Podcasts about hydrophobizit

  • 6PODCASTS
  • 6EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 10, 2008LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about hydrophobizit

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Entwicklung neuer Methoden zur massenspektrometrischen Charakterisierung von Membranproteinen

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06

Play Episode Listen Later Apr 10, 2008


Etwa 30% aller Gene codieren für Membranproteine (MP). Trotz ihrer hohen Relevanz, speziell im medizinischen Bereich, stellt die Analyse von MP aufgrund ihrer physikalisch-chemischen Eigenschaften ein häufiges Problem in der Proteinbiochemie dar. Diese Arbeit soll eine Einsicht in die Problematik geben sowie Lösungsansätze aufzeigen, um den Umgang mit diesen Polypeptiden zu vereinfachen. Ein geeignetes Modellsystem zum Studium der Eigenschaften membranintegraler Proteine und Peptide sowie zur Verbesserung der bestehenden Analysemethoden stellte die Thylakoidmembran der Plastide dar. Um das funktionelle Proteom der Thylakoidmembran zu definieren, wurden die Proteinkomplexe der Thylakoidmembran von Gerste (Hordeum vulgare) über hochauflösende 2D-Blue Native /SDS-Polyacrylamidgelelektrophorese (PAGE) getrennt. Das Gelsystem erlaubte die Isolation der photosynthetisch aktiven Proteinkomplexe PSI/LHCI, PSII, LHCII, Cytochrom b6/f und ATPase in unterschiedlichen Assemblierungszuständen. Im Fokus der Untersuchungen stand die Charakterisierung der isolierten Subkomplexe von PSII. Die Identifikation der Komplexuntereinheiten erfolgte nach enzymatischem In-Gel Verdau und massenspektrometrischer Analyse der entstandenen Peptide (offline nanoESI-MSMS). MP > 10 kDa wurden ausschließlich über Peptide aus den löslichen Abschnitten identifiziert. Die Analyse der niedermolekularen Untereinheiten (< 10 kDa) wurde auf Ebene des Gesamtproteins nach Extraktion aus den Komplexbanden der BN-PAGE realisiert. Dabei konnten dem mono- und dimeren PSII-Subkomplex folgende niedermolekularen UEn zugeordnet werden: PsbE, PsbF, PsbI, PsbK, PsbL, PsbM, PsbTc und PsbX. Da kein Unterschied in der Zusammensetzung des mono- und dimeren PSII-Subkomplexes existierte, konnte eine Beteiligung einer der niedermolekularen UEn an der Ausbildung des dimeren PSII-Subkomplexes im Rahmen der Assemblierung nicht bestätigt werden. Die Lichtsammelproteine (LHCP) des LHCII wurden nach 2D BN/SDS-PAGE auf Ebene der Superkomplexe oder abgetrennt als Mono- und Trimerer LHCII-Subkomplex identifiziert, wobei das Trimer durch das Fehlen der minoren LHCP (CP29, CP26 und CP24) charakterisiert war. Die für Membranproteine der Thylakoide ungewöhnlich hydrophilen LHCP erhielten die benötigte Hydrophobizität zur Durchspannung der Membran über die Bindung von Pigmenten (Chlorophyll). Eine eindeutige Unterscheidung der Genprodukte von Lhcb1-3 war trotz extremer Sequenzhomologie über die Detektion eines charakteristischen Peptids im N-terminalen Bereich der maturen Sequenz möglich. In Gerste wurde somit jeweils eine Form von Lhcb2 und 3, sowie sechs Isoformen von Lhcb1 identifiziert. Um den In-Gel Verdau von Proteinen nach elektrophoretischer Trennung zu vereinfachen und zu standardisieren, wurde ein Reaktionsgefäß (OMX-S®) aus Polypropylen entwickelt. Im Zuge der Anpassung des konventionellen Protokolls zum In-Gel Verdau von Proteinen für OMX-S® wurde ein optimiertes Verdauprotokoll entwickelt, das ohne die Reaktionsschritte Entfärbung, Reduktion & Alkylierung der AS Cystein sowie eine multiple Extraktion zur Anreicherung der entstandenen Peptide auskommt. Die Erhöhung der Reaktionstemperatur auf 50°C und die Verkürzung der Diffusionsstrecke für die Protease erhöhten zudem die Effizienz des Verdaus und führten zu einer Reduktion der gesamten Prozesszeit von 6-24 h auf 1 h. Welche Auswirkung die Auslassung einzelner Reaktionsschritte auf die Peptidausbeute hatte, wurde nach differentieller Isotopenmarkierung der generierten Peptide mittels massenspektrometrischer Analyse quantifiziert. Da jeder Prozessierungsschritt eine potentielle Quelle für Verluste darstellte, waren die Peptidausbeuten im Vergleich zum konventionellen