POPULARITY
Michael Köhl und Sebastian Diehl forschen an den Grundlagen quantenmechanischer Phänomene. Am Exzellenzcluster ML4Q bringen sie ihre Expertise in experimenteller bzw. theoretischer Physik zusammen, um Netzwerkarchitekturen für Quantencomputer zu schaffen. Es gilt viele Probleme zu lösen – zum Beispiel auch die Frage, wie Quantencomputer miteinander vernetzt werden können, obwohl die Quantenzustände, die sie zum Funktionieren benötigen, schwer stabil zu halten sind. Die Experten Prof. Michael Köhl leitet die Arbeitsgruppe Experimentelle Quantenphysik an der Universität Bonn. Seine Forschung befasst sich mit der Untersuchung ultrakalter Atome und gefangener Ionen zum Zweck der Quanteninformationsverarbeitung und Quantensimulation. Köhl hat während seiner Diplom- und Doktorarbeit in den Arbeitsgruppen der Nobelpreisträger Wolfgang Ketterle (MIT) und Theodor Hänsch (MPI Garching) gearbeitet. Nach Forschungsaufenthalten in der Schweiz (ETH Zürich) und Großbritannien (University of Cambridge) kehrte er als Alexander-von-Humboldt Professor an die Universität Bonn nach Deutschland zurück, wo er seit 2013 einen herausragenden Forschungsschwerpunkt an der Schnittstelle von Quantenoptik und kondensierter Materie entwickelt. https://www.quantum.uni-bonn.de/ Prof. Sebastian Diehl leitet seine Arbeitsgruppe am Institut für Theoretische Physik an der Universität zu Köln. Im Rahmen der Exzellenzinitiative erhielt Diehl 2015 den Ruf an die Uni Köln, um an der Schnittstelle zwischen der Quantenoptik und der Vielteilchenphysik zu forschen. Ein wichtiges Ziel seiner Forschung ist es, neue makroskopische Phänomene aufzudecken, die quantenmechanische Vielteilchensysteme reflektieren. Dazu entwickelt er theoretische Werkzeuge, um solche Quantensysteme effizient beschreiben zu können. Gleichzeitig arbeitet seine Arbeitsgruppe daran, experimentelle Plattformen zu identifizieren, in denen die theoretischen Voraussagen getestet werden können. https://www.thp.uni-koeln.de/diehl/index.html Der Cluster Quantencomputer versprechen Rechenleistungen jenseits derer aller klassischen Computer, z.B. für Materialforschung, Pharmazeutik oder künstliche Intelligenz. Ziel von ML4Q ist es, neue Computer- und Netzwerkarchitekturen zu schaffen, die auf den Prinzipien der Quantenmechanik beruhen. ML4Q steht für Materie und Licht für Quanteninformation und bündelt die einzigartige Expertise der beteiligten Partner in drei Schlüsseldisziplinen der Physik – Festkörperforschung, Quantenoptik und Quanteninformation – um die beste Hardware-Plattform für Quanteninformations-Technologie und Blaupausen für ein funktionales Quanteninformations-Netzwerk zu schaffen. Mehr Infos in ML4Q in Kürze! https://ml4q.de Der Podcast 57 Exzellenzcluster, 1 Podcast. Regelmäßig berichtet „Exzellent erklärt“ aus einem der Forschungsverbünde, die im Rahmen der Exzellenzstrategie des Bundes und der Länder gefördert wird. Die Reise geht quer durch die Republik, genauso vielfältig wie die Standorte sind die Themen: Von A wie Afrikastudien bis Z wie Zukunft der Medizin. Seid bei der nächsten Folge wieder dabei und taucht ein in die spannende Welt der Spitzenforschung! Wenn Euch der Podcast gefallen hat, abonniert „Exzellent erklärt“ bei dem Podcast-Anbieter Eurer Wahl. Ihr habt noch Fragen? Hinterlasst uns einen Kommentar oder schreibt uns an info@exzellent-erklaert.de
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
