POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.04.22.537784v1?rss=1 Authors: Majumder, A., Joshi, R., Mukherjee, S., Suryawanshi, T., Shukla, S. Abstract: Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into adipocytes, chondrocytes and osteoblasts. Due to their differentiation potential, hMSCs are among the most frequently used cells for therapeutic applications in tissue engineering and regenerative medicine. However, the number of cells obtained through isolation alone is insufficient for hMSC-based therapies and basic research, necessitating their in-vitro expansion. Conventionally, this is often carried out on rigid surfaces such as tissue culture petriplates (TCPs). However, during in-vitro expansion, hMSCs lose their proliferative ability and multilineage differentiation potential, making them unsuitable for clinical use. Although multiple approaches have been tried to maintain hMSC stemness over prolonged expansion, finding a suitable culture system to achieve this remains an unmet need. Recently, few research groups including ours have shown that hMSCs maintain their stemness over long passages when cultured on soft substrate. In addition, it has been shown that hMSCs cultured on soft substrates have more condensed chromatin and lower levels of histone acetylation compared to those cultured on stiff substrates. It has also been shown that condensing/decondensing chromatin by deacetylation/acetylation can delay/hasten replicative senescence in hMSCs during long-term expansion on TCPs. However, how chromatin condensation/decondensation influences nuclear morphology and DNA damage - which are strongly related to the onset of senescence and cancer - is still not known. To answer this question, here we cultured hMSCs for long duration (P4-P11) in presence of epigenetic modifiers histone acetyltransferase inhibitor (HATi) which promotes chromatin condensation by preventing histone acetylation and histone deacetylase inhibitor (HDACi) which promotes chromatin decondensation and investigated their effect on various nuclear markers related to senescence and cancer. We have found that consistent acetylation causes severe nuclear abnormalities whereas chromatin condensation by deacetylation helps in safeguarding nucleus from damages caused by in-vitro expansion. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.30.534618v1?rss=1 Authors: Govindaraj, K., Kannan, S., Karperien, M., Post, J. N. Abstract: The multi-lineage differentiation capacity of human mesenchymal stem cells (hMSCs) enables its potential for tissue engineering and regenerative medicine. Master transcription factors play a key role during development, differentiation, homeostasis and disease pathology. RUNX2 is the master transcription factor for bone development, and it regulates several important signaling pathways during chondrogenic and osteogenic differentiation of hMSCs. However, modulation of RUNX2 activity during hMSC differentiation into various lineages is not yet fully described. We differentiated hMSCs into chondro-, osteo-, and adipogenic lineages and studied RUNX2 protein dynamics using Transcription Factor - Fluorescence Recovery After Photobleaching (TF-FRAP) at different time points. The TF-FRAP method can capture the dynamic changes of RUNX2 protein mobility at the single cell level resolution, and cluster analysis shows how RUNX2 dynamics change at subpopulation level in proliferating and differentiating hMSCs. Our data show that although whole hMSC population is exposed to differentiation stimuli, some subpopulations in hMSCs do not respond to environmental cues. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 19/19
Thu, 18 Feb 2016 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/19379/ https://edoc.ub.uni-muenchen.de/19379/1/Maertz_Josef.pdf Märtz, Josef Michael ddc
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
