working on that assumption in part because it seems too much to ask of any individual to do all the things at once. At the same time, we do have many specimens of individuals who cross the boundaries of the three areas that Fernando was sketching out as domain area expertise, hacking skills and methodological competence. [00:16:00] And it's interesting to think through the intersectional individuals as well. But that said, the default assumption I think is going to have to be that teamwork collaboration and actually all of the social engineering to make that possible is going to be necessary for data science to flourish. And again, that's one of the challenges of working in a research university setting where teamwork is sometimes prized and sometimes deprecated. Speaker 4: That goes back to the incentive people building tools don't necessarily get much attention, [00:16:30] prestige from that. How do you defeat that on an institutional level within the institute or just the community? Ask us in five years if we had any success. That's one of the central challenges that we have and it's not only here at Berkeley, this is actually, there's kind of an ongoing worldwide conversation happening about this every few days. There's another article where this issue keeps being brought up again and again and it's raising in volume. The business of creating tools is becoming actually an increasing [00:17:00] part of the job of people doing science. And so for example, even young faculty who are on the tenure track are finding themselves kind of pushed against the wall because they're finding themselves writing a lot of tools and building a lot of software and having to do it collaboratively and having to engage others and picking up all of these skills and this being an important central part of their work. Speaker 4: But they feel that if their tenure committee is only going to look at their publication record and [00:17:30] 80% of their actual time went into building these things, they are effectively being shortchanged for their effort. And this is a difficult conversation. What are we going to do about it? We have a bunch of ideas. We are going to try many things. I think it's a conversation that has to happen at many levels. Some agencies are beginning, the NSF recently changed the terms of its biosketch requirements for example. And now the section that used to be called relevant publications is called relevant publications and other research outcomes. And in parentheses they explained such as software [00:18:00] projects, et cetera. So this is beginning to change the community that cure rates. For example, large data sets. That's a community that has very similar concerns. It turns out that working on a rich and complex data set may be a Labor that requires years of intensive work and that'd be maybe for a full time endeavor for someone. Speaker 4: And yet those people may end up actually getting little credit for it because maybe they weren't the ones who did use that data set to answer a specific question. But if they're left in the dust, no one will do that job. Right. And so [00:18:30] we need to acknowledge that these tasks are actually becoming a central part of the intellectual effort of research. And maybe one point that is worth mentioning in this context of incentives and careers is that we as the institution of academic science in a broad sense, are facing the challenge today that these career paths and these kinds of intersectional problems and data science are right now extremely highly valued by industry. [00:19:00] What we're seeing today with this problem is genuinely of a different scale and different enough to merit attention and consideration in its own right. Because what's happening is the people who have this intersection of skills and talents and competencies are extraordinarily well regarded by the industry right now, especially here in the bay area. Speaker 4: I know the companies that are trying to hire and I know that people were going there and the good ones can effectively name their price if they can name their price to go into contexts that are not [00:19:30] boring. A lot of the problems that industry has right now with data are actually genuinely interesting problems and they often have datasets that we in academia actually have no access to because it turns out that these days the amount of data that is being generated by web activity, by Apps, by personal devices that create an upload data is actually spectacular. And some of those data sets are really rich and complex and material for interesting work. And Industry also has the resources, the computational resources, the backend, the engineering expertise [00:20:00] to do interesting work on those problems. And so we as an academic institution are facing the challenge that we are making it very difficult for these people to find a space at the university. Yet they are critical to the success of modern data driven research and discovery and yet across the street they are being courted by an industry that isn't just offering them money to do boring work. It's actually offering them respect, yes, compensation, but also respect and intellectual space and a community that values their work and that's something [00:20:30] that is genuinely an issue for us to consider. Speaker 4: Is there a way to cross pollinate between the academic side and industry and work together on building a toolkit? Absolutely. We've had great success in that regard in the last decade with the space that I'm most embedded in, which is the space of open source scientific computing tools in python. We have a licensing model for most of the tools in our space that [00:21:00] is open source but allows for a very easy industry we use and what we find is that that has enabled a very healthy two way dialogue between industry and academia in this context. Yes, industry users, our tools, and they often use them in a proprietary context, but they use them for their own problems and for building their own domain specific products and whatever, but when they want to contribute to the base tool, the base layer if you will, it's much [00:21:30] easier for them. Speaker 4: They simply make the improvements out in the open or they just donate resources. They donate money. Microsoft research last year made $100,000 donation to the python project, which was strictly a donation. This was not a grant to develop any specific feature. This was a blanket, hey, we use your tools and they help what we build and so we would like to support you and we've had a very productive relationship with them in the past, but it's by, not by no means the only one you're at Berkeley. The amp lab was two co-directors are actually part of the team [00:22:00] that is working on bids, a young story and Mike Franklin, the AMPLab has a very large set of tools for data analytics at scale that is now widely used at Twitter and Facebook and many other places. They have industry oriented conferences around their tools. Now they have an annual conference they run twice per year. Large bootcamps, large fractions of their attendees come from industry because industry is using all of these tools and the am Platt has currently more of its funding [00:22:30] comes from industry than it comes from sources like the NSF. And so I think there are, there are actually very, very clear and unambiguous examples of models where the open source work that is coming out of our research universities can have a highly productive and valuable dialogue with the industry. Speaker 3: It seems like long term he would have a real uphill battle to create enough competent people with data trained to [00:23:00] quench both industry and academia so that there would be a, a calming of the flow out of academia. Speaker 4: As we've said a couple of times in our discussions, this is a problem. Uh, it's a very, very challenging set of problems that we've signed up for it, but we feel that it's a problem worth failing on in the sense that we, we know the challenges is, is a steep one. But at the same time, the questions are important enough to be worth making the effort. Speaker 6: [inaudible] [00:23:30] don't miss part two of this interview in two weeks and on the next edition of spectrum spectrum shows are archived on iTunes university. We've created a simple link for the link is tiny url.com/kalx specter. Now, if you're the science and technology events happen, Speaker 3: I mean locally over the next two weeks, [00:24:00] enabling a sustainable energy infrastructure is the title of David Color's presentation. On Wednesday, April 9th David Color is the faculty director of [inaudible] for Energy and the chair of computer science at UC Berkeley. He was selected in scientific American top 50 researchers and technology review 10 technologies that will change the world. His research addresses networks of small embedded wireless devices, planetary scale Internet services, parallel computer architecture, [00:24:30] parallel programming languages, and high-performance communications. This event is free and will be held in Satara Dye Hall Beneteau Auditorium. Wednesday, April 9th at noon. Cal Day is April 12th 8:00 AM to 6:00 PM 357 events for details. Go to the website, cal day.berkeley.edu a lunar eclipse Monday April 14th at 11:00 PM [00:25:00] look through astronomical telescopes at the Lawrence Hall of science to observe the first total lunar eclipse for the bay area since 2011 this is for the night owls among us UC students, staff and faculty are admitted. Speaker 3: Free. General admissions is $10 drought and deluge how applied hydro informatics are becoming standard operating data for all Californians is the title of Joshua Vere's presentation. On Wednesday, [00:25:30] April 16th Joshua veers joined the citrus leadership as the director at UC Merced said in August, 2013 prior to this, Dr Veers has been serving in a research capacity at UC Davis for 10 years since receiving his phd in ecology. This event is free and will be held in Soutar Dye Hall and Beneteau Auditorium Wednesday, April 16th at noon. A feature of spectrum is to present news stories we find interesting here are to. [00:26:00] This story relates to today's interview on big data. On Tuesday, April 1st a workshop titled Big Data Values and governance was held at UC Berkeley. The workshop was hosted by the White House Office of Science and Technology Policy, the UC Berkeley School of Information and the Berkeley Center for law and technology. The day long workshop examined policy and governance questions raised by the use of large and complex data sets and sophisticated analytics to [00:26:30] fuel decision making across all sectors of the economy, academia and government for panels. Speaker 3: Each an hour and a half long framed the issues of values and governance. A webcast. This workshop will be available from the ice school webpage by today or early next week. That's ice school.berkeley.edu vast gene expression map yields neurological and environmental stress insights. Dan Kraits [00:27:00] writing for the Lawrence Berkeley Lab News Center reports a consortium of scientists led by Susan Cell Knicker of Berkeley's labs. Life Sciences Division has conducted the largest survey yet of how information and code it in an animal genome is processed in different organs, stages of development and environmental conditions. Their findings paint a new picture of how genes function in the nervous system and in response to environmental stress. The scientists [00:27:30] studied the fruit fly, an important model organism in genetics research in all organisms. The information encoded in genomes is transcribed into RNA molecules that are either translated into proteins or utilized to perform functions in the cell. The collection of RNA molecules expressed in a cell is known as its transcriptome, which can be thought of as the readout of the genome. Speaker 3: While the genome is essentially [00:28:00] the same in every cell in our bodies, the transcriptome is different in each cell type and consistently changing cells in cardiac tissue are radically different from those in the gut or the brain. For example, Ben Brown of Berkeley Labs said, our study indicates that the total information output of an animal transcriptome is heavily weighted by the needs of the developing nervous system. The scientists also discovered a much broader [00:28:30] response to stress than previously recognized exposure to heavy metals like cadmium resulted in the activation of known stress response pathways that prevent damage to DNA and proteins. It also revealed several new genes of completely unknown function. Speaker 7: You can [inaudible]. Hmm. Speaker 3: The music or during the show [00:29:00] was [inaudible] Speaker 5: produced by Alex Simon. Today's interview with [inaudible] Rao about the show. Please send them to us spectrum [00:29:30] dot kalx@yahoo.com same time. [inaudible]. See acast.com/privacy for privacy and opt-out information.

