POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Die autosomal dominante Optikusatrophie ist mit Mutationen in dem Gen OPA1 assoziiert. OPA1 kodiert eine konservierte mitochondriale Dynamin-ähnliche GTPase. Das Ortholog von OPA1 in S. cerevisiae ist Mgm1. Mgm1 liegt im Intermembranraum der Mitochondrien assoziiert mit der Innenmembran in zwei Proteinisoformen vor: der langen (l-Mgm1) und der kurzen Isoform (s-Mgm1). Beide Isoformen sind für den Erhalt der mitochondrialen Morphologie und der mitochondrialen DNA erforderlich. l-Mgm1 wird von der mitochondrialen Rhomboidprotease Pcp1 durch limitierte N-terminale Proteolyse in s-Mgm1 umgesetzt. OPA1 ist ebenfalls für den Erhalt normaler mitochondrialer Morphologie in Säugetierzellen erforderlich. Zusätzlich reguliert es die Freisetzung von Cytochrom c während der Apoptose. Insgesamt acht Transkriptionsvarianten von OPA1 sind bekannt, die durch alternatives Spleißen der N-terminal gelegenen Exons 4, 4b und 5b entstehen. Auf Proteinebene ließen sich bis zu fünf OPA1-Proteinisoformen unterschiedlicher Größe voneinander abgrenzen. Die Proteinisoformen liegen zum einen Teil membranverankert in der Innenmembran und zum anderen Teil peripher mit der Innenmembran assoziiert im Intermembranraum der Mitochondrien vor. Die vorliegende Dissertation beschäftigt sich mit der Biogenese der verschiedenen OPA1-Proteinisoformen. Hierzu wurden OPA1-Transkriptionsvarianten in Hefe heterolog exprimiert. OPA1 wird in Hefe ähnlich wie in Säugetierzellen prozessiert. Die Prozessierung erfolgt N-terminal, an mehreren Stellen und schrittweise. Die menschliche mitochondriale Rhomboidprotease PARL kann Pcp1 in der Hefe voll komplementieren, aber weder Pcp1 noch PARL prozessieren OPA1. In PARL-/--Mauszellen wird OPA1 normal prozessiert. In der Hefe ist die Prozessierung von OPA1 von den Untereinheiten Yta10 und Yta12 der mitochondrialen AAA-Protease der Matrix (m-AAA-Protease) abhängig. Durch Expression der Untereinheiten der menschlichen m-AAA-Protease, Paraplegin und AFG3L2, lässt sich die Prozessierung von OPA1 in yta10yta12 rekonstituieren. Die Ergebnisse deuten darauf hin, dass die Biogenese von Mgm1/OPA1 nicht vollständig von der Hefe bis zu Säugetieren konserviert ist. Der Austausch der prozessierenden Protease könnte in Verbindung mit einem Mechanismus zur Qualitätssicherung der Mitochondrien in Metazoa stehen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Einfluss der F1FO-ATP Synthase-Oligomerisierung auf den bioener-getischen Zustand von Mitochondrien Eine wichtige Funktion der Mitochondrien besteht in der Bereitstellung von ATP, dessen Synthese durch die OXPHOS-Komplexe der Innenmembran bewerkstelligt wird. Zusätzlich besitzt die F1FO-ATP Synthase eine strukturgebende Aufgabe. Dazu bildet diese Oligomere aus, die für die Ausbildung von Cristaestrukturen essentiell sind. Insbesondere die oligomer-spezifischen Untereinheiten Su e und Su g sind dafür, nicht jedoch für die enzymatische Aktivität der F1FO-ATP Synthase, notwendig. Der Einfluss der F1FO-ATP Synthase Assemblierung auf den bioenergetischen Zustand von Mitochondrien wurde in dieser Arbeit untersucht. Teildeletionen der C-terminalen ‚coiled-coil’-Domänen von Su e weisen eine verringerte Stabilität der Oligomere auf. Diese Destabilisierung geht mit einer Reduktion des mitochondrialen Membranpotentials und der Wachstumsrate einher, ist