Podcasts about etioplasten

  • 2PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Nov 25, 2008LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about etioplasten

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Analyse membranständiger Subproteome aus Etioplasten und Chloroplasten der Gerste (Hordeum vulgare L.)

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Nov 25, 2008


Etioplasten sind hochspezialisierte pflanzliche Organelle der Plastidenfamilie, die während der Skotomorphogenese von Pflanzen gebildet werden. Die Morphologie der Etioplasten unterscheidet sich grundlegend von Chloroplasten, die während der Photomorphogenese gebildet werden. Durch Belichtung von Pflanzen, die im Dunkeln angezogen worden sind, kommt es zur Induktion der Transformation von Etioplasten zu Chloroplasten. Die unmittelbar vor Induktion des biologischen Systems bestehende Zusammensetzung der Proteine und Proteinkomplexe des Etioplasten ist allerdings bislang kaum untersucht worden. Im Rahmen dieser Arbeit erfolgten mehrere spezifische Analysen von plastidären Subproteomen. Ausgewählte Subproteome der inneren Membranen von Etioplasten der Gerste wurden im Vergleich zum Proteom der Thylakoidmembran von Chloroplasten analysiert. Durch die Kombination verschiedener gelelektrophoretischer Trennmethoden für Einzelproteine und Proteinkomplexe mit massenspektrometrischen Analysemethoden gelangen sensitivste Nachweise niedrig konzentrierter Untereinheiten von Membranproteinkomplexen. Darüber hinaus gelangen der Nachweis niedermolekularer membranintegraler Proteine und die spezifische Charakterisierung von Einzelproteinen. Im ersten Teil der Arbeit wurden die N-Termini von NADPH:Protochlorophyllid-Oxidoreduktase (POR) A und B durch ein LC-MS basiertes Verfahren bestimmt. Es erfolgte die Entwicklung einer Methode zur selektiven Isolation N-terminaler Peptide mittels Höchstdruckflüssigkeitschromatographie (UPLC). Dazu wurden zwei chemische Reaktionsschritte auf Protein- und Peptidebene durchgeführt, wodurch das N-terminale Peptid nach einem tryptischen Verdau ausschließlich acetyliert vorlag und interne Peptide durch eine weitere Modifikation mit 2,4,6-Trinitrobenzolsulfonsäure abgetrennt wurden. Dadurch konnte gezeigt werden, dass die N-Termini von PORA und PORB homolog zueinander sind und eine vergleichbare Erkennungssequenz für die prozessierende(n) Protease(n) vorliegt. Das Transitpeptid von PORA ist somit deutlich kürzer, als bislang vermutet, wodurch neue Rückschlüsse bezüglich einer möglichen Bindestelle von Protochlorophyllid gezogen werden konnten, da eine von Reinbothe et al. 2008 beschriebene Bindestelle nicht im Bereich des Transitpeptids, sondern in Bereich der maturen PORA liegt. Bei PORB konnten neben einem dominierenden N-terminalen Peptid zwei weitere um jeweils ein Alanin verkürzte N-terminale Peptide mit geringerer Signalintensität nachgewiesen werden. Dies deutet auf eine unpräzise N-terminale Prozessierung hin. Im zweiten Teil der Arbeit gelang die bislang umfassendste massenspektrometrische Charakterisierung des NAD(P)H-Dehydrogenase-Komplexes aus einer C3-Pflanze. In Etioplasten konnten sechs plastidär kodierte und mindestens fünf kernkodierte Untereinheiten des NDH-Komplexes identifiziert werden. Dies gelang durch die Isolation des Komplexes mittels nativer PAGE als 1. Dimension und die anschließende Aufkonzentrierung der Untereinheiten in einer SDS-PAGE als konzentrierende 2. Dimension. Dadurch konnte gezeigt werden, dass der NDH-Komplex bereits in Etioplasten neben dem membranintegralen Subkomplex aus mindestens zwei löslichen Subkomplexen aufgebaut ist. Aufgrund dieser umfangreichen Assemblierung ist eine physiologische Funktion wahrscheinlich und erste Versuche zur NAD(P)H-Dehydrogenase Aktivität lieferten Hinweise auf eine mögliche enzymatische Aktivität. Im dritten Teil der Arbeit gelang in Etioplasten erstmals der Nachweis aller bekannten membranintegralen, niedermolekularen Untereinheiten von Photosystem II, nicht aber von Photosystem I. Die Untereinheiten von PSI konnten ausschließlich in Chloroplasten nachgewiesen werden. Von PSII konnten 13 niedermolekulare Untereinheiten mit jeweils einer Transmembrandomäne nachgewiesen werden. Diese Untereinheiten konnten im Gegensatz zu Chloroplasten nicht in höhermolekularen Komplexen, sondern ausschließlich nahe der Lauffront einer BN-PAGE im Bereich der freien Proteine nachgewiesen werden. Der Nachweis von PsbN war ausschließlich in Etioplasten möglich. Aus diesen Ergebnissen wurde geschlossen, dass ausschließlich nicht-chlorophyllbindende Untereinheiten von PSII in Etioplasten akkumuliert werden und die Anreicherung von chlorophyllbindenden Untereinheiten von PSI und PSII von der Anwesenheit von Chlorophyll abhängt. Darüber hinaus konnten die vier niedermolekularen, membranintegralen Untereinheiten des Cytochrom b6f-Komplexes in Etioplasten und in Chloroplasten sowohl in der monomeren, als auch dimeren Assemblierungsstufe nachgewiesen werden. Ermöglicht wurden diese Nachweise durch eine neu entwickelte Methode zur Extraktion von Proteinen aus einem Polyacrylamid-Gel mit organischen Lösungsmitteln und der anschließenden massenspektrometrischen Charakterisierung mittels offline ESI-MS.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Biogenese photosynthetischer Elektronentransport-Komplexe in Plastiden der Gerste(Hordeum vulgare L.)