Spectrum
Cathryn Carson & Fernando Perez, Part 1 of 2

Spectrum

Play Episode Listen Later Apr 4, 2014 30:00


Cathryn Carson is an Assoc Prof of History, and the Ops Lead of the Social Sciences D- Lab at UC Berkeley. Fernando Perez is a research scientist at the Henry H. Wheeler Jr. Brain Imaging Center at U.C. Berkeley. Berkeley Institute for Data Science.TranscriptSpeaker 1: Spectrum's next. Speaker 2: Okay. [inaudible] [inaudible]. Speaker 1: Welcome to spectrum the science [00:00:30] and technology show on k a l x Berkeley, a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Hi, good afternoon. My name is Brad Swift. I'm the host of today's show this week on spectrum we present part one of our two part series on big data at cal. The Berkeley Institute for Data Science or bids is only [00:01:00] four months old. Two people involved with shaping the institute are Catherine Carson and Fernando Perez and they are our guests. Catherine Carson is an associate professor of history and associate dean of social sciences and the operational lead of the social sciences data lab at UC Berkeley. Fernando Perez is a research scientist at the Henry H. Wheeler Jr Brain imaging center at UC Berkeley. He created the ipython project while a graduate student in 2001 [00:01:30] and continues to lead the project here is part one, Catherine Carson and Fernando Perez. Welcome to spectrum. Thanks for having us and I wanted to get from both of you a little bit of a short summary about the work you're doing now that you just sort of your activity that predates your interest in data science. Speaker 4: Data Science is kind of an Ale defined term I think and it's still an open question precisely what it is, but in a certain sense all of my research has been probably under the umbrella [00:02:00] of what we call today data science since the start. I did my phd in particle physics but it was computational in particle physics and I was doing data analysis in that case of models that were competitionally created. So I've sort of been doing this really since I was a graduate student. What has changed over time is the breadth of disciplines that are interested in these kinds of problems in these kinds of tools and that have these kinds of questions. In physics. This has been kind of a common way of working on writing for a long time. Sort of the deep intersection [00:02:30] between computational tools and large data sets, whether they were created by models or collected experimentally is something that has a long history in physics. Speaker 4: How long the first computers were created to solve differential equations, to plot the trajectories of ballistic missiles. I was one of the very first tasks that's computers were created for so almost since the dawn of coats and so it's really only recently though that the size of the data sets has really jumped. Yes, the size has grown very, [00:03:00] very large in the last couple of decades, especially in the last decade, but I think it's important to not get too hung up on the issue of size because I think when we talk about data science, I like to define it rather in the context of data that is large for the traditional framework tools and conceptual kind of structure of a given discipline rather than it's raw absolute size because yes, in physics for example, we have some of the largest data sets in existence, things like what the LHC creates [00:03:30] for the Higgs Boson. Those data sets are just absolute, absurdly large, but in a given discipline, five megabytes of data might be a lot depending on what it is that you're trying to ask. And so I think it's more, it's much, much more important to think of data that has grown larger than a given discipline was used in manipulating and that therefore poses interesting challenges for that given domain rather than being completely focused on the raw size of the data. Speaker 1: I approached this from an angle that's actually complimentary to Fernando in part because [00:04:00] my job as the interim director of the social sciences data laboratory is not to do data science but to provide the infrastructure, the setting for researchers across the social sciences here who are doing that for themselves. And exactly in the social sciences you see a nice exemplification of the challenge of larger sizes of data than were previously used and new kinds of data as well. So the social sciences are starting to pick up say on [00:04:30] sensor data that has been placed in environmental settings in order to monitor human behavior. And social scientists can then use that in order to design tests around it or to develop ways of interpreting it to answer research questions that are not necessarily anticipated by the folks who put the sensors in place or accessing data that comes out of human interactions online, which is created for entirely different purposes [00:05:00] but makes it possible for social scientists to understand things about human social networks. Speaker 1: So the challenges of building capacity for disciplines to move into new scales of data sets and new kinds of data sets. So one of the ones that I've been seeing as I've been building up d lab and that we've jointly been seeing as we tried to help scope out what the task of the Berkeley Institute for data science is going to be. How about the emergence [00:05:30] of data science? Do you have a sense of the timeline when you started to take note of its feasibility for social sciences? Irrespective of physics, which has a longer history. One of the places that's been driving the conversations in social sciences, actually the funding regime in that the existing beautifully curated data sets that we have from the post World War Two period survey data, principally administrative data on top of that, [00:06:00] those are extremely expensive to produce and to curate and maintain. Speaker 1: And as the social sciences in the last only five to 10 years have been weighing the portfolio of data sources that are supported by funding agencies. We've been forced to confront the fact that the maintenance of the post World War Two regime of surveying may not be feasible into the future and that we're going to have to be shifting to other kinds of data that are generated [00:06:30] for other purposes and repurposing and reusing it, finding new ways to, to cut it and slice it in order to answer new kinds of questions that weren't also accessible to the old surveys. So one way to approach it is through the infrastructure that's needed to generate the data that we're looking at. Another way is simply to look at the infrastructure on campus. One of the launching impetuses for the social sciences data laboratory was in fact the budget cuts of 2009 [00:07:00] here on campus. When we acknowledged that if we were going to support cutting edge methodologically innovative social science on this campus, that we were going to need to find ways to repurpose existing assets and redirect them towards whatever this new frontier in social science is going to be. Speaker 5: You were listening to spectrum on k a l x Berkeley, Catherine Carson and Fernando Perez, our guests. [00:07:30] They are part of the Berkeley Institute for data science known as big [inaudible]. Speaker 4: Fernando, you sort of gave us a generalized definition of data science. Do you want to give it another go just in case you evoke something else? Sure. I want to leave that question slightly on answer because I feel that to some extent, one of the challenges we have as an intellectual effort that we're trying to tackle at the Brooklyn [00:08:00] instead for data science is precisely working on what this field is. Right. I don't want to presuppose that we have a final answer on this question, but at least we, we do know that we have some elements to frame the question and I think it's mostly about an intersection. It's about an intersection of things that were being done already on their own, but that were being done often in isolation. So it's the intersection of methodological work whereby that, I mean things like statistical theory, applied mathematics, computer science, [00:08:30] algorithm development, all of the computational and theoretical mathematical machinery that has been done traditionally, the questions arising from domain disciplines that may have models that may have data sets, that may have sensors that may have a telescope or that may have a gene sequencing array and where are they have their own theoretical models of their organisms or galaxies or whatever it is and where that data can be inscribed and the fact that tools need to be built. Speaker 4: Does data doesn't get analyzed by blackboards? Those data gets analyzed by software, but this is software that is deeply woven [00:09:00] into the fabric of these other two spaces, right? It's software that has to be written with the knowledge of the questions and the discipline and the domain and also with the knowledge of the methodology, the theory. It's that intersection of this triad of things of concrete representation in computational machinery, abstract ideas and methodologies and domain questions that in many ways creates something new when the work has to be done simultaneously with enough depth and enough rigor on all [00:09:30] of these three directions and precisely that intersection is where now the bottleneck is proving to be because you can have the ideas, you can have the questions, you can have the data, you can have the the fear m's, but if you can't put it all together into working concrete tools that you can use efficiently and with a reasonably rapid turnaround, you will not be able to move forward. You will not be able to answer the questions you want to answer about your given discipline and so that embodiment of that intersection is I think where the challenge is opposed. Maybe there is something new called [00:10:00] data science. I'd actually like to suggest that Speaker 1: the indefinable character of data science is actually not a negative because it's an intersection in a way that we're all still very much struggling. How to define it. I won't underplay that exactly in that it's an intersection. It points to the fact that it's not an intellectual thing that we're trying to get our heads around. It's a platform for activity for doing kinds of research that are either enabled or hindered by the [00:10:30] existing institutional and social structures that the research is getting done in, and so if you think of it less as a kind of concept or an intellectual construct and more of a space where people come together, either a physical space or a methodological sharing space, you realize that the indefinable ness is a way of inviting people in rather than drawing clear boundaries around it and saying, we know what this is. It is x and not Speaker 4: why [00:11:00] Berkeley Institute for data science is that where it comes in this invitation, this collection of people and the intersection. That's sort of the goal of it. Speaker 1: That's what we've been asked to build it as not as uh, an institute in the traditional sense of there are folks inside and outside, but in the sense of a meeting point and a crossing site for folks across campus. That's [00:11:30] something that's been put in front of us by the two foundations who have invested in a significant sum of money in us. That's the Gordon and Betty Moore Foundation and the Alfred p Sloan Foundation. And it's also become an inspiring vision for those of us who have been engaged in the process over the last year and a half of envisioning what it might be. It's an attempt to address the doing of data science as an intersectional area within a research university that has existing structures [00:12:00] and silos and boundaries within it. Speaker 4: And to some extent you try to deconstruct the silos and leverage the work done by one group, share it with another, you know, the concrete mechanisms are things that we're still very much working on it and we will see how it unfolds. There's even a physical element that reflects this idea of being at a crossroads, which is that the university was willing to commit to [inaudible] the physical space of one room in the main doe library, which is not only physically [00:12:30] at the center of the university and that is very important because it does mean that it is quite literally at the crossroads. It is one central point where many of us walk by frequently, so it's a space that is inviting in that sense too to encounters, to stopping by to having easy collaboration rather than being in some far edge corner of the campus. Speaker 4: But also intellectually the library is traditionally the store of the cultural and scientific memory of an institution. And so building this space in the library is a way of signaling [00:13:00] to our community that it is meant to be a point of encounter and how specifically those encounters will be embodied and what concrete mechanisms of sharing tools, sharing coach, showing data, having lecture series, having joint projects. We're in the process of imagining all of that and we're absolutely certain that we'll make some mistakes along the way, but that is very much the intent is to have something which is by design about as openly and as explicitly collaborative as we can make it and I think [00:13:30] in that sense we are picking up on many of the lessons that Catherine and her team at the d lab have already learned because the d lab has been in operation here in Barrows Hall for about a year and has already done many things in that direction and that at least I personally see them as things in the spirit of what bids is attempting to do at the scale of the entire institution. D Lab has been kind of blazing that trail already for the last year in the context of the social sciences and to the point where their impact has actually spread beyond the social sciences because so many of the things that they were doing or were [00:14:00] found to have very thirsty customers for the particular brand of lemonade that they were selling here at the lab. And their impact has already spread beyond the social sciences. But we hope to take a lot of these