jedoch für die Ausbildung von Cristaestrukturen hinreichend. Des Weiteren sind die enzymatischen Aktivitäten der Atmungskettenkomplexe, die Integrität der Innenmembran sowie die Verlustrate der mtDNA in diesen Mutanten nicht beeinträchtigt. Der beobachtete Phänotyp ist daher nicht auf Sekundäreffekte zurückzuführen. Diese Arbeit unterstützt ein Modell, nach dem die Assemblierung der F1FO-ATP Synthase zu Oligomeren für die räumliche Anordnung auch von anderen Proteinkomplexen in Form von Mikrodomänen für einen effizienten Substratumsatz während der oxidativen Phosphorylierung oder für deren Regulation notwendig ist. Somit hat die Stabilität der F1FO-ATP Synthase-Oligomere einen Einfluss auf die bioenergetische Leistungsfähigkeit von Mitochondrien. Charakterisierung der mitochondrialen Rhomboidprotease Pcp1 Das Dynamin-ähnliche mitochondriale Protein Mgm1 kommt in zwei Isoformen vor, die möglicherweise an der Ausbildung von Cristaestrukturen beteiligt sind. Die kurze Isoform, s-Mgm1, entsteht in Abhängigkeit von der hochkonservierten Intramembran-Rhomboidprotease Pcp1. Zur genaueren Aufklärung dieser Prozessierung wurde die Topologie und Biogenese von Pcp1 ermittelt. Pcp1 durchspannt die mitochondriale Innenmembran mit sieben Transmembrandomänen und besitzt eine Nin-Cout-Topologie. Untersuchungen zum Import von Pcp1 zeigen, dass dessen Import in die innere Membran von der TIM23-Translokase vermittelt und die mitochondriale Signalsequenz schrittweise durch die zwei Proteasen MPP und MIP entfernt wird. Außerdem wird möglicherweise die C-terminale Transmembrandomäne von Pcp1, entsprechend einem ‚Stop-Transfer’-Mechanismus, in der TIM23-Translokase arretiert und anschließend lateral in die Innenmembran inseriert. Alternativ wird Pcp1 zunächst vollständig in die Matrix importiert und anschließend über den konservativen Sortierungsweg in die Innenmembran inseriert. Die bisherigen Ergebnisse lassen eine Unterscheidung zwischen diesen beiden Möglichkeiten nicht zu. Aufgrund von Sequenzvergleichen verschiedener Rhomboidproteasen wurden wie in anderen Serinproteasen drei konservierte Aminosäurereste als mögliche katalytische Triade postuliert. Um dies zu untersuchen, wurden diese Aminosäurereste jeweils gegen Alanin ausgetauscht. Zwei dieser Punktmutationen, in Serin-256 oder Histidin-313, führen zur vollständigen Inaktivierung von Pcp1, während die Aminosäure Asparagin-202 für die Aktivität nur partiell notwendig ist. Insgesamt zeigen diese Ergebnisse, dass die mitochondriale Rhomboidprotease Pcp1 mit einer katalytischen Diade eine besondere Stellung unter den Serinproteasen einnimmt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In S. cerevisiae bilden Mitochondrien ein tubuläres Netzwerk, für dessen Erhaltung ein Gleichgewicht aus Fusions- und Teilungsprozessen notwendig ist. Mgm1 ist ein Dynamin-ähnliches Protein in Mitochondrien, das an der mitochondrialen Fusion beteiligt ist. Es kommt in einer großen Isoform (l-Mgm1) von 97 kD und einer kleinen Isoform (s-Mgm1) von 84 kD vor. In der vorliegenden Arbeit sollte die Biogenese dieser beiden Isoformen und ihre Rolle in der Erhaltung der mitochondrialen Morphologie und der mitochondrialen DNA geklärt werden. Beide Isoformen konnten im Intermembranraum von Mitochondrien lokalisiert werden. Durch Immunpräzipitation und N-terminale Sequenzierung wurden die N-Termini beider Isoformen