In-Gel Verdau äquivalent oder sogar besser. Unabhängig vom verwendeten Verfahren, fehlten die membranintegralen Peptide in den Spektren. Folglich wurde die Detektierbarkeit und Signalintensität von tryptischen Peptiden in Abhängigkeit von verschiedenen Faktoren untersucht. Dabei ergab sich eine direkte Korrelation zwischen der Proteinmenge einer Bande und der Anzahl, der nach Verdau detektierten Peptide. Die Untersuchungen an Peptiden aus löslichen und membranintegralen Proteinen ergaben, dass die Hauptursache für das Fehlen letzterer, nicht auf den Einfluss bestimmter AS auf die Ionisierbarkeit, die Sequenzlänge und/oder die Hydrophobizität zurückzuführen war. Entscheidend für die Abwesenheit der membranintegralen Peptide war vielmehr die schlechte Zugänglichkeit der Schnittstellen für die Protease, aufgrund unzureichender Denaturierung der Sekundärstruktur bzw. der Aggregation hydrophober Abschnitte im Rahmen der Probenaufarbeitung.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Immunchemische und chemische Charakterisierung einer nodulären, auf die Unterhaut beschränkten Amyloidose vom ALκ1-Typ

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19

Play Episode Listen Later Mar 29, 2007


Die Amyloidosen gehören zu den Proteinspeicherkrankheiten. Die abgelagerten pathogenen Proteine zeichnen sich durch eine besondere Konformation, die β-Faltblattstruktur, aus. Man spricht daher auch von Konformationskrankheiten" oder "β-Fibrillosen". Bislang sind etwa 25 verschiedene Proteine bekannt, die im Menschen zu einer Amyloidose führen können. Je nach Lokalisation der Amyloidablagerungen unterscheidet man lokale („Amyloidom“), organlimitierte (z.B. zerebrale) und systemische Formen. Die Benennung erfolgt nach der Art des gespeicherten Proteins, wobei an das Kürzel „A“ für „Amyloid“ das Kürzel des gespeicherten Proteins angehängt wird: Die bekanntesten Amyloidosen sind vom Typ Aβ (M. Alzheimer), APrP (Scrapie), AA (Akutphasenprotein bei chronischen Entzündungen), Aβ2M (Urämie, chronische Hämodialyse), ATTR (Amyloid vom Transthyretin-Typ sporadisch im Alter sowie familiär bei Mutation) und AL (Leichtketten-Amyloid bei monoklonaler Gammopathie mit den Isotypen λ und κ). Daneben gibt es seltenere, dann oft familiär gehäuft auftretende und z.T. mit Polyneuropathie einhergehende Amyloidosen sowie Amyloid in endokrinen Drüsen. In dieser Arbeit wurde die Amyloidose einer Patientin („UNK“) untersucht, die eine außergewöhnliche klinische Manifestation einer organlimitierten Amyloidose aufweist: Über 10 Jahre hinweg sind bei der Patientin multiple subkutane Knoten („Amyloidome“) aufgetreten, ohne dass sich im Verlauf ein Anhalt für eine systemische Amyloidverteilung ergab. Bei den Amyloidablagerungen handelt es sich, wie in dieser Arbeit mit immunchemischen und biochemischen Methoden gezeigt werden konnte, um eine Amyloidose vom κ1-Leichtketten-Typ (ALκ1). Es werden also Teile eines Immunglobulins, nämlich einer κ-Kette der Subklasse 1 (man unterscheidet 4 κ-Subklassen, daneben gibt es noch Leichtketten vom Typ λ) in knotiger Form in der Subkutis gespeichert ausgehend von einer monoklonale Gammopathie. Das besondere auch daran ist, dass sich über 10 Jahre kein Progress im Sinne der Entwicklung eines Plasmozytoms gezeigt hat. Daneben wurde bei der Patientin ein zerebraler Entmarkungsherd (Multiple Sklerose) diagnostiziert, hierbei muss differentialdiagnostisch an das Vorliegen eines zerebralen Amyloidoms gedacht werden; es gibt dazu entsprechende Berichte in der Literatur. Durch Isolation des Amyloidproteins aus dem Gewebe, Aufreinigung und anschließende Aminosäuresequenzierung (Edman-Abbau) kombiniert mit Massenspektrometrie konnte die vollständige Aminosäuresequenz der variablen Region (AS 1-108) sowie wesentlicher Teile (bis AS 207) der konstanten Region (AS 109-214) der abgelagerten κ-Kette ermittelt werden. Um die Frage zu klären, ob aus der Aminosäuresequenz des Proteins auf seine Amyloidogenität, also die Wahrscheinlichkeit, Amyloid zu bilden, geschlossen werden kann oder auf die sehr ungewöhnliche Art der klinischen Manifestation (Leichtkettenamyloidosen zeigen in der ganz überwiegenden