lessons and build them with a broader scope. Speaker 1: And in the same way BYD sits at the center of other existing organizations, entities, programs on campus, which are also deeply engaged in data science. And some of them are research centers, others of them are the data science masters program in the School of information where [00:14:30] there is a strong and deliberate attempt to think through how in a intelligent way to train people for outside the university doing data science. So all of these centers of excellence on campus have the potential to get networked in, in a much more synergistic way with the existence of bids with is not encompassing by any means. All of the great work that's getting done in teaching research around data science on this campus Speaker 6: [00:15:00] spectrum is a public affairs show on k a l x Berkeley. Our guests are Cathryn Carson and Fernando Perez. In the next segment they talk about challenges in Berkeley Institute for Data Science Phase Speaker 2: [inaudible]Speaker 3: and it seems that that eScience does happen best in teams and multidisciplinary [00:15:30] teams or is that not really the case? Speaker 1: I think we've been working on that assumption in part because it seems too much to ask of any individual to do all the things at once. At the same time, we do have many specimens of individuals who cross the boundaries of the three areas that Fernando was sketching out as domain area expertise, hacking skills and methodological competence. [00:16:00] And it's interesting to think through the intersectional individuals as well. But that said, the default assumption I think is going to have to be that teamwork collaboration and actually all of the social engineering to make that possible is going to be necessary for data science to flourish. And again, that's one of the challenges of working in a research university setting where teamwork is sometimes prized and sometimes deprecated. Speaker 4: That goes back to the incentive people building tools don't necessarily get much attention, [00:16:30] prestige from that. How do you defeat that on an institutional level within the institute or just the community? Ask us in five years if we had any success. That's one of the central challenges that we have and it's not only here at Berkeley, this is actually, there's kind of an ongoing worldwide conversation happening about this every few days. There's another article where this issue keeps being brought up again and again and it's raising in volume. The business of creating tools is becoming actually an increasing [00:17:00] part of the job of people doing science. And so for example, even young faculty who are on the tenure track are finding themselves kind of pushed against the wall because they're finding themselves writing a lot of tools and building a lot of software and having to do it collaboratively and having to engage others and picking up all of these skills and this being an important central part of their work. Speaker 4: But they feel that if their tenure committee is only going to look at their publication record and [00:17:30] 80% of their actual time went into building these things, they are effectively being shortchanged for their effort. And this is a difficult conversation. What are we going to do about it? We have a bunch of ideas. We are going to try many things. I think it's a conversation that has to happen at many levels. Some agencies are beginning, the NSF recently changed the terms of its biosketch requirements for example. And now the section that used to be called relevant publications is called relevant publications and other research outcomes. And in parentheses they explained such as software [00:18:00] projects, et cetera. So this is beginning to change the community that cure rates. For example, large data sets. That's a community that has very similar concerns. It turns out that working on a rich and complex data set may be a Labor that requires years of intensive work and that'd be maybe for a full time endeavor for someone. Speaker 4: And yet those people may end up actually getting little credit for it because maybe they weren't the ones who did use that data set to answer a specific question. But if they're left in the dust, no one will do that job. Right. And so [00:18:30] we need to acknowledge that these tasks are actually becoming a central part of the intellectual effort of research. And maybe one point that is worth mentioning in this context of incentives and careers is that we as the institution of academic science in a broad sense, are facing the challenge today that these career paths and these kinds of intersectional problems and data science are right now extremely highly valued by industry. [00:19:00] What we're seeing today with this problem is genuinely of a different scale and different enough to merit attention and consideration in its own right. Because what's happening is the people who have this intersection of skills and talents and competencies are extraordinarily well regarded by the industry right now, especially here in the bay area. Speaker 4: I know the companies that are trying to hire and I know that people were going there and the good ones can effectively name their price if they can name their price to go into contexts that are not [00:19:30] boring. A lot of the problems that industry has right now with data are actually genuinely interesting problems and they often have datasets that we in academia actually have no access to because it turns out that these days the amount of data that is being generated by web activity, by Apps, by personal devices that create an upload data is actually spectacular. And some of those data sets are really rich and complex and material for interesting work. And Industry also has the resources, the computational resources, the backend, the engineering expertise [00:20:00] to do interesting work on those problems. And so we as an academic institution are facing the challenge that we are making it very difficult for these people to find a space at the university. Yet they are critical to the success of modern data driven research and discovery and yet across the street they are being courted by an industry that isn't just offering them money to do boring work. It's actually offering them respect, yes, compensation, but also respect and intellectual space and a community that values their work and that's something [00:20:30] that is genuinely an issue for us to consider. Speaker 4: Is there a way to cross pollinate between the academic side and industry and work together on building a toolkit? Absolutely. We've had great success in that regard in the last decade with the space that I'm most embedded in, which is the space of open source scientific computing tools in python. We have a licensing model for most of the tools in our space that [00:21:00] is open source but allows for a very easy industry we use and what we find is that that has enabled a very healthy two way dialogue between industry and academia in this context. Yes, industry users, our tools, and they often use them in a proprietary context, but they use them for their own problems and for building their own domain specific products and whatever, but when they want to contribute to the base tool, the base layer if you will, it's much [00:21:30] easier for them. Speaker 4: They simply make the improvements out in the open or they just donate resources. They donate money. Microsoft research last year made $100,000 donation to the python project, which was strictly a donation. This was not a grant to develop any specific feature. This was a blanket, hey, we use your tools and they help what we build and so we would like to support you and we've had a very productive relationship with them in the past, but it's by, not by no means the only one you're at Berkeley. The amp lab was two co-directors are actually part of the team [00:22:00] that is working on bids, a young story and Mike Franklin, the AMPLab has a very large set of tools for data analytics at scale that is now widely used at Twitter and Facebook and many other places. They have industry oriented conferences around their tools. Now they have an annual conference they run twice per year. Large bootcamps, large fractions of their attendees come from industry because industry is using all of these tools and the am Platt has currently more of its funding [00:22:30] comes from industry than it comes from sources like the NSF. And so I think there are, there are actually very, very clear and unambiguous examples of models where the open source work that is coming out of our research universities can have a highly productive and valuable dialogue with the industry. Speaker 3: It seems like long term he would have a real uphill battle to create enough competent people with data trained to [00:23:00] quench both industry and academia so that there would be a, a calming of the flow out of academia. Speaker 4: As we've said a couple of times in our discussions, this is a problem. Uh, it's a very, very challenging set of problems that we've signed up for it, but we feel that it's a problem worth failing on in the sense that we, we know the challenges is, is a steep one. But at the same time, the questions are important enough to be worth making the effort. Speaker 6: [inaudible] [00:23:30] don't miss part two of this interview in two weeks and on the next edition of spectrum spectrum shows are archived on iTunes university. We've created a simple link for the link is tiny url.com/kalx specter. Now, if you're the science and technology events happen, Speaker 3: I mean locally over the next two weeks, [00:24:00] enabling a sustainable energy infrastructure is the title of David Color's presentation. On Wednesday, April 9th David Color is the faculty director of [inaudible] for Energy and the chair of computer science at UC Berkeley. He was selected in scientific American top 50 researchers and technology review 10 technologies that will change the world. His research addresses networks of small embedded wireless devices, planetary scale Internet services, parallel computer architecture, [00:24:30] parallel programming languages, and high-performance communications. This event is free and will be held in Satara Dye Hall Beneteau Auditorium. Wednesday, April 9th at noon. Cal Day is April 12th 8:00 AM to 6:00 PM 357 events for details. Go to the website, cal day.berkeley.edu a lunar eclipse Monday April 14th at 11:00 PM [00:25:00] look through astronomical telescopes at the Lawrence Hall of science to observe the first total lunar eclipse for the bay area since 2011 this is for the night owls among us UC students, staff and faculty are admitted. Speaker 3: Free. General admissions is $10 drought and deluge how applied hydro informatics are becoming standard operating data for all Californians is the title of Joshua Vere's presentation. On Wednesday, [00:25:30] April 16th Joshua veers joined the citrus leadership as the director at UC Merced said in August, 2013 prior to this, Dr Veers has been serving in a research capacity at UC Davis for 10 years since receiving his phd in ecology. This event is free and will be held in Soutar Dye Hall and Beneteau Auditorium Wednesday, April 16th at noon. A feature of spectrum is to present news stories we find interesting here are to. [00:26:00] This story relates to today's interview on big data. On Tuesday, April 1st a workshop titled Big Data Values and governance was held at UC Berkeley. The workshop was hosted by the White House Office of Science and Technology Policy, the UC Berkeley School of Information and the Berkeley Center for law and technology. The day long workshop examined policy and governance questions raised by the use of large and complex data sets and sophisticated analytics to [00:26:30] fuel decision making across all sectors of the economy, academia and government for panels. Speaker 3: Each an hour and a half long framed the issues of values and governance. A webcast. This workshop will be available from the ice school webpage by today or early next week. That's ice school.berkeley.edu vast gene expression map yields neurological and environmental stress insights. Dan Kraits [00:27:00] writing for the Lawrence Berkeley Lab News Center reports a consortium of scientists led by Susan Cell Knicker of Berkeley's labs. Life Sciences Division has conducted the largest survey yet of how information and code it in an animal genome is processed in different organs, stages of development and environmental conditions. Their findings paint a new picture of how genes function in the nervous system and in response to environmental stress. The scientists [00:27:30] studied the fruit fly, an important model organism in genetics research in all organisms. The information encoded in genomes is transcribed into RNA molecules that are either translated into proteins or utilized to perform functions in the cell. The collection of RNA molecules expressed in a cell is known as its transcriptome, which can be thought of as the readout of the genome. Speaker 3: While the genome is essentially [00:28:00] the same in every cell in our bodies, the transcriptome is different in each cell type and consistently changing cells in cardiac tissue are radically different from those in the gut or the brain. For example, Ben Brown of Berkeley Labs said, our study indicates that the total information output of an animal transcriptome is heavily weighted by the needs of the developing nervous system. The scientists also discovered a much broader [00:28:30] response to stress than previously recognized exposure to heavy metals like cadmium resulted in the activation of known stress response pathways that prevent damage to DNA and proteins. It also revealed several new genes of completely unknown function. Speaker 7: You can [inaudible]. Hmm. Speaker 3: The music or during the show [00:29:00] was [inaudible] Speaker 5: produced by Alex Simon. Today's interview with [inaudible] Rao about the show. Please send them to us spectrum [00:29:30] dot kalx@yahoo.com same time. [inaudible]. Hosted on Acast. See acast.com/privacy for more information.

