POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Für ein genetisches Modell B-Raf(V600E)-mutierter Darmkrebszellen und korrespondierender Wildtyp-Zellen wurde erstmalig in Deutschland das Somatic Cell Gene Targeting eingesetzt. Dabei konnte demonstriert werden, dass RKO eine Oncogene Addiction bezüglich der BRAF-Mutation aufweist. Als weitere B-Raf(V600E)-abhängige Effekte wurden die Selbstversorgung mit Wachstumssignalen (Self-Sufficiency of Growth Signals) und die Resistenz gegen Apoptose in dem Modell festgestellt. Darüber hinaus war die proliferative Kontaktinhibition in V600E-mutierten Klonen durch eine verstärkte Akt-Phosphorylierung aufgehoben und wurde nach Knockout der mutierten Allele im Wildtyp-Zellklon RBW-1 wieder hergestellt. Somit konnten vier zentrale Merkmale der Onkogenität dem mutierten B-Raf(V600E) zugeordnet werden. Andere onkogene Mechanismen waren dagegen vermutlich aufgrund einer Mutation der PI3-Kinase auch in BRAF-Wildtyp-Zellen noch intakt. So waren das Wachstum unter guten Kulturbedingungen und eine verstärkte Expression des EGF-Rezeptors unter Mangelbedingungen nicht vom BRAF-Mutationsstatus abhängig. Außerdem behielten Wildtyp-Zellen ihre Immortalisierung bei und zeigten weiterhin kein relevantes Auftreten von Seneszenz. Es wurden neue Spleißvarianten des BRAF-Gens gefunden und basal charakterisiert. Die alternativen Transkripte zeigten keine Kinase-Aktivität und waren in einem Ausmaß nachweisbar, das eine physiologische Bedeutung vermuten lässt. Hinsichtlich der Herkunft-Allele alternativer Isoformen und den Ursachen für das Auftreten alternativen Spleißens wurden neue Erkenntnisse gewonnen, die zudem die Interpretation publizierter Daten erleichtern. Es wurde gezeigt, dass die durch E-Cadherin vermittelten Zellkontakte essentiell für die epitheliale Komponente der intestinalen Barriere sind. Darüber hinaus wurde der Einfluss von E-Cadherin auf die Ausreifung sekretierender Zellen im Darm ermittelt und damit ein weiterer entscheidender Mechanismus der Abwehr bakterieller Invasionen aufgeklärt.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Ziel: 1)Etablierung einer immortalisierten hMSC-Zelllinie durch lentivirale hTERT-Transduktion. 2)Untersuchung der biologischen Effekt einer lentiviralen Transduktion von hTERT auf hMSCs. 3)Aufklärung des Transformationspotenyials von hTERT-transduzierten hMSCs. Material und Methoden: hMSCs wurden mit Lentiviren, die hTERT enthieten, transduziert. Konale hMSCs-hTERT wurden durch Isolation einzelner Zellen gewonnen. Die Expression von hTERT wurde mittels RT-PCR bestätigt. Die Zellproliferation wurde durch morphologische Beobachtung und Berechnung der “population doubling level”(PDL) und “population doubling time”(PDT) überwacht. Die Verhinderung der Seneszenz durch hTERT-Transduktion wurde durch Seneszenz-assoziierte β-gal-Färbung bestätigt. Dabei dienten nicht-transduziert hMSCs als Kontrollen. Der Stammzellcharakter von hMSC-hTERT wurde durch adipogene, chondrogene und osteogene Differenzierung überprüft. Zur Untersuchung der potenziellen tumorösen Transformation von lentiviral transduzierten hMSCs wurden Karyotypisierung und FISH-Analyse durchgeführt. Des Weiteren wurde der zeitliche Verlauf der Tumorsuppressor-Gene-Expression von RB1,TP53 und p21 untersucht, ein in vitro Softagar-Assay und in vivo Nacktmäusen Klonale und heterogene hMSCs-hTERT implantiert. Ergebnisse: hTERT wurde erfolgreich in hMSCs transduziert und “single-cell-picking”-Klone(SCP) konnten etabliert werden. In der RT-PCR wurde die hTERT-Expression bestätigt. Nicht-transduzierte hMSCs zeigten keine hTERT-Expression. Sowohl klonale, als auch heterogene hTERT-transduzierte hMSCs konnten über mehr als 500 Tage Kultiviert werden, während nicht-transduzierte hMSCs nach weniger als 250 Tagen seneszent wurden. Drei Phasen des Wachstums mit unterschiedlichen PDL und PDT konnten in hMSCs-hTERT beobachtet werden. Die