Zahl der Fälle ein systemisches Befallsmuster), wurde die ermittelte Sequenz mit allen bislang veröffentlichten 17 Sequenzen von Amyloid-bildenden κ1-Ketten sowie nicht-amyloidogenen κ-Ketten verglichen mit folgendem Ergebnis: (1) ALκ (UNK) zeigt 7 bisher nicht und etwa ebenso viele bisher nur selten beschriebene Aminosäureaustausche. Diese Aminosäureaustausche entsprechen kaum den bislang typischerweise mit erhöhter Amyloidogenität in Verbindung gebrachten Mutationen, so dass aus der Aminosäurenabfolge an sich kein Rückschluss auf die Amyloidogenität des Proteins möglich ist. (2) Bemerkenswert ist ferner die (bei aus dem Gewebe isolierten Amyloidproteinen fast regelhaft auftretende) starke Fragmentierung des Proteins, ein "staggering" an Position 63-69 sowie eine Biklonalität (AS 82D und E), welche bisher für ALκ-Amyloidosen noch nicht beschrieben wurde. (3) Die Hypothese, dass erhöhte Hydrophobizität die Amyloidogenität eines Proteins erhöht, wird durch ALκ (UNK) bestätigt, indem die in ALκ (UNK) neu aufgetretenen Aminosäureaustausche die Hydrophobizität deutlich steigern. (4) Es ist bekannt, dass die Destabilisierung der Tertiärstruktur eines Proteins seine Umfaltung zur Fibrille begünstigt. ALκ (UNK) weist eine Mutation an der hochkonservierten und für die Stabilisierung der Tertiärstruktur verantwortlichen Position (Serin60Prolin)auf. (5) Da in der Literatur bislang erst 6 Fallberichte zu organlimitierten subkutanen Amyloidosen (verschiedene Ursprungsproteine) vorliegen, lässt sich der bevorzugte Organbefall (Organotropismus) derzeit noch nicht aus der Aminosäuresequenz ableiten. Möglicherweise wird der Tropismus durch eine Art Antigen-Antikörper-Interaktion der amyloidogenen Leichtketten mit Strukturen im Zielgewebe (mit-)bestimmt. Das Protein ALκ (UNK) wurde außerdem mit immunchemischen Methoden charakterisiert: (1) Im Kaninchen wurde ein polyklonales Antiserum gegen ALκ (UNK) hergestellt und gegen Amyloide vom Typ ALκ aus anderen Patienten, native κ Ketten sowie Amyloide anderer Subklassen ausgetestet. Es hat sich mittlerweile im Routineeinsatz bestens bewährt und rückblickend die Sensitivität und Spezifität der Amyloiddiagnostik im Labor deutlich verbessert. (2) Es konnte gezeigt werden, dass Antiseren, die gegen Amyloid-Vorläuferproteine (κBJP) erzeugt wurden, keine Reaktion mit ALκ (UNK) zeigen. Diese Beobachtung unterstützt die Annahme, dass es im Rahmen der Amyloidogenese zu einer erheblichen Konformationsänderung und damit auch Veränderung der Oberflächenstruktur des Vorläuferproteins kommt, so dass zur immunchemischen Detektion von Amyloidproteinen besondere Reagenzien (nämlich speziell gegen Amyloidproteine hergestellt Antiseren) erforderlich sind. (3) Die Subklassenbestimmung der abgelagerten κ-Kette gelang mit den eingesetzten immunchemischen Methoden aus technischen Gründen nicht. (4) ALκ (UNK) konnte auch immunchemisch (Immunhistochemie, Western Blot, Ouchterlony-Test) eindeutig als ALκ identifiziert werden, was den hohen Stellenwert der Immunchemie bei der Amyloiddiagnostik unterstreicht. Daneben wurden noch weitere Untersuchungen angestellt: (1) Der Geweberohextrakt wurde mittels Western Blot bezüglich des Gehaltes an anderen Proteinen (außer ALκ (UNK)) untersucht. Es konnten u.a. unfragmentierte λ- und γ-Ketten nachgewiesen werde, ferner ist vom Vorhandensein noch weiterer ubiquitärer höhermolekularer Proteine wie Albumin in gegenüber dem Amyloidgehalt vergleichsweise geringer Menge auszugehen. (2) Die Fragmentierung der abgelagerten Proteine wurde genauer untersucht. Man findet Sequenzanfänge bei AS-Position 1,40,88,150,159, wobei andererseits wieder Fragmente gefunden wurden, die diese überlappen. Auch ein die konstante und variable Region der leichten Kette überlappendes Fragment wurde gefunden. Daneben wurden Urinproben der Patientin untersucht. Auch hier zeigen sich κ-Fragmente in mehreren Molekulargewichtsbereichen (nicht sequenziert). Ob die Fragmentierung vor, während oder nach der Amyloidablagerung zustande kommt, wurde nicht untersucht. Zur Therapie dieses ungewöhnlichen Amyloid-Syndroms: Bei fehlender Progression sowohl im Bezug auf das Auftreten