Spectrum
N. McConnell, J. Silverman, Part 3 of 3

Spectrum

Play Episode Listen Later Apr 6, 2012 29:59


Jeff Silverman and Nicholas McConnell helped Spectrum present a three part Astronomy survey explaining the ideas, experiments, and observation technology that are transforming Astronomy. This is part three of three. We discuss Dark matter and dark energy.TranscriptSpeaker 1: Spectrum's next Speaker 2: [inaudible].Speaker 1: Welcome to spectrum the science and technology show on k a l x Berkeley, a biweekly [00:00:30] 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Hello and good afternoon. My name is Brad Swift. I'm joined today by spectrum contributors, Rick Karnofsky and Lisa [inaudible]. Our interview is with Dr Jeff Silverman, a recent phd in astrophysics from UC Berkeley and Nicholas McConnell, a phd candidate, unscheduled to be awarded a phd in astrophysics by UC Berkeley this summer. [00:01:00] Jeff and Nicholas have been helping spectrum present a three part astronomy survey, explaining the big ideas, recent experiments, collaborations and improvements in observation technology that are transforming astronomy. This is part three of three and we discuss dark matter, also known as dark energy. Before we talk about dark energy, let me ask you, how do you Speaker 4: relate to time, the human lifetime and then universe lifetime as a scientist [00:01:30] and as a human being, how do you do that? How do you make that stretch? I can't say that I necessarily have an intuitive sense for just how much time has elapsed between the dawn of the universe and me. But I think you can extend it a little bit. You can think of your parents and your parents' parents. And the idea of having ancestry and lineage as a person is a fairly familiar concept. And so I'm the product of generations of people who have done things. And similarly our planet and the conditions that we have and experience every day [00:02:00] are the product of generations and generations of stars being formed and galaxies being formed throughout the universe. And so I think this idea of generations where one thing spawns another and conditions change slightly and gradually over time, but some of the same processes like new stars forming happen over and over and over again is one way to sort of access the, the notion of time throughout the universe. Speaker 5: I think one of the hardest issues for astronomers in astronomy research in general [00:02:30] is the further away we look, the further back in time we look. As Nicholas mentioned, it takes light time to get to us. So if you look at something very far away, it looks like it did much younger in the past, but we can't just watch two galaxies collide and merge. We can't watch a cloud of gas collapse on itself and form a new star and then evolve and then explode as a supernova. We can't wash those processes. We get a snapshot in time, affectively a still of all these processes [00:03:00] all over the universe at different stages. And then the astronomers have to put these pictures in the right order of what's going on, which picture corresponds to which age and how you go from one to the other. And I think that's something that I've had trouble with trying to think about it. Speaker 5: You know, I want to sit down as a scientist and just watch a star evolve and watch it grow up and then die. And then you take your notes and figure it out. Then you're lucky you do get to actually watch them die. I do watch the dying part and you know, with Supernova, with certain kinds of astronomy of phenomena, we [00:03:30] can watch things change on a reasonable basis, on a daily, monthly, yearly basis. But that's the very last bit of a star that has maybe lived for 10 million years or 4 billion years. And one of the things we tried to do is by looking at the death in for a lot about the life, but it is only that small part portion. And there's lots of astronomy where it is basically static and you just see the same thing without any kind of change. There are certain parts of astronomy that do change a little bit with time and we can learn from that. [00:04:00] But the bulk of the star's life, we don't see any change or we just see that tiny bit at the end. Speaker 6: This is spectrum on k a l x Berkeley. We're talking with Dr Jeff Silverman and Nicholas McConnell, astrophysicists from UC Berkeley talking about dark energy. [00:04:30] Let's talk about dark Speaker 4: dark matter. And in so doing, talk about how dark energy or dark matter have become important to astronomy. So one of the interesting things that's happened over the past say half century is that we've profoundly changed our perspective of what the universe contains and what it's fundamentally made of. And so Jeff mentioned through the Supernova in the late nineties we discovered that the universe was expanding faster [00:05:00] and faster and faster. And we think that is due to something that we refer to as dark energy, which we believe makes up about 70 75 5% of the overall mass and energy in the universe. And then when we look at things that we think are sort of more classically as matters stuff that admits gravity and causes things to orbit around it, we've also learned that a very large percentage of gravitational stuff in the universe is made up of this mysterious stuff called dark matter that we know is there [00:05:30] in very large quantities. Speaker 4: It dominates the gravity of how galaxies, for instance, interact with one another. However, we don't know what it's made of. Unlike other kinds of matter, it doesn't emit any light whatsoever. So using telescopes we can learn very little about its actual composition. But on the other side of physics and astronomy, particle physicists have been coming up with theoretical models of the various subatomic particles that constitute universe. And there are certainly space in those [00:06:00] particle models to have particles that are responsible for creating the dark matter. But even though there are a bunch of theories that describe what this dark matter particle might be, it's still not constrained by experiment. We haven't detected definitively any dark matter particle yet, but there are experiments ongoing that are trying to determine what some of these very fundamental particles are. And one that I'll mention because it's led at Berkeley and had an interesting, although definitely not definitive result a couple of years ago is called the cryogenic [00:06:30] dark matter search or cdms. Speaker 4: Uh, and this is an interesting experiment that takes tablets of pure Germanium and buries them, deepen a mine in Minnesota with a lot of equipment and the Germanium is cooled to almost absolute zero as close to absolute zero as we're technologically able to get it. And just sits there waiting for a dark matter particle to come along and collide with one of the atomic nuclei in one of these tablets and the thing about these theorize dark matter particles is that they're extremely noninteractive [00:07:00] to a certain degree. The earth and the galaxy are swimming in a sea of dark matter particles, but they pass through us and never have any noticeable effect on us almost entirely all of the time, but on very, very, very rare occasions you actually do get an interaction in principle between a dark matter particle in something else and so we have these tablets just sitting there waiting for one of these collisions to happen so that we can detect it. Speaker 4: Now there are a bunch of other things that cause collisions in Germanium, things like cosmic rays, which you kind [00:07:30] of get out of the way of by bearing a deep underground electrons and light from other sources, radioactive decay, all of these can set off signals that with a lot of processing and principle, you can distinguish from the ones you expect from having a dark matter particle. Anyway, in 2009 CMS released a statement that they'd been collecting data on collisions inside these tablets for roughly a year's time period and what they found was that based on the best efforts they could do between weeding out [00:08:00] all of the background sources that they're not interested in, they estimated that they would have one false detection that on average statistically they would have missed one background source and classified as a real source. I mean in that same year time period they had found two detections. Speaker 4: So in a very, very, very non-statistical sense, you say, well we found two and we think that one of them statistically is probably false. Maybe we found a dark matter particle. Of course, this is far below the standards of rigor that science requires [00:08:30] for actually saying, yes, we found dark matter, but it's an interesting start and there are certainly ongoing experiments to try to detect these very, very rare interactions between the mysterious dark matter that makes up most of the gravitational stuff in the universe and the ordinary matter that we do know about that. For the large part, it never actually does get to experience it. Are Neutrinos part of dark man or is that another issue entirely? Neutrinos. So I think that some of these particle models suggest that the dark [00:09:00] matter particle is what's called a super symmetric version of a neutrino. So something that has a lot of similar properties to a neutrino but is much, much, much more massive than neutrinos that we do know about have almost no mass whatsoever similar to the dark matter. They also almost never interact with ordinary particles, but there were models run basically saying how would the universe evolve and what would it look like today if dark matter were made up of these neutrinos that we do know about. And those models predict the [00:09:30] overall structure of the universe being very different from what we observe. So we're pretty sure that neutrinos are at most a very small fraction of this dark matter. Speaker 5: Yeah, getting talking a little bit more about the neutrinos. As Nicholas said, they probably are not a huge component of what classically we're referring to as dark matter and that these big experiments are looking for, but they are very interesting weird particles that don't interact very much. They're very hard to detect. They're going through our bodies all the time. The Sun produces them a supernovae produce them [00:10:00] in large amounts as well and even though they're not rigorously really much of this dark matter, they are very interesting and large experiments around the world have been conducted over the past few years to try and detect more of them, to try and classify them and learn more about these neutrino particles. One that Berkeley is very heavily involved in in the, in the Lawrence Berkeley lab is called ice cube down in Antarctica actually. So if you're a poor Grad student in that group, you get to a winter over for six months in Antarctica with lots and lots of DVDs is what I've been told. Speaker 5: [00:10:30] But basically what they do down there is they drill huge vertical holes into the ice shelves and drop down detectors, a photo multiplier tube type devices, things that should light up if they get hit by a neutrino or something like that. And they do a ton of these at various depths and make a greed under the ice. A three dimensional cube under the ice of these detectors could imagine a cubic ice cube and you poke one laser beam through [00:11:00] it. You'll light up a bunch of these detectors in the line and you can connect all of those points with a straight line and sort of see where it's coming from in the sky. And so connecting back a little bit to supernovae. If the Supernova goes off very, very close by, we could possibly detect neutrinos from some of these supernovae and perhaps little deviations from where it goes through and which detectors that