Podcast appearances and mentions of felix hausdorff

  • 4PODCASTS
  • 5EPISODES
  • 41mAVG DURATION
  • ?INFREQUENT EPISODES
  • Mar 30, 2020LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about felix hausdorff

Latest podcast episodes about felix hausdorff

SWR2 Wissen
Geniale Mathematiker: Felix Hausdorff und das Wesen der Räume

SWR2 Wissen

Play Episode Listen Later Mar 30, 2020 27:49


Geniale Mathematiker( 4/6) | Felix Hausdorff schimpfte gegen „Impfgegner, Naturärzte und Keutschheitsapostel“ und schrieb Gedichte. Vor allem aber begründete er ein neues mathematisches Fachgebiet: Die Topologie. Von Aeneas Rooch

Modellansatz
Fraktale Geometrie

Modellansatz

Play Episode Listen Later Jan 5, 2017 64:31


Steffen Winter befasst sich mit fraktaler Geometrie, also mit Mengen, deren Dimension nicht ganzahllig ist. Einen intuitiven Zugang zum Konzept der Dimension bieten Skalierungseigenschaften. Ein einfaches Beispiel, wie das funktioniert, ist das folgende: Wenn man die Seiten eines Würfels halbiert, reduziert sich das Volumen auf ein Achtel (ein Halb hoch 3). Bei einem Quadrat führt die Halbierung der Seitenlänge zu einem Viertel (ein Halb hoch 2) des ursprünglichen Flächeninhalts und die Halbierung einer Strecke führt offenbar auf eine halb so lange Strecke (ein Halb hoch 1). Hier sieht man sehr schnell, dass die uns vertraute Dimension, nämlich 3 für den Würfel (und andere Körper), 2 für das Quadrat (und andere Flächen) und 1 für Strecken (und z.B. Kurven) in die Skalierung des zugehörigen Maßes als Potenz eingeht. Mengen, bei denen diese Potenz nicht ganzzahlig ist, ergeben sich recht ästhetisch und intuitiv, wenn man mit selbstähnlichen Konstruktionen arbeitet. Ein Beispiel ist der Sierpinski-Teppich. Er entsteht in einem iterativen Prozess des fortgesetzten Ausschneidens aus einem Quadrat, hat aber selbst den Flächeninhalt 0. Hier erkennt man durch die Konstruktion, dass die Skalierung ln 8/ln 3 ist, also kein ganzzahliger Wert sondern eine Zahl echt zwischen 1 und 2. Tatsächlich sind das Messen von Längen, Flächen und Volumina schon sehr alte und insofern klassische Probleme und auch die Defizite der beispielsweise in der Schule vermittelten Formeln beim Versuch, sie für Mengen wie den Sierpinski-Teppich anzuwenden, werden schon seit etwa 100 Jahren mit verschiedenen angepassten Maß- und Dimensionskonzepten behoben. Ein Dimensionsbegriff, der ganz ohne die Hilfe der Selbstähnlichkeit auskommt, wurde von Felix Hausdorff vorgeschlagen und heißt deshalb heute Hausdorff-Dimension. Hier werden Überdeckungen der zu untersuchenden Menge mit (volldimensionalen) Kugeln mit nach oben beschränktem (aber ansonsten beliebigem) Durchmesser angeschaut. Die Durchmesser der Kugeln werden zu einer Potenz s erhoben und aufsummiert. Man sucht unter allen Überdeckungen diejenigen, bei denen sich so die kleinste Durchmessersumme ergibt. Nun lässt man den maximal zulässigen Durchmesser immer kleiner werden. Die Hausdorff-Dimension ergibt sich als die kleinstmögliche Potenz s, für die diese minimalen Durchmessersummen gerade noch endlich bleiben. Ein verwandter aber nicht identischer Dimensionsbegriff ist die sogenannte Box-Dimension. Für hinreichend gutartige Mengen stimmen Hausdorff- und Box-Dimension überein, aber man kann zum Beispiel Cantormengen konstruieren, deren Dimensionen verschieden sind. Für die Box-Dimension kann der Fall eintreten, dass die Vereinigung abzählbar vieler Mengen der Dimension 0 zu einer Menge mit Dimension echt größer als 0 führt, was im Kontext von klassischen Dimensionen (und auch für die Hausdorff-Dimension) unmöglich ist und folglich eher als Hinweis zu werten ist, mit der Box-Dimension sehr vorsichtig zu arbeiten. Tatsächlich gibt es weitere Konzepte fraktale Dimensionen zu definieren. Interessant ist der Fakt, dass erst der Physiker und Mathematiker Benoit Mandelbrot seit Ende der 1960er Jahre eine intensivere Beschäftigung mit solchen Konzepten angestoßen hat. Er hatte in vielen physikalischen Phänomenen das Prinzip der Selbstähnlichkeit beobachtet - etwa dass sich Strukturen auf verschiedenen Größenskalen wiederholen. Wenn man z.B. ein Foto von einem Felsen macht und dazu keine Skala weiß, kann man nicht sagen, ob es sich um einen Stein, einen Ausschnitt aus einem mikroskopischen Bild oder um ein Kletterfelsen von 500m Höhe oder mehr handelt. Durch den Einzug von Computern an jedem Arbeitsplatz und später auch in jedem Haushalt (und den Kinderzimmern) wurde die Visualisierung solcher Mengen für jeden und jede sehr einfach möglich und führte zu einem regelrechten populärwissenschaftlichen Boom des Themas Fraktale. Schwierige offene Fragen im Kontext solcher fraktalen Mengen sind z.B., wie man Begriffe wie Oberflächeninhalt oder Krümmung sinnvoll auf fraktale Strukturen überträgt und dort nutzt, oder wie die Wärmeausbreitung und die elektrische Leitfähigkeit in solchen fraktalen Objekten beschrieben werden kann. Literatur und weiterführende Informationen B. Mandelbrot: Die fraktale Geometrie der Natur, Springer-Verlag, 2013. S. Winter: Curvature measures and fractals, Diss. Math. 453, 1-66, 2008. K. Falconer: Fractal geometry, mathematical foundations and applications, John Wiley & Sons, 2004. Podcasts P. Kraft: Julia Sets, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 119, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/julia-sets