In den letzten Jahren haben sich atomare Quantengase in optischen Gittern zu einem faszinierenden und interdisziplinär bedeutsamen Forschungsfeld entwickelt. Die in den periodischen Potentialen gefangenen ultrakalten Atome stellen ein ideales Modellsystem dar, anhand dessen sich grundlegende Fragestellungen der modernen Festkörper- und Vielteilchenphysik untersuchen lassen. In der vorliegenden Arbeit werden neue Methoden zur Manipulation und Analyse von Quantenzuständen in optischen Gittern demonstriert. Insbesondere wird mittels der sogenannten Rauschkorrelationsanalyse die Ordnung der Atome im Gitter bestimmt und erstmals fermionisches Antibunching an freien neutralen Atomen nachgewiesen. Grundlage für die vorgestellten Experimente ist eine im Rahmen dieser Arbeit neu entwickelte Apparatur, mit der sich simultan entartete bosonische und fermionische Quantengase aus 87-Rubidium und 40-Kalium präparieren und in einem dreidimensionalen optischen Gitter untersuchen lassen. Die Apparatur zeichnet sich durch eine Serie technischer Innovationen aus: Eine neuartige Spulen- und Fallenkonfiguration eröffnet einen hervorragenden optischen Zugang zu den präparierten Ensemblen und ermöglicht es, starke homogene Magnetfelder bei einer geringen dissipierten Leistung zu erzeugen. Dies sind wichtige Voraussetzungen, um definierte Gitterpotentiale verwirklichen und die interatomaren Wechselwirkungen mittels Feshbach-Resonanzen beeinflussen zu können. Das optische Potential geht aus der Überlagerung einer gekreuzten Dipolfalle und eines blauverstimmten dreidimensionalen Gitters hervor. Eine solche Kombination erlaubt es, sehr tiefe und relativ homogene Gitterpotentiale zu erzeugen sowie den externen Einschluss unabhängig von der Gittertiefe zu variieren. Des Weiteren lassen sich über eine frei einstellbare Wellenlänge speziesabhängige Gitter realisieren. Die Vereinigung der hier aufgeführten Technologien liefert uns eine außergewöhnlich flexible Plattform für das Studium maßgeschneiderter Quantenzustände in periodischen Potentialen. Durch den unabhängigen externen Einschluss kann erstmals ein Fermigas allein über dessen Kompression zwischen einem metallischen und einem isolierenden Zustand hin- und hergeschaltet und – in ersten Ansätzen – die entsprechende Dynamik beobachtet werden. Die Ergebnisse werden mit numerischen Simulationen verglichen. Neben der Durchführung von Transportmessungen lässt sich hieraus ein neues Diagnoseverfahren ableiten, das es ermöglicht, Quantenphasen, wie den bosonischen oder fermionischen Mott-Isolator, anhand der charakteristischen Kompressibilität zu identifizieren. Als weiteres Diagnoseverfahren wird die Korrelationsanalyse von Flugzeitaufnahmen vorgestellt. Durch die Auswertung von Hanbury Brown und Twiss (HBT)-Korrelationen im Quantenrauschen der expandierenden Atomwolken lässt sich die mikroskopische Ordnung der Atome im Gitter nachweisen. Ausgangspunkt für die Messungen sind jeweils vollständig spinpolarisierte bosonische Mott-Isolatoren und fermionische Bandisolatoren. Trotz identischer Dichteverteilungen innerhalb des Gitters, weisen die Korrelationen von Bosonen und Fermionen entgegengesetzte Vorzeichen auf. Mit diesen Messungen gelingt es erstmals, fermionisches Antibunching an freien neutralen Atomen zu beobachten und innerhalb einer selben Apparatur mit dem bosonischen Bunching zu vergleichen. Neben dem Nachweis dieses fundamentalen Quanteneffektes lässt sich die Ordnung und die Temperatur der Fermionen im Gitter bis hinauf zur Fermi-Temperatur bestimmen. Damit erweist sich die Korrelationsanalyse als ein robustes Verfahren, mit dem sich in Zukunft noch weitaus komplexere Quantenphasen in optischen Gittern untersuchen lassen.