lights up could be telling us some interesting information about the neutrinos that are produced in the supernova about our detectors. Speaker 5: So it's a very nice, uh, play back and forth. [00:11:30] Ice Cube has not found neutrinos from a supernova yet. Hopefully we'll have even closer supernovae in the near future and ice cube and other types of neutrino experiments. We'll see possibly some of these and so another great example of big international collaborations even from different types of physics and astronomy getting together the supernova hunters and Supernova Observer, astronomers talking to these neutrino detector particle and trying to come together and answer these questions about the universe from two different sides. Basically two different kinds of science [00:12:00] almost, but coming together with similar observations or related observations is a very interesting prospect. Speaker 6: The show is spectrum. The station is KALX Berkeley. We're talking with Dr Jeff Silverman and Nicholas McConnell there explaining dark matter, dark energy, Speaker 7: dark matter and dark energy as [00:12:30] you called it. Are there other experiments and avenues of research for uncovering this phenomenon or particle, however you want to refer to it? Speaker 8: The direct particle detection experiments that are on earth and we mentioned one of them led by Berkeley are probably the main avenues we have right now for discovering what particle is responsible for the dark matter. There are other ways that we can still collect additional evidence, [00:13:00] although we already have quite a bit for the fact that some strange particle and not ordinary protons and neutrons and electrons are responsible for a lot of the gravitational forces that we see in the universe. One other avenue that might be interesting is the idea that if dark matter is made of subatomic particles, there could be cases where two of those particles interact with one another and Gamma Ray radiation by annihilating them and in that case we have [00:13:30] gamma ray telescopes set up in space that spend a lot of their time detecting more prosaic Cammeray sources. Things like exploding stars, but it's possible perhaps in the near future that these telescopes can also detect gamma ray signatures from the centers of galaxies that we would be able to analyze in such a way that we determined was more likely to be from dark matter particles annihilating one another than from these other astrophysical sources that we already know about. Speaker 8: I'm not sure if that would reveal the identity [00:14:00] of what the dark matter particle is, but it would be more evidence that they do exist. Speaker 7: Dark matter has been hypothesized so that the theory of relativity works or is it devised to prop up the standard model, Speaker 5: the strongest pieces of evidence for the existence of dark matter and sort of the reason that we added it into our pictures of the cosmos is there's not enough stars and gas in galaxies. If you [00:14:30] add up all of the gravity, it's not enough gravity force to hold all those stars and gas together in a galaxy and so we need some other matter that exists that exerts the gravitational force to hold everything together, but it doesn't glow. It's not bright. We can't see it with our normal telescopes at any wavelengths in space or on the ground. And so we've sort of given it this name, dark matter, these dark particles that exert a gravity force but don't give off light in any sense of that word. [00:15:00] We found some candidates over the years. Those have been interesting but they don't add up to enough matter out there and so we hypothesize that there is some other particles, something we haven't figured out yet in particle physics since that is out there and we're not detecting it with our telescopes, we're not detecting it with these other experiments that find subatomic particles and I can see very rare subatomic particles, but I personally think in the next decade we will directly detect one of these particles or a handful of these [00:15:30] particles. Speaker 5: If we don't with these experiments that are online and coming online. If we don't detect these dark matter particles then we're going to have to really rethink how these galaxies, our own galaxy included can exist in their current form with all their stars and gas that we can observe. There'll be some serious issues in our understanding of galaxies and the study of the universe in general, but I think we will find dark matter particles. I think it will match to at least some of the models and theories we have and I like to think that everything is nice and [00:16:00] ordered in. That gives me comfort when I go to sleep at night. Speaker 7: So on that personal level and trying to understand the standard model and your confidence in all that, is there a part of you that's open to the idea that it may not really be as you've as has been imagined for the past 30 years? Speaker 8: I think that at one level of detail or another it's actually very likely that the models we've constructed over the last century, in the case of particle physics in the last 30 years, in [00:16:30] the case of adding dark matter as an ingredient to the universe that we see as astronomers, I think it's very likely that some of those details are going to fall by the wayside and be replaced by a different and more accurate description that people aren't thinking of yet. I think if the history of science teaches us anything, it's that as soon as we get over confident that we've put all the pieces together. If something comes in really forces us to rethink how the universe works as far as dark matter goes. I'd like to point out that there's sort of two [00:17:00] different theories in play and that either one of them I think could be revised in order to explain observations if we do fail to detect dark matter particles soon. Speaker 8: And one of them is Einstein's theory of relativity saying that if we know how much stuff there is that we actually understand the literal force of gravity well enough to determine how mass interacts with one another and how the force of gravity works. And then the other one is different particle physics theories that say that if you have stuff coming and gravity like a dark [00:17:30] matter particle, what are the, the limiting things for what that particle could actually be. And I'm not well versed enough to know whether there's a lot of room for dark matter particles to exist that we wouldn't be able to detect with this generation or the next generation of experiments. But one possible way to fail to detect matter particles now and not have to revise general relativity as if particle physics can come up with a particle that is responsible for dark matter but is well beyond our capacity to detect [00:18:00] at this point. Speaker 3: Nicholas and Jeffrey, thanks very much for coming on spectrum. Thanks for having me. Thanks for having me. Speaker 6: For people who are interested in getting involved in amateur astronomy, let me mention a few avenues to pursue. The astronomy connection has a website that will lead you to a wide range of observing individuals and groups in the bay area. Their website is observers.org [00:18:30] for those who want to get involved in a crowdsource astronomy project, go to the website, Galaxy zoo.org the University of California observatories have a website that has a great deal of information, particularly under the links heading. Their website is used, c o lik.org or [00:19:00] regular feature of spectrum is to mention a few of the science and technology events happening in the bay area. Over the next few weeks. I'm joined by Rick Kaneski and Lisa Katovich for the calendar. Speaker 9: The science of art is the spring open house at the crucible. This event we'll highlight the scientific principles, inquiry and exploration behind the fine and industrial arts processes taught there. This event will bring together crucible faculty, guest artists, and a curated gallery of exhibits and demonstrations. Also projects from local schools [00:19:30] as well as special performances, food and the participation of a number of other local art and science related organizations and university programs. This event will happen on Saturday, April 7th from 12 to 4:00 PM and the crucibles located at 1260 seventh street in Oakland. Speaker 3: The Oppenheimer Lecture, the Higgs particle pivot of symmetry and mass. The Speaker is [inaudible] to [inaudible] professor of theoretical physics [00:20:00] at Utrecht University in the Netherlands. Professor to Hoeft was awarded the Nobel Prize in physics in 1999 in this lecture, professor to Hoeft will reflect on the importance of the as yet undetected Higgs particle and speculate on the Subatomic world once the particle is observed in detail. The lecture is April 9th at 5:00 PM in the Chevron Auditorium at International House [00:20:30] on the UC Berkeley campus. On Monday, April 9th the Commonwealth Club of San Francisco at five nine five market street is hosting Barb Stuckey, the author of taste, what you're missing. The passionate eaters guy too. I good food. Tastes good. Some reviewers say that this book bring science to the of taste. In the same Speaker 10: way that Harold McGee's book on food and cooking popularized food science. She will talk about understanding the science and senses of what you eat. You'll better understand both the psychology and physiology of taste [00:21:00] and learn how to develop and improve your tasting pellet by discerning flavors and detecting and ingredients. A five-thirty checkin proceeds. The 6:00 PM program, which is then followed by a book signing at seven the event is free for members, $20 standard admission and a $7 for students. Visit www.commonwealthclub.org for more info Speaker 9: pioneers in engineering. A nonprofit high school robotics competition organized by UC Berkeley students is holding its fourth annual robotics competition. [00:21:30] The Big Day is Saturday, April 14th at the Lawrence Hall of science in Berkeley. The competition begins at 10:00 AM and continues all day until five. This year's challenge is titled Ballistic Blitz for the seven weeks leading up to the final event. 