neuer Amyloidablagerungen (bislang fehlende systemische Beteiligung) wie auch hinsichtlich der Dynamik des monoklonalen Plasmazellklons (kein Anhalt für Plasmozytom) ist derzeit ein abwartendes Verhalten gerechtfertigt. Sollte es bei der Patientin zur Progredienz kommen, wäre bezüglich der Amyloidablagerungen die entsprechende symptomatische Therapie (medikamentöse Therapie der Herzinsuffizienz, Schrittmacherimplantation, Hämodialyse bei Niereninsuffizienz), bezüglich der monoklonalen Gammopathie die Reduktion des monoklonalen Zellklons (gemäß den Leitlinien zur Tumortherapie, z.B. autologe Stammzelltransplantation) indiziert.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Die mitochondriale Außenmembran beherbergt eine Vielzahl an Proteinen, die anhand ihrer Topologie in unterschiedliche Klassen eingeteilt werden können. Im Rahmen dieser Arbeit wurde die Biogenese von zwei Klassen untersucht. Die erste besitzt eine hydrophile cytosolische Domäne und ist über eine Transmembrandomäne im N-terminalen Bereich in der Membran verankert. Dieser N-terminale Bereich enthält die Signalsequenz dieser Proteine und dient gleichzeitig als Membrananker, weshalb er als Signal-Anker-Domäne bezeichnet wird. Zu dieser Proteinklasse gehören die beiden Rezeptorkomponenten des TOM-Komplexes, Tom20 und Tom70, und in S. cerevisiae das Protein OM45 mit bisher unbekannter Funktion. Zur Bestimmung der Bedeutung der Signal-Anker-Domäne für die Funktion des jeweiligen Proteins bzw. zur strukturellen und funktionellen Charakterisierung dieses Sequenzabschnittes wurde ein Komplementationsansatz benutzt. Damit konnte gezeigt werden, dass die Signal-Anker-Domänen mitochondrialer Außenmembranproteine funktionell austauschbar sind. Folglich spielen sie für die spezifische Funktion des Proteins nur eine untergeordnete Rolle, sind allerdings für den Transport zu den Mitochondrien und für die Verankerung in der Außenmembran von entscheidender Bedeutung. Des Weiteren konnte ich die strukturellen Elemente bestimmen, die zusammen mit der Ankerdomäne das topogene Signal bilden. Eine moderate Hydrophobizität der Transmembrandomäne scheint am wichtigsten zu sein, um diese Proteine zu Mitochondrien zu dirigieren. Eine positive Nettoladung in beiden flankierenden Regionen der Transmembrandomäne erhöht die Effizienz des Transports zu den Mitochondrien und die Membraneinbaurate, ist aber keine essenzielle strukturelle Eigenschaft dieses Signals. Zusätzlich zur Charakterisierung der Signal-Anker-Domänen wurde der Importmechanismus dieser Proteinklasse untersucht. Dieser ist gemäß unserer Ergebnisse nicht von den bekannten Importrezeptoren, Tom20 und Tom70, abhängig, benötigt aber sehr wohl die zentrale Tom-Komponente Tom40. Im Gegensatz zu Vorstufen von Proteinen interner mitochondrialer Kompartimente und von beta-Barrel-Proteinen der Außenmembran scheinen die Vorstufen von Proteinen mit einer Signal-Anker-Domäne nicht über den von Tom40 gebildeten Kanal importiert zu werden. Höchstwahrscheinlich werden diese Proteine durch andere Teile von Tom40 erkannt und anschließend an der Protein-Lipid-Interphase in die Membran eingebaut. Die zweite untersuchte Proteinklasse der mitochondrialen Außenmembran sind die beta-Barrel-Proteine, welche über mehrere antiparallele beta-Faltblätter in der Membran verankert sind. Diese Proteine sind neben Mitochondrien in der Außenmembran von Chloroplasten und gram-negativen Bakterien zu finden. Zu Beginn dieser Arbeit war wenig über die Biogenese mitochondrialer beta-Barrel-Proteine bekannt. Wir konnten zeigen, dass diese Proteinklasse über einen evolutionär konservierten Weg in Mitochondrien importiert wird. Beta-Barrel-Proteine werden zunächst mit Hilfe des TOM-Komplexes zur Intermembranraumseite transportiert. Von dort werden sie durch einen zweiten oligomeren Proteinkomplex, den TOB-Komplex, in die Außenmembran eingebaut. Als erste Tob-Komponente konnten wir das essenzielle Protein Tob55 identifizieren und charakterisieren. Es kann eine Pore in Lipidmembranen bilden und könnte folglich für die Insertion der beta-Barrel-Vorstufen in die Außenmembran verantwortlich sein. Mas37 wurde ebenfalls