Hintergrund: Hyaluronan (HA) ist ein wichtiger Bestandteil von vielen Geweben und Flüssigkeiten des Körpers. HA beeinflusst die Makro- und Mikroumgebung und kann direkt über Rezeptoren wie CD44 (cluster of differentiation 44) und RHAMM (receptor for HA mediated motility) mit den Zellen wechselwirken. Dadurch hat HA Einfluss auf die Aktivierung, Migration und Proliferation von Zellen sowie auf den Umbau der extrazellulären Matrix. HA kann das Verhalten der Osteoblasten, Osteozyten und Osteoklasten beeinflussen und ist somit ein wichtiger Faktor sowohl für die gesunde Knochenhomöostase als auch für die Frakturheilung. Hyaluronansynthasen (HAS) sind komplexe Membranproteine, die für die Synthese von HA verantwortlich sind. Bei Säugetieren sind drei Isoformen bekannt: HAS1, HAS2 und HAS3. Sie zeigen eine hohe Homologie in ihrer Sequenz und Struktur, unterscheiden sich aber in Stabilität, Syntheserate und Länge des HA. Der genaue Regulierungsmechanismus der HAS ist noch nicht bekannt. Bisher wurde über eine Regulation durch externe Signalmoleküle, Ubiquitinierung oder Phosphorylierung berichtet. In der vorliegenden Arbeit wurde ein Modellsystem zur Untersuchung der Regulation der Aktivität der HAS aufgebaut. Mit diesem sollte die Interaktion der HAS mit dem Aktinzytoskelett als möglicher Regulationsmechanismus untersucht werden. Methoden: Zu diesem Zweck wurden drei Zelllinien hergestellt. Zum einen hTERT immortalisierte hMSCs (human mesenchymal stem cells), die sogenannten SCP1, welche jeweils eine der HAS-Isoformen, fusioniert mit einem eGFP-Tag, stabil exprimieren. Des Weiteren SCP1, die Lifeact-mRFPruby exprimieren, welches F-Aktin fluoreszenzmarkiert. Schließlich doppeltransduzierte hMSCs, welche sowohl HAS-eGFP als auch Lifeact-mRFPruby exprimieren. Als Gentransfersystem wurden Lentiviren eingesetzt. Zuerst wurden die Zellen hinsichtlich der stabilen und funktionellen Expression ihres Transgens anhand verschiedener Methoden untersucht. Mittels Immunfluoreszenzmikroskopie wurde eine Kolokalisation von Aktin und HAS dargestellt. In fluoreszenzmikroskopischen Timelapse-Aufnahmen wurden die Bewegungsmuster der HAS beobachtet. Ergebnisse: Mittels RT-PCR, Western Blot und Fluoreszenzmikroskopie wurde nachgewiesen, dass die Zelllinien SCP1-HAS1-eGFP D6, SCP1-HAS2-eGFP und SCP1-HAS3-eGFP E6 alle ihr jeweiliges HAS-eGFP-Gen stabil exprimieren. Die Funktionalität der HAS-eGFP wurde mit einem HA-spezifischen ELISA und mit einem selbst etablierten Aktivitätsassay untersucht, welcher das HA durch den biotinylierten HA-Bindekomplex (bHABC) färbt. Im ELISA zeigten alle Zelllinien eine statistisch signifikant höhere Hyaluronanproduktion als die Negativkontrolle. Die HAS3-überexprimierende Zelllinie erzielte von allen die höchste HA-Konzentration. In der Färbung mit bHABC war deutlich zu erkennen, dass diejenigen Zelllinien, in denen eine der HAS-eGFP-Isoformen überexprimiert wurde, eine stärkere Braunfärbung zeigten als Zellen der Negativkontrolle. Für den Nachweis, dass die HAS-eGFP in der Membran lokalisiert sind, wurden Immunfluoreszenzfärbungen gegen den Oberflächenmarker CD44 durchgeführt. Die fluoreszenzmikroskopischen Aufnahmen zeigten an Stellen, die durch die CD44-Färbung eindeutig als Membran zu erkennen sind, ebenfalls ein Signal für die HAS-eGFP. Dies bedeutet, dass die drei Isoformen der HAS-eGFP dort in der Zellmembran integriert vorlagen. Um eine Kolokalisation der HAS-eGFP mit dem Aktinzytoskelett darstellen zu können, erfolgte außerdem eine Färbung des Aktins mit Phalloidin. Bei allen Zelllinien konnte an ausgewählten Stellen eine solche Kolokalisation gesehen werden. Die hMSC-Lifeact-mRFPruby-Zellen wurden lebendig und fixiert im Fluoreszenzmikroskop betrachtet. Sie lieferten eine gute Darstellung des Zytoskeletts mit Stressfasern im Zellkörper und Aktinfilamenten im Zellcortex. Auffallend war, dass in den lebenden Zellen kurze Aktinfilamente zu sehen waren, die sich bei den fixierten Zellen nicht beobachten ließen. Um eine Interaktion zwischen den HAS-eGFP und dem Aktinzytoskelett in lebenden Zellen untersuchen zu können, wurden von den doppeltransduzierten hMSCs Timelapse-Aufnahmen angefertigt. Darin stellten sich die grün fluoreszierenden HAS-eGFP als globuläre Strukturen dar, die entlang der Aktinfilamente angeordnet waren und sich auch entlang dieser bewegten. Schlussfolgerung: Mit diesen Zellen wurde ein Modellsystem geschaffen, mit welchem eine Regulation der HAS über die Interaktion mit dem Zytoskelett untersucht werden kann. Genaueres Wissen über diesen Mechanismus kann für zukünftige Therapieansätze bei Frakturen und bei Knochenerkrankungen, wie z.B. der Osteoporose, richtungsweisend werden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Ziel: 1)Etablierung einer immortalisierten hMSC-Zelllinie durch lentivirale hTERT-Transduktion. 2)Untersuchung der biologischen Effekt einer lentiviralen Transduktion von hTERT auf hMSCs. 