200 high school students in teams from 21 East Bay high schools each work to design and build a robot. Come see the dramatic culmination of their hard work. This event is included in the price of admission. Admission is [00:22:00] free for UC Berkeley students and staff. For more information, go to the Lawrence Hall of Science website and Click on events. Mount Diablo Astronomical Society presents member planets, our solar system, neighbors, Venus and Mars through telescopes and find out why earth has abundant life but not Mars and Venus. Saturday, April 14th 7:00 PM to 11:00 PM the rendezvous is at Mount Diablo lower summit parking lot [00:22:30] summit road. Speaker 9: Clayton. For more details and contact information, go to the website, m d a s. Dot. Mitt. On Wednesday, April 18th ask a scientist. A monthly lecture series will be co launching the wonder Fest Book Club with USI Professor, biological anthropology and neuroscience, Terrence Deacon's book, incomplete nature, how mind emerged from matter. Professor Deacon's presentation will focus on the idea that key elements of consciousness, [00:23:00] values, meanings, feelings, etc. Emerge from specific constraints on the physical processes of a nervous system. The lecture will be located at the California Institute of Integral Studies at Namaz Day Hall, 1453 Mission Street in San Francisco. It will start at 7:00 PM and it's free. Speaker 10: Cal Day, UC Berkeley's free annual open house will be on Saturday, April 21st 9:00 AM until 4:00 PM there'll be a ton of science related events this year, including [00:23:30] tours of the labs and shops used for molecular and cell biology, synthetic biology, mechanical engineering, Quantum Nano Electronics, space sciences, star dust, nuclear engineering, automation, science, and more. There'll be lectures on diverse topics such as environmental design, geology, and the art and science of prehistoric life, as well as tables for various science and engineering majors and student groups. For more information. Visit [inaudible] dot berkeley.edu [00:24:00] now on to the news, Speaker 9: a February NASA study reports that climatic changes in the polar regions are occurring at a magnitude far greater than the rest of the planet. The oldest and thickest Arctic Sea ice is disappearing at a faster rate than the younger and thinner eyes at the edges of the Arctic oceans floating ice cap, the thicker ice known as multi-year ice survived through the cyclical summer melt season when young ice that has formed over winter. Just as quickly melt again, [00:24:30] Joey Comiso, senior scientists at NASA Goddard Space Flight Center and author of a study recently published in the Journal of climate says the rapid disappearance of older ice makes Arctic Sea ice even more vulnerable to further decline in the summer. The surface temperature in the Arctic is going up, which results in a shorter ice forming season. It would take a persistent cold spell for most multi-year CIS and other ice types to grow thick enough in the winter to survive the summer melt season and reverse the trend. [00:25:00] This warming in the Arctic is the warmest 12 month on record. For the region. This means that the region is moving closer to, if not already, breaching climatic tipping points which could see the Arctic's current ecological state being shifted to an entirely new one, having severe ramifications, not only for the biodiversity and ecosystems of the region but also for the rest of the planet. Speaker 10: The April 2nd issue of the proceedings of the National Academy of Sciences has an article by Francesco Burma of Boston University [00:25:30] and others that reports evidence that humans acquired fire at least 200,000 years earlier than previously believed. The evidence is in the form of sediments from the wonderware cave in the Northern Cape province of South Africa. They were studied by micro morphological and foray transform infrared micro spectroscopy and data to be 1 million years old. The sediment contained burn, sharp bone fragments and plant ashes. The bone seems to have been exposed to temperature is found by a small cooking fires under about [00:26:00] 700 degrees Celsius. Previous to this finding, there was consensus that the earliest fires dated to only 790,000 years ago, and so these reporting older fires tended to be controversial as it is difficult to demonstrate that fires were small and intentional and use for cooking rather than acts of nature. Speaker 9: More than half of all cancer is preventable. Experts say science daily reports that in a review article published in Science Translational Medicine on March 28th the investigators outlined obstacles. [00:26:30] They say stand in the way of making a huge dent in the cancer burden in the u s and around the world. Epidemiologists, Graham Colditz, MD professor at the Washington University School of Medicine and associate director of prevention and control. The Siteman cancer center says, we actually have an enormous amount of data about the causes and preventability of cancer. It's time we made an investment in implementing what we know. According to the American Cancer Society, an estimated 1,600,000 new cancer cases will be diagnosed this year in the u s [00:27:00] also this year, approximately 577,000 Americans are expected to die of cancer according to Kolditz and his co authors individual habits and the structure of society itself from medical research, funding to building design and food subsidies influences the extent of the cancer burden and can be changed to reduce it. Speaker 10: Science news reports on a paper presented at the cognitive neuroscience society by Andrew met her, Ellie, Mika, and CN Beilock. [00:27:30] Both of the University of Chicago. The team use brain scans to find areas in a person's brain whose activity you will predict how well that person functions under pressure. Using functional magnetic resonance imaging, the team gave both low and high stakes math problems to volunteers. Stakes were determined by both the size of financial reward and a social pressure via a financial penalty imposed upon teammates. In the case of failure, well, easy questions could be answered regardless of the stakes in the study. More difficult [00:28:00] questions led to a 10% average decrease in performance for volunteers who had decreased performance. There is greater activity in the enterprise [inaudible] circus and the inferior frontal junction of the brain area is linked to working memory. Furthermore, the more the ventral medial prefrontal cortex and area linked with emotions work to keep these two areas in sync, the more likely the volunteer was to choke under pressure. Speaker 2: [inaudible]Speaker 6: [00:28:30] a special thanks to Dr Jeffers Silverman and Nicholas McConnell for spending the time with us. Degenerate three shows on astronomy. Thanks to Rick Karnofsky who helps produce the show and Lisa Katovich for her health Speaker 2: [inaudible]Speaker 6: the music heard during the show is by Los Donna David and album titled Folk and Acoustic [00:29:00] made available by a creative comments 3.0 attributional license. Speaker 2: [inaudible]Speaker 6: thank you for listening to spectrum. If you have comments about the show, please send them to us via email. Our email address is spectrum dot k@yahoo.com join us in two weeks at this same [00:29:30] time. Speaker 2: [inaudible]Speaker 11: [inaudible]. See acast.com/privacy for privacy and opt-out information.

Spectrum
N. McConnell, J. Silverman, Part 3 of 3

Spectrum

Play Episode Listen Later Apr 6, 2012 29:59


Jeff Silverman and Nicholas McConnell helped Spectrum present a three part Astronomy survey explaining the ideas, experiments, and observation technology that are transforming Astronomy. This is part three of three. We discuss Dark matter and dark energy.TranscriptSpeaker 1: Spectrum's next Speaker 2: [inaudible].Speaker 1: Welcome to spectrum the science and technology show on k a l x Berkeley, a biweekly [00:00:30] 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Hello and good afternoon. My name is Brad Swift. I'm joined today by spectrum contributors, Rick Karnofsky and Lisa [inaudible]. Our interview is with Dr Jeff Silverman, a recent phd in astrophysics from UC Berkeley and Nicholas McConnell, a phd candidate, unscheduled to be awarded a phd in astrophysics by UC Berkeley this summer. [00:01:00] Jeff and Nicholas have been helping spectrum present a three part astronomy survey, explaining the big ideas, recent experiments, collaborations and improvements in observation technology that are transforming astronomy. This is part three of three and we discuss dark matter, also known as dark energy. Before we talk about dark energy, let me ask you, how do you Speaker 4: relate to time, the human lifetime and then universe lifetime as a scientist [00:01:30] and as a human being, how do you do that? How do you make that stretch? I can't say that I necessarily have an intuitive sense for just how much time has elapsed between the dawn of the universe and me. But I think you can extend it a little bit. You can think of your parents and your parents' parents. And the idea of having ancestry and lineage as a person is a fairly familiar concept. And so I'm the product of generations of people who have done things. And similarly our planet and the conditions that we have and experience every day [00:02:00] are the product of generations and generations of stars being formed and galaxies being formed throughout the universe. And so I think this idea of generations where one thing spawns another and conditions change slightly and gradually over time, but some of the same processes like new stars forming happen over and over and over again is one way to sort of access the, the notion of time throughout the universe. Speaker 5: I think one of the hardest issues for astronomers in astronomy research in general [00:02:30] is the further away we look, the further back in time we look. As Nicholas mentioned, it takes light time to get to us. So if you look at something very far away, it looks like it did much younger in the past, but we can't just watch two galaxies collide and merge. We can't watch a cloud of gas collapse on itself and form a new star and then evolve and then explode as a supernova. We can't wash those processes. We get a snapshot in time, affectively a still of all these processes [00:03:00] all over the universe at different stages. And then the astronomers have to put these pictures in the right order of what's going on, which picture corresponds to which age and how you go from one to the other. And I think that's something that I've had trouble with trying to think about it. Speaker 5: You know, I want to sit down as a scientist and just watch a star evolve and watch it grow up and then die. And then you take your notes and figure it out. Then you're lucky you do get to actually watch them die. I do watch the dying part and you know, with Supernova, with certain kinds of astronomy of phenomena, we [00:03:30] can watch things change on a reasonable basis, on a daily, monthly, yearly basis. But that's the very last bit of a star that has maybe lived for 10 million years or 4 billion years. And one of the things we tried to do is by looking at the death in for a lot about the life, but it is only that small part portion. And there's lots of astronomy where it is basically static and you just see the same thing without any kind of change. There are certain parts of astronomy that do change a little bit with time and we can learn from that. [00:04:00] But the bulk of the star's life, we don't see any change or we just see that tiny bit at the end. Speaker 6: This is spectrum on k a l x Berkeley. We're talking with Dr Jeff Silverman and Nicholas McConnell, astrophysicists from UC Berkeley talking about dark energy. [00:04:30] Let's talk about dark Speaker 4: dark matter. And in so doing, talk about how dark energy or dark matter have become important to astronomy. So one of the interesting things that's happened over the past say half century is that we've profoundly changed our perspective of what the universe contains and what it's fundamentally made of. And so Jeff mentioned through the Supernova in the late nineties we discovered that the universe was expanding faster [00:05:00] and faster and faster. And we think that is due to something that we refer to as dark energy, which we believe makes up about 70 75 5% of the overall mass and energy in the universe. And then when we look at things that we think are sort of more classically as matters stuff that admits gravity and causes things to orbit around it, we've also learned that a very large percentage of gravitational stuff in the universe is made up of this mysterious stuff called dark matter that we know is there [00:05:30] in very large quantities. Speaker 4: It dominates the gravity of how galaxies, for instance, interact with one another. However, we don't know what it's made of. Unlike other kinds of matter, it doesn't emit any light whatsoever. So using telescopes we can learn very little about its actual composition. But on the other side of physics and astronomy, particle physicists have been coming up with theoretical models of the various subatomic particles that constitute universe. And there are certainly space in those [00:06:00] particle models to have particles