als Bestandteil dieses Komplexes beschrieben. Auf der Suche nach weiteren Komponenten konnte ich Tob38 mit Tob55 zusammen reinigen. Tob38 ist wie Tob55 essenziell für das Wachstum von Hefezellen und für die Funktion des TOB-Komplexes. Es ist auf der Oberfläche der mitochondrialen Außenmembran lokalisiert. Tob38 interagiert mit Mas37 und Tob55 und ist auch in Abwesenheit von Mas37 mit Tob55 assoziiert. Der Tob38-Tob55 Kernkomplex bindet Vorstufen von beta-Barrel-Proteinen und ermöglicht deren Einbau in die Außenmembran. Die Depletion von Tob38 führt zu stark verringerten Mengen an Tob55 und Mas37 und die verbleibenden Proteine bilden keinen Komplex mehr. Der Import von beta-Barrel-Vorstufenproteinen in Tob38-depletierte Mitochondrien ist stark beeinträchtigt, wohingegen andere Außenmembranproteine oder Proteine anderer mitochondrialer Subkompartimente mit gleicher Effizienz wie in Wildtyp-Organellen importiert werden. Demnach besitzt Tob38 eine äußerst wichtige und spezifische Funktion bei der Biogenese von mitochondrialen beta-Barrel-Proteinen. Es könnte für die Stabilität und Assemblierung des TOB-Komplexes notwendig sein oder an der Ausbildung einer transienten Assoziation zwischen dem TOM- und dem TOB-Komplex beteiligt sein und dabei den Transfer von Vorstufenproteinen erleichtern. Andererseits könnte Tob38 auch als Regulator der von Tob55 gebildeten Pore fungieren. Mim1 konnte im Rahmen dieser Arbeit als eine weitere am Import bzw. der Assemblierung des beta-Barrel-Proteins Tom40 beteiligte Komponente charakterisiert werden. Die Depletion von Mim1 führt zu stark verringerten Mengen an assembliertem TOM-Komplex und zur Akkumulation von Tom40 als niedermolekulare Spezies. Wie alle mitochondrialen beta-Barrel-Proteine werden die Vorstufen von Tom40 durch den TOB-Komplex in die Außenmembran eingebaut. Mim1 wird höchstwahrscheinlich nach diesem TOB-abhängigen Schritt benötigt. Aufgrund der starken Konservierung im Bereich des Transmembransegments von Mim1 beim Vergleich der Proteinsequenzen verschiedener Pilze könnte das Protein als eine Art Membran-Chaperon fungieren. Dabei könnte Mim1 notwendig sein, um nicht oder teilweise assembliertes Tom40 in einer kompetenten Form für die Assemblierung mit den kleinen Tom-Proteinen und mit Tom22 zu halten. Mim1 ist weder eine Komponente des TOM-Komplexes noch des TOB-Komplexes, sondern scheint vielmehr Bestandteil eines weiteren, bisher nicht charakterisierten Komplexes zu sein. Zusammenfassend kann gesagt werden, dass Mim1 eine spezifische und unverzichtbare Rolle bei der Assemblierung des TOM-Komplexes spielt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Untersuchungen zur Translokation und Insertion mitochondrialer Proteine über den Tim17-Tim23-Komplex

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Feb 18, 2005


Die Biogenese von Mitochondrien erfordert den Import von Präproteinen aus dem Cytosol in die mitochondrialen Subkompartimente. Der TIM23-Komplex der mitochondrialen Innenmembran ist für die Translokation von Präproteinen über die Innenmembran verantwortlich und vermittelt darüber hinaus die Insertion von Proteinen in die Innenmembran. Tim23 weist zwei funktionell unterscheidbare Domänen auf: Eine N-terminale hydrophile Rezeptordomäne im Intermembranraum und einen hydrophoben C-terminalen Bereich. Das phylogenetisch verwandte Tim17 ist ein sehr hydrophobes Protein, welches vier Transmembrandomänen ausbildet, die von zwei kurzen Enden im Intermembranraum flankiert werden. Die hydrophoben Bereiche von Tim17 und Tim23 bilden vermutlich den kanalbildenden Teil der Translokase. In der vorliegenden Arbeit wurde die Funktion von Tim17 bei der Translokation von Präproteinen über die Innenmembran untersucht. Es konnte eine kurze N-terminale Sequenz von 11 Aminosäureresten identifiziert werden, welche für die Funktionalität der TIM23-Translokase essentiell ist. Die Deletion dieser Sequenz beeinflusst die Integrität der bekannten Untereinheiten der TIM23-Translokase nicht, führt jedoch zu einer starken Beeinträchtigung der Translokation von Präproteinen über die mitochondriale Innenmembran. Durch gezielte Alanin-Punktmutagenese