3)Aufklärung des Transformationspotenyials von hTERT-transduzierten hMSCs. Material und Methoden: hMSCs wurden mit Lentiviren, die hTERT enthieten, transduziert. Konale hMSCs-hTERT wurden durch Isolation einzelner Zellen gewonnen. Die Expression von hTERT wurde mittels RT-PCR bestätigt. Die Zellproliferation wurde durch morphologische Beobachtung und Berechnung der “population doubling level”(PDL) und “population doubling time”(PDT) überwacht. Die Verhinderung der Seneszenz durch hTERT-Transduktion wurde durch Seneszenz-assoziierte β-gal-Färbung bestätigt. Dabei dienten nicht-transduziert hMSCs als Kontrollen. Der Stammzellcharakter von hMSC-hTERT wurde durch adipogene, chondrogene und osteogene Differenzierung überprüft. Zur Untersuchung der potenziellen tumorösen Transformation von lentiviral transduzierten hMSCs wurden Karyotypisierung und FISH-Analyse durchgeführt. Des Weiteren wurde der zeitliche Verlauf der Tumorsuppressor-Gene-Expression von RB1,TP53 und p21 untersucht, ein in vitro Softagar-Assay und in vivo Nacktmäusen Klonale und heterogene hMSCs-hTERT implantiert. Ergebnisse: hTERT wurde erfolgreich in hMSCs transduziert und “single-cell-picking”-Klone(SCP) konnten etabliert werden. In der RT-PCR wurde die hTERT-Expression bestätigt. Nicht-transduzierte hMSCs zeigten keine hTERT-Expression. Sowohl klonale, als auch heterogene hTERT-transduzierte hMSCs konnten über mehr als 500 Tage Kultiviert werden, während nicht-transduzierte hMSCs nach weniger als 250 Tagen seneszent wurden. Drei Phasen des Wachstums mit unterschiedlichen PDL und PDT konnten in hMSCs-hTERT beobachtet werden. Die Zellmorphologie der hMSCs-hTERT veränderte sich von einem gemischten Phänotyp in der “initialen Phase”(PDT 2,3 bis 5,5, PDL 20,7 bis 27,1) zu einem vermehrten Auftreten von flachen Zellen in der “Plateau-Phase” (PDT 9,2 bis 22,1, PDL 30,6 bis 48,2). Dies war ganz im zeitlichen Einklang mit dem Alterungsprozess von nicht transduzierten hMSCs. In der letzten und andauernden Phase zeigte sich eine hohe Anzahl von schnell wachsenden, kleinen und spindelförmigen Zellen (PDT von 2,1 bis 6,1, PDL 53,7 bis 105,6), welche aus einem Selbstselecktionierungsprozess in einer kontinuierlichen in-vitro Kultur hervorgegangen waren. Die erhaltene Differenzieungs-Kapazität der hTERT-transduzierten hMSCs wurde sowohl für klonale als auch heterogene hMSCs-hTERT durch eine positive Adipogenese-spezifische Oil-red-O-Färbung, Chondrogenese-spezifische Toluidinblau-Färbung und Osteogenese-spezifische von-Kossa-Färbung bestätigt. Zur Untersuchung einer potentiellen malignen Transformation der hMSCs-hTERT wurde eine Karyotyp-Analyse durchgeführt, die keine Auffälligkeiten zeigte. Darüber hinaus konnte eine unveränderte RB1, TP53 und p21 Tumorsuppressor-Gen-Expression nachgewiesen werden. Als Hinweis auf eine erhaltene Kontaktinhibition zeigten sich im Softagar-Assay keine Kolonien. Nach subkutaner Implantation der Zellen im Nacktmaus-Modell zeigte sich histologisch in vivo keine Tumorformation. Fazit: Zusammenfassend konnte mit dieser Arbeit erstmals gezeigt werden, dass eine lentivirale Transduktion von hMSCs mit hTERT eine effiziente und relative sichere Methode zur Erzeugung immortalisierter hMSCs ist. Obwohl es notwedig ist die Differenzierungskapazität und onkogene Potenzial für einen noch längeren Zeitraum zu untersuchen, konnte nach mehr als 500 tage in Zellkultur nachgewiesen werden, dass klonal expandierte lentivital hTERT-transduzierte hMSCs eine viel versprechende Zelllinie für die Forschung, aber möglicherweise auch für therapeutische Anwendungen zum Beispiel im Bereich “Tissue engineering” sein könnte.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 13/19
Ziel dieser Arbeit ist es, die Interaktionsmöglichkeiten von humanen mesenchymalen Stammzellen mit Gliom- und Gliomendothelzellen vor dem Hintergrund eines möglichen Einsatzes von hMSCs als therapeutische Vehikel zu untersuchen. Die Integration von Stammzellen in ein Tumorgefäßsystem soll in vitro mittels tube formation assays quantifiziert werden. Des Weiteren wird darauf eingegangen, inwieweit hMSCs über verschiedene Zellkontaktarten mit Gliomzellen interagieren und welchen Einfluss dies auf beide Zelltypen hat. Der Austausch von Substanzen via gap junctions wird ebenso wie die partielle wie komplette Zellfusion untersucht. Hierzu dienen in-vitro-Färbemethoden und immunzytochemische Ansätze. Weiterführend werden die möglichen Auswirkungen dieser Interaktionen auf zellphysiologische Eigenschaften wie Migration in einem Sphäroidmodell eruiert, das in seinem Aufbauschema näher an den in vivo vorherrschenden Bedingungen liegt als die reine Monolayer- Zellkultur. Zudem wird in vivo das Potenzial von bereits zu therapeutischen Zwecken genetisch modifizierten Stammzellen weiter untersucht sowie die im Anschluss gewonnenen Hirnresektate weiter immunhistochemisch analysiert.