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Jun 12, 2008


Die Synthese von Chlorophyll ist in Angiospermen ein streng lichtabhängiger Prozess. Keimlinge, welche im Dunkeln angezogen werden, bilden anstelle der (grünen) Chloroplasten (gelb-orange) Etioplasten. In diesen ist die Thylakoidmembran durch den parakristallinen Prolamellarkörper und einige Prothylakoidmembranen ersetzt. Auf Ebene der Proteine kann zwar bereits im Dunkeln die Translation aller plastidencodierten Chlorophyll-bindenden Proteine nachgewiesen werden, allerdings werden diese mit Ausnahme des D2-Proteins in Abwesenheit von Chlorophyll sofort wieder degradiert. Mit der Belichtung von etioliertem Gewebe setzen der Abbau des Prolamellarkörpers und die Bildung der Thylakoidmembranen ein. Diese Umstrukturierung des inneren Membransystems geht mit der Akkumulation und der Assemblierung der chlorophyll-bindenden Photosystemkomplexe einher. Der genaue Ablauf der de novo Assemblierung der Chlorophyll-bindenden Proteinkomplexe ist bisher nicht vollständig geklärt. Daher wurde in der vorliegenden Arbeit die Biogenese von Pigment-bindenden Proteinkomplexen der Plastidenmembran während der Ergrünung untersucht. Dabei dienten im Dunkeln angezogene Keimlinge bzw. die daraus isolierten Etioplasten und deren Membranproteinkomplexe als Startpunkt. Zur Identifikation und Charakterisierung der Pigment-bindenden Komplexe wurden verschiedene Methoden (differentielle Gelelektrophorese für Membranproteine, farblose native Polyacrylamidelektrophorese in Kombination mit Absorptionsspektroskopie) weiterentwickelt. Durch die Kombination aller Techniken konnten verschiedene Aussagen zur Situation im Etioplasten und zum Ablauf der de novo Assemblierung während der Ergrünung getroffen werden. Der ATP-Synthase- und der Cytochrom b6f-Komplex liegen bereits im Etioplasten in der aus dem Chloroplasten bekannten hochmolekularen Assemblierungsstufe vor, wobei im dimeren Cytochrom b6f-Komplex im Etioplasten Protochlorophyll a anstelle von Chlorophyll a nachgewiesen werden kann. Somit ist der Cytochrom b6f-Komplex der einzige Chlorophyll-bindende Komplex, der bereits in der Abwesenheit von Chlorophyll unter Ersatz des Chlorophylls durch ein Chlorophyllderivat akkumulieren kann. Unmittelbar nach der Initiation der Chlorophyllbiosynthese ist der Großteil des de novo synthetisierten Chlorophylls in der Membran nicht mit Photosystemkomplexen assoziiert, sondern transient mit dem membranintegralen Lil (Light harvesting like) 3-Protein. Die Identifikation des Lil 3-Proteins als Chlorophyll-bindendes Protein weist erstmals auf eine mögliche Funktion dieses Proteins als temporärer Chlorophyllspeicher hin. Nach einer Stunde Belichtung können sowohl Photosystem I wie auch Photosystem II-Komplexe nachgewiesen werden, wohingegen erste LHC- Komplexe nach zweistündiger Belichtung zu detektieren sind. Während des Assemblierungsvorganges können für beide Photosysteme mehrere Assemblierungsintermediate nachgewiesen werden. Nach vierstündiger Belichtung hat die Assemblierung aller Thylakoidmembrankomplexe die komplexeste Assemblierungsstufe erreicht, welche aus dem Chloroplasten bekannt ist. Daher kann nach einer Belichtungszeit von vier Stunden die Biogenese der vier an der Lichtreaktion beteiligten Thylakoidmembrankomplexe von proteinbiochemischer Seite als abgeschlossen betrachtet werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