konnten zwei konservierte Aspartatreste in der Tim17-Sequenz identifiziert werden, welche für den Translokationsdefekt verantwortlich sind. Die Analyse weiterer Mutanten in Tim17 mit einzelnen oder wechselseitig ausgetauschten geladenen Aminosäureresten im Intermembranraum legen nahe, dass die konservierten negativen Ladungen in Tim17 mit den positiv geladenen Präsequenzen interagieren und dadurch die Translokation von Präproteinen durch den TIM23-Komplex regulieren. Diese Ergebnisse geben einen Einblick in eine Präprotein-abhängige Regulation der TIM23-Translokase über ein mögliches "Öffnen" und "Schließen" des Translokationskanals via Tim17. Die meisten Proteine der mitochondrialen Innenmembran, die als Präproteine mit mitochondrialen Präsequenzen im Cytosol synthetisiert werden, erreichen die Innenmembran auf einem von zwei alternativen Sortierungswegen: Dem "Stop-Transfer-Weg", auf dem Präproteine während der Translokation durch den TIM23-Komplex arretiert und lateral in die Innenmembran inseriert werden und dem Weg der "Konservativen Sortierung", auf dem die Proteine über Intermediate in der mitochondrialen Matrix in die Innenmembran inseriert werden. Folglich müssen diese Proteine entsprechende Sortierungssignale aufweisen, die entweder die laterale Membraninsertion (Stop-Transfer-Proteine) oder die die Translokation in die Matrix (konservativ sortierte Proteine) durch die TIM23-Translokase vermitteln. Das Sortierungsverhalten von mitochondrialen Innenmembranproteinen mit N-terminalen Präsequenzen, die zunächst für die initiale Translokation des N-Terminus der Proteine sorgen, wird von den Transmembrandomänen bestimmt. Um den Einfluss der Transmembrandomänen auf den Sortierungsweg zu untersuchen, wurden die entsprechenden Domänen von Stop-Transfer sortierten Proteinen und konservativ sortierten Proteinen wechselseitig ausgetauscht. In den chimären Proteinen bestimmten jeweils die eingeführten Transmembrandomänen das Sortierungsverhalten. Eine Untersuchung dieser Transmembrandomänen zeigte zwei systematische Unterschiede: Transmembrandomänen, die die konservative Sortierung vermitteln, weisen eine zumeist moderate Hydrophobizität auf und enthalten zumeist Prolinreste. Dagegen sind Stop-Transfer vermittelnde Transmembrandomänen typischerweise stärker hydrophob und frei von Prolinresten. Die Einführung von Prolinresten in die Transmembrandomänen von ursprünglich Stop-Transfer sortierten Proteinen führte zu deren Translokation in die Matrix. Umgekehrt führte die Mutagenese von Prolinresten in Transmembrandomänen ursprünglich konservativ sortierter Proteine zu deren Arretierung in der Innenmembran. Die Anwesenheit von Prolinresten in den Transmembrandomänen bestimmt demnach den Sortierungsweg dieser Innenmembranproteine. Zukünftige Studien werden zeigen, wie diese Sortierungssignale, welche eventuell eine von Prolinresten gebrochene hydrophobe Helix darstellen, von der TIM23-Translokase erkannt und entsprechend umgesetzt werden. Die Bedeutung von Prolinresten in Transmembrandomänen von konservativ sortierten Proteinen konnte durch Mutagenese sowohl in vitro als auch in vivo gezeigt werden. Diese Erkenntnis sollte sowohl in Vorhersagen von Proteinsortierungswegen als auch bei der zukünftigen Entwicklung mitochondrialer Proteine für gentherapeutische Ansätze zur Behandlung mitochondrialer Erkrankungen berücksichtigt werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Alternative Topogenese des Dynamin-ähnlichen Proteins Mgm1 in Mitochondrien von Saccharomyces cerevisiae und ihre Funktion in der Erhaltung der mitochondrialen Morphologie

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Nov 15, 2004