Wnt/β-catenin signaling is of fundamental importance in the regulation of self-renewal, migration/invasion, and differentiation of human mesenchymal stem cells (hMSCs). Because little information is available about the function of Frizzled receptors (Fzds) as the main receptors of Wnt proteins in hMSCs, we first performed comparative Fzd mRNA expression profiling. Fzd9 and Fzd10 were not expressed in hMSCs. While Fzd3 was expressed at low levels in hMSCs, the other Fzds exhibited high expression rates. Activation and repression of Wnt signaling in hMSCs revealed that the expression levels of Fzd1, Fzd6, and Fzd7 are positively correlated with the Wnt/β-catenin activation status, whereas Fzd8 exhibited an inverse relation. For studying the functional relevance of Fzds in Wnt/β-catenin signaling, RNA interference, ectopic expression studies, and rescue approaches were performed in hMSCs carrying a highly sensitive TCF/LEF reporter gene system (Gaussia luciferase). We found that, Fzd1, Fzd5, Fzd7, and Fzd8 are largely involved in Wnt/β-catenin signaling of hMSCs. Moreover, the knockdown of Fzd5 can be compensated by the ectopic expression of Fzd7. Conversely, the ectopic expression of Fzd5 in Fzd7-knockdown hMSCs resulted in a rescue of Wnt/β-catenin signaling, pointing to a functional redundancy of Fzd5 and Fzd7.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Zellkulturen humaner mesenchymaler Stammzellen (hMSC) enthalten überwiegend drei Subpopulationen: spindelige fibroblastenähnliche Zellen, große abflachte Zellen und kleine hoch proliferative Zellen, die sogenannten rapidly self-renewing cells (RS-Zellen). Ziel dieser Studie war zunächst die Isolation dieser RS-Zellen auf Einzelzellniveau und ihre anschließende klonale Expansion auf eine für Folgeexperimente hohe Zellzahl. Das Hauptziel war das Stammzellkriterium der Plastizität für eine RS-Zelle durch Differenzierung in die adipogene, osteogene und chondrogene Richtung ausgehend von einer Zelle nachzuweisen. HMSCs der Fa. Cambrex (USA) wurden entsprechend den Herstellerangaben kultiviert. Einzelne Zellen wurden mittels single cell picking isoliert und klonal expandiert sowie anschließend entweder nach Standardprotokollen adipogen, osteogen und chondrogen differenziert, oder als Kontrolle unstimuliert kultiviert. Die histologische Auswertung der Differenzierung erfolgte mit Oil Red-O- (Fettzellen), von Kossa- (Knochenzellen) und Toluidin Blau- (Knorpelzellen) Färbung. Für die chondrogene Differenzierung wurde zudem eine spezifische Immunfluoreszenzfärbung gegen Kollagen Typ-II durchgeführt. Nach Optimierung des Isolationsverfahrens mittels Einzelzellpickens konnte ausgehend von einer einzelnen Zelle die Zellzahl innerhalb von 5 Wochen auf ca. 1 Mio. Zellen expandiert werden. Die adiopogene, osteogene und chondrogene Differenzierung konnte bei den stimulierten RS-Zellen durch die oben beschriebenen histologisch Färbemethoden nachgewiesen werden. Die unstimulierten Kontrollen veränderten sich nicht. Die Versuche wurden stets mit einer heterogenen Kontrollgruppe durchgeführt. In dieser Studie ist es gelungen, ausgehend von einer einzelnen RS-Zelle, die Differenzierung in drei verschiedene Richtungen nachzuweisen. Somit konnten für die RS-Zellen erstmals die Stammzellkriterien einer hohen Replikationsrate sowie die Plastizität durch Differenzierung in drei mesenchymale Gewebetypen nachgewiesen werden. Zudem konnten für die Klassifizierung der RS-Zellen in Bezug auf Morphologie und Wachstumskinetik wichtige Erkenntnisse erbracht werden. Aufgrund ihrer Vermehrungsfähigkeit in vitro