Zellmorphologie der hMSCs-hTERT veränderte sich von einem gemischten Phänotyp in der “initialen Phase”(PDT 2,3 bis 5,5, PDL 20,7 bis 27,1) zu einem vermehrten Auftreten von flachen Zellen in der “Plateau-Phase” (PDT 9,2 bis 22,1, PDL 30,6 bis 48,2). Dies war ganz im zeitlichen Einklang mit dem Alterungsprozess von nicht transduzierten hMSCs. In der letzten und andauernden Phase zeigte sich eine hohe Anzahl von schnell wachsenden, kleinen und spindelförmigen Zellen (PDT von 2,1 bis 6,1, PDL 53,7 bis 105,6), welche aus einem Selbstselecktionierungsprozess in einer kontinuierlichen in-vitro Kultur hervorgegangen waren. Die erhaltene Differenzieungs-Kapazität der hTERT-transduzierten hMSCs wurde sowohl für klonale als auch heterogene hMSCs-hTERT durch eine positive Adipogenese-spezifische Oil-red-O-Färbung, Chondrogenese-spezifische Toluidinblau-Färbung und Osteogenese-spezifische von-Kossa-Färbung bestätigt. Zur Untersuchung einer potentiellen malignen Transformation der hMSCs-hTERT wurde eine Karyotyp-Analyse durchgeführt, die keine Auffälligkeiten zeigte. Darüber hinaus konnte eine unveränderte RB1, TP53 und p21 Tumorsuppressor-Gen-Expression nachgewiesen werden. Als Hinweis auf eine erhaltene Kontaktinhibition zeigten sich im Softagar-Assay keine Kolonien. Nach subkutaner Implantation der Zellen im Nacktmaus-Modell zeigte sich histologisch in vivo keine Tumorformation. Fazit: Zusammenfassend konnte mit dieser Arbeit erstmals gezeigt werden, dass eine lentivirale Transduktion von hMSCs mit hTERT eine effiziente und relative sichere Methode zur Erzeugung immortalisierter hMSCs ist. Obwohl es notwedig ist die Differenzierungskapazität und onkogene Potenzial für einen noch längeren Zeitraum zu untersuchen, konnte nach mehr als 500 tage in Zellkultur nachgewiesen werden, dass klonal expandierte lentivital hTERT-transduzierte hMSCs eine viel versprechende Zelllinie für die Forschung, aber möglicherweise auch für therapeutische Anwendungen zum Beispiel im Bereich “Tissue engineering” sein könnte.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Um die Funktion von MIF als Tautomerase auf genetischer Basis zu analysieren, untersuchten wir die MIFpg Maus, welche durch Punktmutation von Prolin1 zu Glycin einen Komplettverlust der enzymatischen Aktivität von MIF aufweist. Der Phänotyp der MIF-Defizienz in Fibroblasten besteht in verstärkter Kontaktinhibition, einem Defekt bei der malignen Transformation. Um die These über MIF als Enzym zu testen, untersuchten wir Fibroblasten von P1G-mutanten Mäusen. Laut unseren in vivo Analysen besitzen mutierte MIFpg-MEFs keine enzymatische Aktivität mehr. Die MIFpg-Maus, welche ein Mutation des Prolin1 aufweist, jener Aminosäure, welche als katalytische Basis der Isomeraseaktivität gilt, zeigte, dass MIFpg-Fibroblasten zwar einen Verlust der enzymatischen Aktivität als Isomerase, jedoch keine Defekte in der Ras-vermittelten Transformation aufwiesen. Daraus folgernd beruht die biologische Aktivität von MIF nicht auf dessen Isomeraseaktivität. Die p53-/- Mäuse entwickelten früh Tumore, meist Lymphome und Osteosarkome, mit einer daraus resultierenden frühen Letalität der adulten Maus. Die meisten Effekte von MIF scheinen durch p53 vermittelt zu werden, denn in Mäusen, welche sowohl für MIF als auch für p53 defizient sind, verschwindet der in MIFko-Mäusen beobachtete Phänotyp der verzögerten Tumorentstehung. Auch der in unseren Experimenten fehlende Unterschied in der Überlebenszeit von DKO im Vergleich zu p53-/- MIFflox/flox Mäusen, unterstützt die Annahme, dass die meisten Effekte von MIF in der Tumorgenese in vivo über p53 stattfinden. Unsere Ergebnisse lassen darauf schließen, dass die tumorregulierende Aktivität von MIF im Wesentlichen über Regulation der p53-Aktivität durch MIF auf dem C57Bl/6 Hintergrund erklärt ist. Zudem zeigen wir, dass diese Aktivität nicht durch die enzymatische Aktivität von MIF als Tautomerase erklärt ist.