identifiziert. l-Mgm1 besitzt an seinem N-Terminus ein hydrophobes Segment. Mit diesem Segment ist es in der inneren mitochondrialen Membran verankert. s-Mgm1, dem dieses Segment fehlt, ist peripher membranassoziiert. Die Rhomboid-ähnliche Protease Pcp1 in der mitochondrialen Innenmembran ist für die Prozessierung von Mgm1 zu s-Mgm1 verantwortlich. Die Deletion von PCP1 führt zur Fragmentierung und Aggregation der Mitochondrien und zum Verlust der Respirationskompetenz und der mitochondrialen DNA. Dieser Phänotyp ist von dem der Deletion von MGM1 nicht zu unterscheiden. Der Phänotyp der Deletion von PCP1 ist eine direkte Konsequenz der fehlenden Mgm1–Prozessierung und des Fehlens von s-Mgm1. Darüber hinaus ist die Bildung beider Isoformen in ungefähr gleicher Menge für die volle Funktionalität von Mgm1 erforderlich. Für die koordinierte Bildung beider Isoformen ist eine konservierte Abfolge von zwei hydrophoben Segmenten am N-Terminus von Mgm1 erforderlich. Das weiter C-terminal gelegene hydrophobe Segment enthält die Spaltstelle für Pcp1. Die Hydrophobizität des N-terminalen Segments determiniert hingegen das Mengenverhältnis beider Isoformen. Dabei führt verringerte Hydrophobizität zur vermehrten Bildung von s-Mgm1, während erhöhte Hydrophobizität die Bildung von s-Mgm1 fast vollständig verhindert. Die intermediäre Hydrophobizität der Wildtyp-Sequenz ist kritisch für die koordinierte Bildung beider Isoformen im Verhältnis von ungefähr 1:1. Die Bildung von s-Mgm1 hängt weiterhin von einem funktionalen Importmotor und einer hinreichend hohen ATP–Konzentration in der mitochondrialen Matrix ab. l-Mgm1 kann dagegen ATP-unabhängig und unabhängig vom Importmotor gebildet werden. Diese Daten führten zum Modell der alternativen Topogenese von Mgm1. Demnach dient das erste hydrophobe Segment als Stopp-Transfer-Signal im TIM17/TIM23-Translokationskomplex. Laterale Insertion dieses Segments in die mitochondriale Innenmembran führt zur Bildung von l-Mgm1. Die Überwindung dieses Translokationsarrests führt zum weiteren Import bis das zweite hydrophobe Segment mit der Spaltstelle die Innenmembran erreicht. Dort entsteht durch Pcp1-Spaltung s-Mgm1. Der weitere Import und damit die Pcp1-Prozessierung sind abhängig von ATP und einem funktionalen Importmotor. Die Bildung von l-Mgm1 und s-Mgm1 sind kompetierende Prozesse. Störungen in diesem kompetitiven Gleichgewicht (veränderte Hydrophobizität des ersten hydrophoben Segments, nicht funktionaler Importmotor, niedrige ATP–Konzentration in der Matrix) führen zu Verschiebungen im Verhältnis beider Mgm1-Isoformen und zur Fragmentierung und Aggregation der Mitochondrien. Daher stellt der Mechanismus der alternativen Topogenese eine Möglichkeit dar, wie der bioenergetische Zustand der Mitochondrien auf molekularer Ebene an die mitochondriale Struktur gekoppelt sein könnte. Auf diese Weise könnte in Mitochondrien, deren bioenergetischer Status z.B. aufgrund von Mutationen in der mitochondrialen DNA, wie sie durch oxidativen Stress entstehen, gestört ist, die Bildung von s-Mgm1 verringert sein. Möglicherweise führt das dazu, dass die betroffenen Mitochondrien nicht mehr effizient fusionieren und so aus dem mitochondrialen Netzwerk ausgeschlossen werden. Der Mechanismus der alternativen Topogenese würde in diesem Fall gegen geschädigte mitochondriale DNA selektionieren und so deren Vererbung unterbinden.