sind RS-Zellen für das tissue engineering besonders von Bedeutung. Jedoch bedarf es weiterer Studien, um das Verhalten der RS-Zellen als Subpopulation der humanen mesenchymalen Stammzellen besser zu verstehen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Hintergrund Humane mesenchymale Stammzellen sind ein viel versprechendes Ziel für die ex vivo Gentherapie, und Lentiviren sind exzellente Vehikel für den Gentransfer in hMSCs, da sie hohe Transduktionsfrequenzen mit langfristiger Genexpression erreichen. Dennoch könnte die Seneszenz von hMSCs die therapeutische Anwendung, infolge von zeitaufwendiger Zellselektion und Virus Titration, limitieren. Diese Arbeit beschreibt optimierte Protokolle für hoch effizienten ex vivo lentiviralen Gentransfer in hMSCs und eine schnelle und verlässliche Methode, um den funktionellen lentiviralen Titer mittels quantitativer Polymerase-Kettenreaktion (qPCR) zu bestimmen. Methoden EGFP wurde als Markergen/-protein verwendet, um verschiedene lentivirale Expressionsvektoren herzustellen. Die Produktion von Lentiviren wurde mit verschiedenen Verpackungssystemen getestet. Der Prozentsatz transduzierter Zellen wurde durch Polybrene und Blasticidinselektion erhöht. hMSCs von verschiedenen Spendern wurden mittels PCR und Western Blot analysiert. Regulierte Genexpression wurde durch Herstellung eines Tet-On selbstregulierten Expressionsvektors erreicht. Mit einem p24 ELISA-Test wurden übrig gebliebene virale Partikel im Zellkulturüberstand detektiert. Die Effizienz des lentiviralen Gentransfers wurde mittels Fluoreszenz-Mikroskopie beobachtet und mittels qRT-PCR und FACS-Analyse quantifiziert. Die lentiviralen Titer wurden mit qRT-PCR der exprimierten Transgene bestimmt. Die hMSC Differenzierung wurde histologisch untersucht. Ergebnisse Selbstinaktivierende lentivirale Vektoren der dritten Generation zeigten hoch effizienten Gentransfer in hMSCs bei der Verwendung von Polybrene. Die Blasticidinselektion hat den Prozentsatz der transgenen Zellen weiter erhöht unter Selektion von Zellen die mehrere Transgenkopien tragen. Die positiven Effekte von Polybrene und der Blasticidinselektion sind nicht von hMSCs eines speziellen Spenders abhängig. Präzise Regulation der Genexpression wurde durch Herstellung eines selbstregulierten Tet-On-Expressionssystems erreicht. Keine viralen Antigene wurden im Zellkulturüberstand nach aufeinander folgenden Medienwechseln detektiert, was auf die Abwesenheit von infektiösen Partikeln nach einigen Tagen hindeutet. In dieser Arbeit wurde ein starker linearer Zusammenhang zwischen der Virusverdünnung und der Stärke der Transgenexpression mittels qPCR Analysen beobachtet, wodurch die Virustitration durch Quantifizierung der Transgenexpression ermöglicht wird. Abschließend wurde durch Differenzierung in die adipogene, osteogene und chondrogene Richtung gezeigt, dass transduzierte hMSCs ihren Stammzellcharakter beibehalten haben und dass die Transgenexpression durch die Differenzierung nicht beeinflusst wurde. Schlussfolgerungen Die Quantifizierung der Transgen-Kopienanzahl durch qRT-PCR ist eine schnelle und verlässliche Methode, um den funktionellen lentiviralen Titer nach dem ex vivo Gentransfer in hMSCs zu bestimmen. Die in dieser Arbeit optimierte und charakterisierte Methode für die effiziente lentivirale Transduktion von humanen mesenchymalen Stammzellen, in Verbindung mit regulierbarer Transgenexpression, ist ein sicheres, verlässliches und leistungsstarkes Verfahren und bildet eine aussichtsreiche Grundlage für zukünftige Gentherapie und Tissue Engineering Anwendungen in hMSCs.