Modellansatz - English episodes only
Banach-Tarski Paradox

Modellansatz - English episodes only

Play Episode Listen Later Jun 2, 2016 27:47


Nicolas Monod teaches at the École polytechnique fédérale in Lausanne and leads the Ergodic and Geometric Group Theory group there. In May 2016 he was invited to give the Gauß lecture of the German Mathematical Society (DMV) at the Technical University in Dresden. He presented 100 Jahre Zweisamkeit – The Banach-Tarski Paradox. The morning after his lecture we met to talk about paradoxes and hidden assumptions our mind makes in struggling with geometrical representations and measures. A very well-known game is Tangram. Here a square is divided into seven pieces (which all are polygons). These pieces can be rearranged by moving them around on the table, e.g.. The task for the player is to form given shapes using the seven pieces – like a cat etc.. Of course the Tangram cat looks more like a flat Origami-cat. But we could take the Tangram idea and use thousands or millions of little pieces to build a much more realistic cat with them – as with pixels on a screen. In three dimensions one can play a similar game with pieces of a cube. This could lead to a LEGO-like three-dimensional cat for example. In this traditional Tangram game, there is no fundamental difference between the versions in dimension two and three. But in 1914 it was shown that given a three-dimensional ball, there exists a decomposition of this ball into a finite number of subsets, which can then be rearranged to yield two identical copies of the original ball. This sounds like a magical trick – or more scientifically said – like a paradoxical situation. It is now known under the name Banach-Tarski paradox. In his lecture, Nicolas Monod dealt with the question: Why are we so surprised about this result and think of it as paradoxical? One reason is the fact that we think to know deeply what we understand as volume and expect it to be preserved under rearrangements (like in the Tangram game, e.g.).Then the impact of the Banach-Tarski paradox is similar for our understanding of volume to the shift in understanding the relation between time and space through Einstein's relativity theory (which is from about the same time). In short the answer is: In our every day concept of volume we trust in too many good properties of it. It was Felix Hausdorff who looked at the axioms which should be valid for any measure (such as volume). It should be independent of the point in space where we measure (or the coordinate system) and if we divide objects, it should add up properly. In our understanding there is a third hidden property: The concept "volume" must make sense for every subset of space we choose to measure. Unfortunately, it is a big problem to assign a volume to any given object and Hausdorff showed that all three properties cannot all be true at the same time in three space dimensions. Couriously, they can be satisfied in two dimensions but not in three. Of course, we would like to understand why there is such a big difference between two and three space dimensions, that the naive concept of volume breaks down by going over to the third dimension. To see that let us consider motions. Any motion can be decomposed into translations (i.e. gliding) and rotations around an arbitrarily chosen common center. In two dimensions the order in which one performs several rotations around the same center does not matter since one can freely interchange all rotations and obtains the same result. In three dimensions this is not possible – in general the outcomes after interchanging the order of several rotations will be different. This break of the symmetry ruins the good properties of the naive concept of volume. Serious consequences of the Banach-Tarski paradox are not that obvious. Noone really duplicated a ball in real life. But measure theory is the basis of the whole probability theory and its countless applications. There, we have to understand several counter-intuitive concepts to have the right understanding of probabilities and risk. More anecdotally, an idea of Bruno Augenstein is that in particle physics certain transformations are reminiscent of the Banach-Tarski phenomenon. Nicolas Monod really enjoys the beauty and the liberty of mathematics. One does not have to believe anything without a proof. In his opinion, mathematics is the language of natural sciences and he considers himself as a linguist of this language. This means in particular to have a closer look at our thought processes in order to investigate both the richness and the limitations of our models of the universe. References: F. Hausdorff: Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75 (3), 428–433, 1914. S. Banach and A.Tarski: Sur la décomposition des ensembles de points en parties respectivement congruentes, Fundamenta Mathematicae 6, 244–277, 1924. J. von Neumann: Zur allgemeinen Theorie des Maßes Fundamenta Mathematicae 13, 73–116, 1929. S. Wagon: The Banach–Tarski Paradox. Cambridge University Press, 1994. B.W. Augenstein: Links Between Physics and Set Theory, Chaos, Solitons and Fractals, 7 (11), 1761–1798, 1996. N. Monod: Groups of piecewise projective homeomorphisms, PNAS 110 (12), 4524-4527, 2013. Vsauce-Video on the Banach-Tarksi Paradox