that are responsible for creating the dark matter. But even though there are a bunch of theories that describe what this dark matter particle might be, it's still not constrained by experiment. We haven't detected definitively any dark matter particle yet, but there are experiments ongoing that are trying to determine what some of these very fundamental particles are. And one that I'll mention because it's led at Berkeley and had an interesting, although definitely not definitive result a couple of years ago is called the cryogenic [00:06:30] dark matter search or cdms. Speaker 4: Uh, and this is an interesting experiment that takes tablets of pure Germanium and buries them, deepen a mine in Minnesota with a lot of equipment and the Germanium is cooled to almost absolute zero as close to absolute zero as we're technologically able to get it. And just sits there waiting for a dark matter particle to come along and collide with one of the atomic nuclei in one of these tablets and the thing about these theorize dark matter particles is that they're extremely noninteractive [00:07:00] to a certain degree. The earth and the galaxy are swimming in a sea of dark matter particles, but they pass through us and never have any noticeable effect on us almost entirely all of the time, but on very, very, very rare occasions you actually do get an interaction in principle between a dark matter particle in something else and so we have these tablets just sitting there waiting for one of these collisions to happen so that we can detect it. Speaker 4: Now there are a bunch of other things that cause collisions in Germanium, things like cosmic rays, which you kind [00:07:30] of get out of the way of by bearing a deep underground electrons and light from other sources, radioactive decay, all of these can set off signals that with a lot of processing and principle, you can distinguish from the ones you expect from having a dark matter particle. Anyway, in 2009 CMS released a statement that they'd been collecting data on collisions inside these tablets for roughly a year's time period and what they found was that based on the best efforts they could do between weeding out [00:08:00] all of the background sources that they're not interested in, they estimated that they would have one false detection that on average statistically they would have missed one background source and classified as a real source. I mean in that same year time period they had found two detections. Speaker 4: So in a very, very, very non-statistical sense, you say, well we found two and we think that one of them statistically is probably false. Maybe we found a dark matter particle. Of course, this is far below the standards of rigor that science requires [00:08:30] for actually saying, yes, we found dark matter, but it's an interesting start and there are certainly ongoing experiments to try to detect these very, very rare interactions between the mysterious dark matter that makes up most of the gravitational stuff in the universe and the ordinary matter that we do know about that. For the large part, it never actually does get to experience it. Are Neutrinos part of dark man or is that another issue entirely? Neutrinos. So I think that some of these particle models suggest that the dark [00:09:00] matter particle is what's called a super symmetric version of a neutrino. So something that has a lot of similar properties to a neutrino but is much, much, much more massive than neutrinos that we do know about have almost no mass whatsoever similar to the dark matter. They also almost never interact with ordinary particles, but there were models run basically saying how would the universe evolve and what would it look like today if dark matter were made up of these neutrinos that we do know about. And those models predict the [00:09:30] overall structure of the universe being very different from what we observe. So we're pretty sure that neutrinos are at most a very small fraction of this dark matter. Speaker 5: Yeah, getting talking a little bit more about the neutrinos. As Nicholas said, they probably are not a huge component of what classically we're referring to as dark matter and that these big experiments are looking for, but they are very interesting weird particles that don't interact very much. They're very hard to detect. They're going through our bodies all the time. The Sun produces them a supernovae produce them [00:10:00] in large amounts as well and even though they're not rigorously really much of this dark matter, they are very interesting and large experiments around the world have been conducted over the past few years to try and detect more of them, to try and classify them and learn more about these neutrino particles. One that Berkeley is very heavily involved in in the, in the Lawrence Berkeley lab is called ice cube down in Antarctica actually. So if you're a poor Grad student in that group, you get to a winter over for six months in Antarctica with lots and lots of DVDs is what I've been told. Speaker 5: [00:10:30] But basically what they do down there is they drill huge vertical holes into the ice shelves and drop down detectors, a photo multiplier tube type devices, things that should light up if they get hit by a neutrino or something like that. And they do a ton of these at various depths and make a greed under the ice. A three dimensional cube under the ice of these detectors could imagine a cubic ice cube and you poke one laser beam through [00:11:00] it. You'll light up a bunch of these detectors in the line and you can connect all of those points with a straight line and sort of see where it's coming from in the sky. And so connecting back a little bit to supernovae. If the Supernova goes off very, very close by, we could possibly detect neutrinos from some of these supernovae and perhaps little deviations from where it goes through and which detectors that lights up could be telling us some interesting information about the neutrinos that are produced in the supernova about our detectors. Speaker 5: So it's a very nice, uh, play back and forth. [00:11:30] Ice Cube has not found neutrinos from a supernova yet. Hopefully we'll have even closer supernovae in the near future and ice cube and other types of neutrino experiments. We'll see possibly some of these and so another great example of big international collaborations even from different types of physics and astronomy getting together the supernova hunters and Supernova Observer, astronomers talking to these neutrino detector particle and trying to come together and answer these questions about the universe from two different sides. Basically two different kinds of science [00:12:00] almost, but coming together with similar observations or related observations is a very interesting prospect. Speaker 6: The show is spectrum. The station is KALX Berkeley. We're talking with Dr Jeff Silverman and Nicholas McConnell there explaining dark matter, dark energy, Speaker 7: dark matter and dark energy as [00:12:30] you called it. Are there other experiments and avenues of research for uncovering this phenomenon or particle, however you want to refer to it? Speaker 8: The direct particle detection experiments that are on earth and we mentioned one of them led by Berkeley are probably the main avenues we have right now for discovering what particle is responsible for the dark matter. There are other ways that we can still collect additional evidence, [00:13:00] although we already have quite a bit for the fact that some strange particle and not ordinary protons and neutrons and electrons are responsible for a lot of the gravitational forces that we see in the universe. One other avenue that might be interesting is the idea that if dark matter is made of subatomic particles, there could be cases where two of those particles interact with one another and Gamma Ray radiation by annihilating them and in that case we have [00:13:30] gamma ray telescopes set up in space that spend a lot of their time detecting more prosaic Cammeray sources. Things like exploding stars, but it's possible perhaps in the near future that these telescopes can also detect gamma ray signatures from the centers of galaxies that we would be able to analyze in such a way that we determined was more likely to be from dark matter particles annihilating one another than from these other astrophysical sources that we already know about. Speaker 8: I'm not sure if that would reveal the identity [00:14:00] of what the dark matter particle is, but it would be more evidence that they do exist. Speaker 7: Dark matter has been hypothesized so that the theory of relativity works or is it devised to prop up the standard model, Speaker 5: the strongest pieces of evidence for the existence of dark matter and sort of the reason that we added it into our pictures of the cosmos is there's not enough stars and gas in galaxies. If you [00:14:30] add up all of the gravity, it's not enough gravity force to hold all those stars and gas together in a galaxy and so we need some other matter that exists that exerts the gravitational force to hold everything together, but it doesn't glow. It's not bright. We can't see it with our normal telescopes at any wavelengths in space or on the ground. And so we've sort of given it this name, dark matter, these dark particles that exert a gravity force but don't give off light in any sense of that word. [00:15:00] We found some candidates over the years. Those have been interesting but they don't add up to enough matter out there and so we hypothesize that there is some other particles, something we haven't figured out yet in particle physics since that is out there and we're not detecting it with our telescopes, we're not detecting it with these other experiments that find subatomic particles and I can see very rare subatomic particles, but I personally think in the next decade we will directly detect one of these particles or a handful of these [00:15:30] particles. Speaker 5: If we don't with these experiments that are online and coming online. If we don't detect these dark matter particles then we're going to have to really rethink how these galaxies, our own galaxy included can exist in their current form with all their stars and gas that we can observe. There'll be some serious issues in our understanding of galaxies and the study of the universe in general, but I think we will find dark matter particles. I think it will match to at least some of the models and theories we have and I like to think that everything is nice and [00:16:00] ordered in. That gives me comfort when I go to sleep at night. Speaker 7: So on that personal level and trying to understand the standard model and your confidence in all that, is there a part of you that's open to the idea that it may not really be as you've as has been imagined for the past 30 years? Speaker 8: I think that at one level of detail or another it's actually very likely that the models we've constructed over the last century, in the case of particle physics in the last 30 years, in [00:16:30] the case of adding dark matter as an ingredient to the universe that we see as astronomers, I think it's very likely that some of those details are going to fall by the wayside and be replaced by a different and more accurate description that people aren't thinking of yet. I think if the history of science teaches us anything, it's that as soon as we get over confident that we've put all the pieces together. If something comes in really forces us to rethink how the universe works as far as dark matter goes. I'd like to point out that there's sort of two [00:17:00] different theories in play and that either one of them I think could be revised in order to explain observations if we do fail to detect dark matter particles soon. Speaker 