In S. cerevisiae bilden Mitochondrien ein tubuläres Netzwerk, für dessen Erhaltung ein Gleichgewicht aus Fusions- und Teilungsprozessen notwendig ist. Mgm1 ist ein Dynamin-ähnliches Protein in Mitochondrien, das an der mitochondrialen Fusion beteiligt ist. Es kommt in einer großen Isoform (l-Mgm1) von 97 kD und einer kleinen Isoform (s-Mgm1) von 84 kD vor. In der vorliegenden Arbeit sollte die Biogenese dieser beiden Isoformen und ihre Rolle in der Erhaltung der mitochondrialen Morphologie und der mitochondrialen DNA geklärt werden. Beide Isoformen konnten im Intermembranraum von Mitochondrien lokalisiert werden. Durch Immunpräzipitation und N-terminale Sequenzierung wurden die N-Termini beider Isoformen identifiziert. l-Mgm1 besitzt an seinem N-Terminus ein hydrophobes Segment. Mit diesem Segment ist es in der inneren mitochondrialen Membran verankert. s-Mgm1, dem dieses Segment fehlt, ist peripher membranassoziiert. Die Rhomboid-ähnliche Protease Pcp1 in der mitochondrialen Innenmembran ist für die Prozessierung von Mgm1 zu s-Mgm1 verantwortlich. Die Deletion von PCP1 führt zur Fragmentierung und Aggregation der Mitochondrien und zum Verlust der Respirationskompetenz und der mitochondrialen DNA. Dieser Phänotyp ist von dem der Deletion von MGM1 nicht zu unterscheiden. Der Phänotyp der Deletion von PCP1 ist eine direkte Konsequenz der fehlenden Mgm1–Prozessierung und des Fehlens von s-Mgm1. Darüber hinaus ist die Bildung beider Isoformen in ungefähr gleicher Menge für die volle Funktionalität von Mgm1 erforderlich. Für die koordinierte Bildung beider Isoformen ist eine konservierte Abfolge von zwei hydrophoben Segmenten am N-Terminus von Mgm1 erforderlich. Das weiter C-terminal gelegene hydrophobe Segment enthält die Spaltstelle für Pcp1. Die Hydrophobizität des N-terminalen Segments determiniert hingegen das Mengenverhältnis beider Isoformen. Dabei führt verringerte Hydrophobizität zur vermehrten Bildung von s-Mgm1, während erhöhte Hydrophobizität die Bildung von s-Mgm1 fast vollständig verhindert. Die intermediäre Hydrophobizität der Wildtyp-Sequenz ist kritisch für die koordinierte Bildung beider Isoformen im Verhältnis von ungefähr 1:1. Die Bildung von s-Mgm1 hängt weiterhin von einem funktionalen Importmotor und einer hinreichend hohen ATP–Konzentration in der mitochondrialen Matrix ab. l-Mgm1 kann dagegen ATP-unabhängig und unabhängig vom Importmotor gebildet werden. Diese Daten führten zum Modell der alternativen Topogenese von Mgm1. Demnach dient das erste hydrophobe Segment als Stopp-Transfer-Signal im TIM17/TIM23-Translokationskomplex. Laterale Insertion dieses Segments in die mitochondriale Innenmembran führt zur Bildung von l-Mgm1. Die Überwindung dieses Translokationsarrests führt zum weiteren Import bis das zweite hydrophobe Segment mit der Spaltstelle die Innenmembran erreicht. Dort entsteht durch Pcp1-Spaltung s-Mgm1. Der weitere Import und damit die Pcp1-Prozessierung sind abhängig von ATP und einem funktionalen Importmotor. Die Bildung von l-Mgm1 und s-Mgm1 sind kompetierende Prozesse. Störungen in diesem kompetitiven Gleichgewicht (veränderte Hydrophobizität des ersten hydrophoben Segments, nicht funktionaler Importmotor, niedrige ATP–Konzentration in der Matrix) führen zu Verschiebungen im Verhältnis beider Mgm1-Isoformen und zur Fragmentierung und Aggregation der Mitochondrien. Daher stellt der Mechanismus der alternativen Topogenese eine Möglichkeit dar, wie der bioenergetische Zustand der Mitochondrien auf molekularer Ebene an die mitochondriale Struktur gekoppelt sein könnte. Auf diese Weise könnte in Mitochondrien, deren bioenergetischer Status z.B. aufgrund von Mutationen in der mitochondrialen DNA, wie sie durch oxidativen Stress entstehen, gestört ist, die Bildung von s-Mgm1 verringert sein. Möglicherweise führt das dazu, dass die betroffenen Mitochondrien nicht mehr effizient fusionieren und so aus dem mitochondrialen Netzwerk ausgeschlossen werden. Der Mechanismus der alternativen Topogenese würde in diesem Fall gegen geschädigte mitochondriale DNA selektionieren und so deren Vererbung unterbinden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
(Bakterio-)Chlorophyll-Modifikationen zur Einlagerung in synthetische Peptide

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 28, 2003