Modellansatz
Banach-Tarski Paradox

Modellansatz

Play Episode Listen Later Jun 2, 2016 27:47


Nicolas Monod teaches at the École polytechnique fédérale in Lausanne and leads the Ergodic and Geometric Group Theory group there. In May 2016 he was invited to give the Gauß lecture of the German Mathematical Society (DMV) at the Technical University in Dresden. He presented 100 Jahre Zweisamkeit – The Banach-Tarski Paradox. The morning after his lecture we met to talk about paradoxes and hidden assumptions our mind makes in struggling with geometrical representations and measures. A very well-known game is Tangram. Here a square is divided into seven pieces (which all are polygons). These pieces can be rearranged by moving them around on the table, e.g.. The task for the player is to form given shapes using the seven pieces – like a cat etc.. Of course the Tangram cat looks more like a flat Origami-cat. But we could take the Tangram idea and use thousands or millions of little pieces to build a much more realistic cat with them – as with pixels on a screen. In three dimensions one can play a similar game with pieces of a cube. This could lead to a LEGO-like three-dimensional cat for example. In this traditional Tangram game, there is no fundamental difference between the versions in dimension two and three. But in 1914 it was shown that given a three-dimensional ball, there exists a decomposition of this ball into a finite number of subsets, which can then be rearranged to yield two identical copies of the original ball. This sounds like a magical trick – or more scientifically said – like a paradoxical situation. It is now known under the name Banach-Tarski paradox. In his lecture, Nicolas Monod dealt with the question: Why are we so surprised about this result and think of it as paradoxical? One reason is the fact that we think to know deeply what we understand as volume and expect it to be preserved under rearrangements (like in the Tangram game, e.g.).Then the impact of the Banach-Tarski paradox is similar for our understanding of volume to the shift in understanding the relation between time and space through Einstein's relativity theory (which is from about the same time). In short the answer is: In our every day concept of volume we trust in too many good properties of it. It was Felix Hausdorff who looked at the axioms which should be valid for any measure (such as volume). It should be independent of the point in space where we measure (or the coordinate system) and if we divide objects, it should add up properly. In our understanding there is a third hidden property: The concept "volume" must make sense for every subset of space we choose to measure. Unfortunately, it is a big problem to assign a volume to any given object and Hausdorff showed that all three properties cannot all be true at the same time in three space dimensions. Couriously, they can be satisfied in two dimensions but not in three. Of course, we would like to understand why there is such a big difference between two and three space dimensions, that the naive concept of volume breaks down by going over to the third dimension. To see that let us consider motions. Any motion can be decomposed into translations (i.e. gliding) and rotations around an arbitrarily chosen common center. In two dimensions the order in which one performs several rotations around the same center does not matter since one can freely interchange all rotations and obtains the same result. In three dimensions this is not possible – in general the outcomes after interchanging the order of several rotations will be different. This break of the symmetry ruins the good properties of the naive concept of volume. Serious consequences of the Banach-Tarski paradox are not that obvious. Noone really duplicated a ball in real life. But measure theory is the basis of the whole probability theory and its countless applications. There, we have to understand several counter-intuitive concepts to have the right understanding of probabilities and risk. More anecdotally, an idea of Bruno Augenstein is that in particle physics certain transformations are reminiscent of the Banach-Tarski phenomenon. Nicolas Monod really enjoys the beauty and the liberty of mathematics. One does not have to believe anything without a proof. In his opinion, mathematics is the language of natural sciences and he considers himself as a linguist of this language. This means in particular to have a closer look at our thought processes in order to investigate both the richness and the limitations of our models of the universe. References: F. Hausdorff: Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75 (3), 428–433, 1914. S. Banach and A.Tarski: Sur la décomposition des ensembles de points en parties respectivement congruentes, Fundamenta Mathematicae 6, 244–277, 1924. J. von Neumann: Zur allgemeinen Theorie des Maßes Fundamenta Mathematicae 13, 73–116, 1929. S. Wagon: The Banach–Tarski Paradox. Cambridge University Press, 1994. B.W. Augenstein: Links Between Physics and Set Theory, Chaos, Solitons and Fractals, 7 (11), 1761–1798, 1996. N. Monod: Groups of piecewise projective homeomorphisms, PNAS 110 (12), 4524-4527, 2013. Vsauce-Video on the Banach-Tarksi Paradox

Mathematical, Foundational and Computational Aspects of the Higher Infinite
101 Years of Modern Set Theory: Felix Hausdorff's "Foundations of Set Theory"

Mathematical, Foundational and Computational Aspects of the Higher Infinite

Play Episode Listen Later Aug 25, 2015 58:34


Koepke, P (Universität Bonn) Monday 24 August 2015, 10:00-11:00