8: And one of them is Einstein's theory of relativity saying that if we know how much stuff there is that we actually understand the literal force of gravity well enough to determine how mass interacts with one another and how the force of gravity works. And then the other one is different particle physics theories that say that if you have stuff coming and gravity like a dark [00:17:30] matter particle, what are the, the limiting things for what that particle could actually be. And I'm not well versed enough to know whether there's a lot of room for dark matter particles to exist that we wouldn't be able to detect with this generation or the next generation of experiments. But one possible way to fail to detect matter particles now and not have to revise general relativity as if particle physics can come up with a particle that is responsible for dark matter but is well beyond our capacity to detect [00:18:00] at this point. Speaker 3: Nicholas and Jeffrey, thanks very much for coming on spectrum. Thanks for having me. Thanks for having me. Speaker 6: For people who are interested in getting involved in amateur astronomy, let me mention a few avenues to pursue. The astronomy connection has a website that will lead you to a wide range of observing individuals and groups in the bay area. Their website is observers.org [00:18:30] for those who want to get involved in a crowdsource astronomy project, go to the website, Galaxy zoo.org the University of California observatories have a website that has a great deal of information, particularly under the links heading. Their website is used, c o lik.org or [00:19:00] regular feature of spectrum is to mention a few of the science and technology events happening in the bay area. Over the next few weeks. I'm joined by Rick Kaneski and Lisa Katovich for the calendar. Speaker 9: The science of art is the spring open house at the crucible. This event we'll highlight the scientific principles, inquiry and exploration behind the fine and industrial arts processes taught there. This event will bring together crucible faculty, guest artists, and a curated gallery of exhibits and demonstrations. Also projects from local schools [00:19:30] as well as special performances, food and the participation of a number of other local art and science related organizations and university programs. This event will happen on Saturday, April 7th from 12 to 4:00 PM and the crucibles located at 1260 seventh street in Oakland. Speaker 3: The Oppenheimer Lecture, the Higgs particle pivot of symmetry and mass. The Speaker is [inaudible] to [inaudible] professor of theoretical physics [00:20:00] at Utrecht University in the Netherlands. Professor to Hoeft was awarded the Nobel Prize in physics in 1999 in this lecture, professor to Hoeft will reflect on the importance of the as yet undetected Higgs particle and speculate on the Subatomic world once the particle is observed in detail. The lecture is April 9th at 5:00 PM in the Chevron Auditorium at International House [00:20:30] on the UC Berkeley campus. On Monday, April 9th the Commonwealth Club of San Francisco at five nine five market street is hosting Barb Stuckey, the author of taste, what you're missing. The passionate eaters guy too. I good food. Tastes good. Some reviewers say that this book bring science to the of taste. In the same Speaker 10: way that Harold McGee's book on food and cooking popularized food science. She will talk about understanding the science and senses of what you eat. You'll better understand both the psychology and physiology of taste [00:21:00] and learn how to develop and improve your tasting pellet by discerning flavors and detecting and ingredients. A five-thirty checkin proceeds. The 6:00 PM program, which is then followed by a book signing at seven the event is free for members, $20 standard admission and a $7 for students. Visit www.commonwealthclub.org for more info Speaker 9: pioneers in engineering. A nonprofit high school robotics competition organized by UC Berkeley students is holding its fourth annual robotics competition. [00:21:30] The Big Day is Saturday, April 14th at the Lawrence Hall of science in Berkeley. The competition begins at 10:00 AM and continues all day until five. This year's challenge is titled Ballistic Blitz for the seven weeks leading up to the final event. 200 high school students in teams from 21 East Bay high schools each work to design and build a robot. Come see the dramatic culmination of their hard work. This event is included in the price of admission. Admission is [00:22:00] free for UC Berkeley students and staff. For more information, go to the Lawrence Hall of Science website and Click on events. Mount Diablo Astronomical Society presents member planets, our solar system, neighbors, Venus and Mars through telescopes and find out why earth has abundant life but not Mars and Venus. Saturday, April 14th 7:00 PM to 11:00 PM the rendezvous is at Mount Diablo lower summit parking lot [00:22:30] summit road. Speaker 9: Clayton. For more details and contact information, go to the website, m d a s. Dot. Mitt. On Wednesday, April 18th ask a scientist. A monthly lecture series will be co launching the wonder Fest Book Club with USI Professor, biological anthropology and neuroscience, Terrence Deacon's book, incomplete nature, how mind emerged from matter. Professor Deacon's presentation will focus on the idea that key elements of consciousness, [00:23:00] values, meanings, feelings, etc. Emerge from specific constraints on the physical processes of a nervous system. The lecture will be located at the California Institute of Integral Studies at Namaz Day Hall, 1453 Mission Street in San Francisco. It will start at 7:00 PM and it's free. Speaker 10: Cal Day, UC Berkeley's free annual open house will be on Saturday, April 21st 9:00 AM until 4:00 PM there'll be a ton of science related events this year, including [00:23:30] tours of the labs and shops used for molecular and cell biology, synthetic biology, mechanical engineering, Quantum Nano Electronics, space sciences, star dust, nuclear engineering, automation, science, and more. There'll be lectures on diverse topics such as environmental design, geology, and the art and science of prehistoric life, as well as tables for various science and engineering majors and student groups. For more information. Visit [inaudible] dot berkeley.edu [00:24:00] now on to the news, Speaker 9: a February NASA study reports that climatic changes in the polar regions are occurring at a magnitude far greater than the rest of the planet. The oldest and thickest Arctic Sea ice is disappearing at a faster rate than the younger and thinner eyes at the edges of the Arctic oceans floating ice cap, the thicker ice known as multi-year ice survived through the cyclical summer melt season when young ice that has formed over winter. Just as quickly melt again, [00:24:30] Joey Comiso, senior scientists at NASA Goddard Space Flight Center and author of a study recently published in the Journal of climate says the rapid disappearance of older ice makes Arctic Sea ice even more vulnerable to further decline in the summer. The surface temperature in the Arctic is going up, which results in a shorter ice forming season. It would take a persistent cold spell for most multi-year CIS and other ice types to grow thick enough in the winter to survive the summer melt season and reverse the trend. [00:25:00] This warming in the Arctic is the warmest 12 month on record. For the region. This means that the region is moving closer to, if not already, breaching climatic tipping points which could see the Arctic's current ecological state being shifted to an entirely new one, having severe ramifications, not only for the biodiversity and ecosystems of the region but also for the rest of the planet. Speaker 10: The April 2nd issue of the proceedings of the National Academy of Sciences has an article by Francesco Burma of Boston University [00:25:30] and others that reports evidence that humans acquired fire at least 200,000 years earlier than previously believed. The evidence is in the form of sediments from the wonderware cave in the Northern Cape province of South Africa. They were studied by micro morphological and foray transform infrared micro spectroscopy and data to be 1 million years old. The sediment contained burn, sharp bone fragments and plant ashes. The bone seems to have been exposed to temperature is found by a small cooking fires under about [00:26:00] 700 degrees Celsius. Previous to this finding, there was consensus that the earliest fires dated to only 790,000 years ago, and so these reporting older fires tended to be controversial as it is difficult to demonstrate that fires were small and intentional and use for cooking rather than acts of nature. Speaker 9: More than half of all cancer is preventable. Experts say science daily reports that in a review article published in Science Translational Medicine on March 28th the investigators outlined obstacles. [00:26:30] They say stand in the way of making a huge dent in the cancer burden in the u s and around the world. Epidemiologists, Graham Colditz, MD professor at the Washington University School of Medicine and associate director of prevention and control. The Siteman cancer center says, we actually have an enormous amount of data about the causes and preventability of cancer. It's time we made an investment in implementing what we know. According to the American Cancer Society, an estimated 1,600,000 new cancer cases will be diagnosed this year in the u s [00:27:00] also this year, approximately 577,000 Americans are expected to die of cancer according to Kolditz and his co authors individual habits and the structure of society itself from medical research, funding to building design and food subsidies influences the extent of the cancer burden and can be changed to reduce it. Speaker 10: Science news reports on a paper presented at the cognitive neuroscience society by Andrew met her, Ellie, Mika, and CN Beilock. [00:27:30] Both of the University of Chicago. The team use brain scans to find areas in a person's brain whose activity you will predict how well that person functions under pressure. Using functional magnetic resonance imaging, the team gave both low and high stakes math problems to volunteers. Stakes were determined by both the size of financial reward and a social pressure via a financial penalty imposed upon teammates. In the case of failure, well, easy questions could be answered regardless of the stakes in the study. More difficult [00:28:00] questions led to a 10% average decrease in performance for volunteers who had decreased performance. There is greater activity in the enterprise [inaudible] circus and the inferior frontal junction of the brain area is linked to working memory. Furthermore, the more the ventral medial prefrontal cortex and area linked with emotions work to keep these two areas in sync, the more likely the volunteer was to choke under pressure. Speaker 2: [inaudible]Speaker 6: [00:28:30] a special thanks to Dr Jeffers Silverman and Nicholas McConnell for spending the time with us. Degenerate three shows on astronomy. Thanks to Rick Karnofsky who helps produce the show and Lisa Katovich for her health Speaker 2: [inaudible]Speaker 6: the music heard during the show is by Los Donna David and album titled Folk and Acoustic [00:29:00] made available by a creative comments 3.0 attributional license. Speaker 2: [inaudible]Speaker 6: thank you for listening to spectrum. If you have comments about the show, please send them to us via email. Our email address is spectrum dot k@yahoo.com join us in two weeks at this same [00:29:30] time. Speaker 2: [inaudible]Speaker 11: [inaudible]. Hosted on Acast. See acast.com/privacy for more information.