Ziel dieser Arbeit war zum Einen die Synthese von neuartigen (Bakterio-)Chlorophyll-Derivaten zur Einlagerung in Proteine und ihre Charakterisierung in Lösung, zum Anderen Bindungsstudien an Komplexen dieser Derivate mit modularen Proteinen und dem Lichtsammler-Komplex 1 aus Rhodobacter sphaeroides. 1.) Darstellung von Fe-(Bakterio-)Pheophytinen: Es wurde ein Verfahren etabliert, das die Metallierung von Pheophytin a, Bakteriopheophytin a und deren Derivate mit Eisen ermöglicht. Zusätzlich wurde diese Methode so weit modifiziert und optimiert, dass ausgehend vom Mohrschen Salz auch die Einlagerung von 57Fe möglich ist, wodurch eine Erweiterung der spektroskopischen Methoden (Mößbauer-Spektroskopie) erreicht wird. Da die Fe Komplexe nicht mit den für (Bakterio-)Chlorophyll-Derivate etablierten Methoden gereinigt werden können, wurde für diese Komplexe ein neues Chromatographiesystem entwickelt. 2) Spektroskopische Untersuchung der Fe-(Bakterio-)Pheophytine: Es ist bekannt, dass Fe-Porphyrine leicht zu µ-oxo-Komplexen (Fe(III)(B)Phe a)2O dimerisieren und das Zentralion in zwei Oxidationsstufen (+2 und +3) vorliegen kann. Die Dimerisierung des Fe Phe und Fe-BPhe wurde durch Säure-Base-Titration absorptionsspektroskopisch untersucht. In aerober Lösung liegt das Zentralmetall des Fe-(B)Phe dreiwertig vor ((Fe(III)(B)Phe a)Cl). Dieses lässt sich „klassisch“ mit Na-Dithionit allein durch Ligandierung mit Pyridin zum zweiwertigen Fe(II)(B)Phe a reduzieren. Die drei Zustände der Fe-Komplexe (Fe(III)(B)Phe a)Cl, (Fe(III)(B)Phe a)2O und Fe(II)(B)Phe a wurden durch ESR- und Absorptionsspektroskopie charakterisiert. Die Oxidationsstufen der drei Zustände wurden für 57Fe-Me-Pheid a durch Mößbauerspektroskopie bestätigt. 3) Einlagerung von Fe-Bakteriopheophytin a in LH1 von Rhodobacter sphaeroides: Zur Untersuchung, ob Fe-BPhe von BChl-Bindungstaschen akzeptiert wird, wurde versucht Fe-BPhe ins LH1 von Rb. sphaeroides einzulagern. Die Ergebnisse dieser Untersuchungen deuten zwar auf einen Einbau von Fe-BPhe hin, allerdings nur in sehr geringem Maß. Zur Quantifizierung des Fe-BPhe-Gehalts wurden verschiedene Methoden getestet. Der einfachste und vielversprechendste Weg war die Differenzabsorptionsspektroskopie, bei der die unterschiedliche Absorption von µ-oxo-Dimer und Monomer des Fe-BPhe ausgenützt wird. 4) Darstellung von Formyl-(Bakterio-)Chlorophyll-Derivaten: Eine kovalente Bindung von Chlorophyll-Derivaten an synthetische Peptide ist durch die Kopplung von Formyl-Gruppen mit einem modifizierten Lysin-Rest unter Bildung eines Oxims möglich. [3 Formyl]-Me-Pheid a konnte durch oxidative Spaltung des C-3-Vinyl des Chlorophyll a mit Ozon hergestellt werden. Ebenfalls mit Ozon konnte die Phytyl-Doppelbindung von Pheophytin a unter Bildung des Ethanal-Pheid a erreicht werden. Somit stehen insgesamt drei Chlorophyll-Derivate für die kovalente Bindung an synthetische Peptide zur Verfügung, welche die Formyl-Gruppen an verschiedenen Positionen tragen, wodurch eine unterschiedliche Orientierung der Pigmente im Protein erreicht werden kann. Es wurde versucht, in Analogie zum Pheophytin a das [3-Vinyl]-Me-BPheid a mit Ozon zu spalten. In Folge der leichten Oxidation des Makrozyklus lieferte diese Reaktion das Zielprodukt [3-Formyl]-Me-BPheid a nur in äußerst geringen Mengen, so dass diese Methode für die präparative Synthese dieser Verbindung nicht geeignet ist. 5) Nicht-kovalente Bindung von [M]-BPheid (M = Ni, Zn, Fe) in synthetische modulare Proteine (MOP): Ni-, Zn-, und Fe-BPhe wurden auf ihre Komplexbildung mit 216 verschiedenen, synthetischen Vier-Helix-Bündel-Proteinen untersucht. Die [M] BPheid-MOP-Komplexe wurden absorptionsspektroskopisch auf die Stärke der Bindung, die Koordination des Zentralmetalls und auf die Hydrophobizität der Umgebung untersucht. Alle MOP binden [M] BPheid in sehr unterschiedlichem Maße. Stärke und Art der Bindung werden in erster Linie durch die Bindehelix bestimmt. Eine quantitative Modulation findet allerdings auch durch die Abschirmhelix statt. Ni-BPheid zeigt in den Komplexen drei mögliche Koordinationszustände (nc = 4, 5, 6). Eine hohe Koordinationszahl geht immer mit einer stabilen Bindung und einer schmalen Qy Bande einher. Zn-BPheid ist in allen Komplexen fünffach koordiniert, das Fe-BPheid vierfach. Qualitativ zeigen alle drei Pigmente ein gleiches Muster in Bezug auf das Bindungsverhalten, so dass ausgehend von Häm-Bindungstaschen die Bildung von BChl-Bindungstaschen bestätigt werden konnte.