1. Es wurde eine Methode entwickelt, die POR nach der Solubilisierung aus Etioplasten chromatographisch zur Homogenität zu reinigen. Die spezifische Aktivität konnte gegenüber der POR in Etioplasten annähernd um das 14-fache gesteigert werden. Dabei wurden alle endogenen Pigmente und Lipide abgetrennt. So konnte erstmals überzeugend mit isolierter POR aus Pflanzen gezeigt werden, daß eine Bindung an das Substrat oder das Vorhandensein einer Membranumgebung keine Voraussetzung für den Erhalt der Aktivität darstellt. 2. Mittels detaillierter Pigment- und Proteinanalysen, inklusive densitometrischer Verfahren, konnte nachgewiesen werden, daß in Etioplasten ein Molekül Pchlide a an ein Molekül POR gebunden ist. 3. Substratspezifitätsstudien mit Substratanalogen zu Pchlide a zeigten, daß strukturelle Veränderungen an den Seitenketten des Porphyrinringes A und B, nicht aber Modifikationen am Ring D oder am isozyklischen Ring E, von der POR akzeptiert werden und zu photokonvertierbaren Substraten führen. Die Ergebnisse dieser Versuche lieferten ein neues Modell zu dem Mechanismus der Katalyse. Demzufolge sind die Ringe D und E am Boden der Enzymtasche fixiert und eine Enolatbildung an der Carbonylgruppe des Ringes E an der die Reaktion beteiligt. Die Ringe A und B liegen mehr oder weniger außerhalb der Enzymtasche. Erstmals konnte die Photokonvertierbarkeit von Pchlide b, Zn-[3-acetyl]-Protopheide a und Zn-[3-formyl]-Protopheide a gezeigt werden. 4. Kinetische Untersuchungen mit den Substratanalogen stellten die Auswirkungen der verschiedenen Seitenkettenmodifikationen auf die Reaktionsgeschwindigkeit heraus. Die Pigmente ließen sich in drei Gruppen mit einer „schnellen“ (z. B. Pchlide a), einer „mittelschnellen“ (z. B. [8-Vinyl]-Pchlide a) und einer „langsamen“ (z. B. Zn-71-OH-Protopheide a) Reaktionsgeschwindigkeit einteilen. Ein komplementärer Zusammenhang zwischen Fluoreszenz- und Photoreaktion-Quantenausbeute konnte nicht festgestellt werden. 5. Über die Bestimmung der KM-Werte für Pchlide a und Pchlide b (0,47 µM, respektive 0,63 µM) wurde demonstriert daß die Affinität beider Pigmente zu der PORA aus Hafer annähernd gleich groß ist. Chlorophyll c1 konnte als kompetetiver Hemmstoff für die POR identifiziert werden. 6. Bei der Photoreduktion tritt Substrathemmung auf. Dies konnte bei einem Überschuß an Pchlide a oder Pchlide b gegenüber der POR (> 1 mol Substrat/1 mol POR) gezeigt werden. 7. An solubilisierten Etioplastenmembranen und an solubilisierter, weitgehend aufgereinigter POR konnten die unterschiedlichen spektralen in vivo-Formen des photoaktiven endogenen Pchlide a dargestellt werden. Die nach der Photoreduktion auftretende spektrale Verschiebung des Chlide a (von A680 nm nach A672 nm), die mit dem in vivo auftretenden Shibata-Shift vergleichbar ist, konnte in diesen Proben gezeigt werden. Die in der Literatur postulierte Ursache des Shibata-Shift`s, eine Freisetzung des Chlide a aus den ternären Komplexen (POR-NADPH-Chlide a), kann anhand der hier erzielten Ergebnisse bestätigt werden. 8. Es wurde eine Methode entwickelt, mit deren Hilfe an solubilisierter und zur Homogenität gereinigter POR erstmals der Einfluß von Lipiden auf den spektralen Verlauf der Photoreduktion gezeigt werden kann. Nach der Dialyse einer Mischung von Einzelkomponenten (gereinigte POR, NADPH, MGDG/DGDG/Zn-Protopheide a-Gemisch) gegen 80 % Glycerin konnte die Photoumwandlung langwellig-absorbierender ternärer Komplexe, sowie die mit dem Shibata-Shift vergleichbare Verschiebung des Produktes in vitro dargestellt werden. 9. Die Ergebnisse dieser Rekonstitutionsversuche weisen darauf hin, daß in vivo die Einbettung der ternären Komplexe in die spezielle Lipidumgebung der Prolamellarkörper für die Bildung von unterschiedlich absorbierenden spektralen Formen des photoaktiven Pchlide a verantwortlich sind.