POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Experimente mit hohen Struktur- und Zeitauflösungen sind Voraussetzungen, um ein detailliertes Verständnis grundlegender Prozesse auf molekularer Ebene zu erlangen. Zeitauflösungen im Bereich von Femtosekunden kann die Anreg-Abtast-Laserspektroskopie erreichen. Mit Abtastimpulsen im infraroten Spektralbereich lassen sich zudem die nötigen strukturellen Informationen gewinnen. Im Rahmen dieser Arbeit wurde ein transientes Femtosekunden-Infrarotspektrometer für verschiedene Anwendungen auf dem Gebiet der Molekülphysik weiterentwickelt. Dieses betraf zum Einen eine Erzeugung für abstimmbare Ultraviolett-Anregungsimpulse, zum Anderen eine mehrstufige, optisch parametrische Frequenzkonversion zur Generierung spektral schmalbandiger, abstimmbarer Pumpimpulse im Mittelinfraroten. An Propionsäure-Dimeren, einem Modellsystem für die biologisch relevanten Wasserstoffbrückenbindungen, wurden Infrarot-Anreg-Infrarot-Abtast-Experimente durchgeführt. Die Anregung erfolgte dabei im Bereich der OH-Streckschwingungen, während die CO-Streck- und CH-/OH-Biegeschwingungen abgetastet wurden. Es konnte gezeigt werden, dass diese Schwingungen stark aneinander koppeln. Die genaue Wellenlänge der Infrarot-Pumpimpulse hat Einfluss auf die Relaxation der Schwingungsenergie. Intramolekulare Energieumverteilung findet mit Zeitkonstanten von 0,5 ps und 1,5 ps statt; eine weitere intramolekulare Relaxation, vornehmlich aus mitangeregten CH-Streckschwingungen, sowie das Kühlen zum Lösungsmittel, geschehen mit Zeiten von 12 ps. Darüber hinaus wurde das transiente Brechen nur einer der beiden Wasserstoffbrückenbindungen der Propionsäure-Dimere nach der Infrarot-Anregung beobachtet. Neben umfangreichen Experimenten mittels Ultraviolett-/Sichtbar-Anreg-Infrarot-Abtastspektroskopie wurde an photochromen Fulgiden und Fulgimiden eine Zuordnung von Schwingungsbanden mit Hilfe von Dichtefunktionaltheorie-Rechnungen durchgeführt. Lichtinduzierte, ultraschnelle und reversibel schaltbare Ringschluss- sowie Ringöffnungsreaktionen zwischen den thermisch stabilen Konformeren wurden untersucht. Mit dem Zerfall eines elektronisch angeregten Zustands, dessen Lebensdauer auf der Zeitskala weniger Pikosekunden anzusiedeln ist, wird das entsprechende Photoprodukt gebildet. Alle Photoreaktionen sind nach 50 ps abgeschlossen. Durch spektral sehr breitbandiges Abtasten konnten auch Infrarotspektren des elektronisch angeregten Zustandes gewonnen und dessen Absorptionsbanden teilweise auch Normalschwingungen zugeordnet werden. Die potentielle Eignung von Fulgiden als ultraschneller, optischer Speicher wurde in einem Schreib-Lösch-Zyklus demonstriert. Mit einem ersten Ultraviolett-Impuls wurde die Ringschluss-, mit einem weiteren Impuls im Sichtbaren nach nur 4 ps die Ringöffnungsreaktion induziert, entsprechend einer möglichen Schalttaktrate von 250 GHz. Die Absorptionsunterschiede aufgrund der Konformationsänderungen konnten im Infraroten ausgelesen werden, ohne die jeweilige Konformation der Moleküle zu verändern.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Mit den Mitteln der Infrarotspektroskopie wurde der Einfluss der organischen Hülle auf Struktur und Dynamik von CdSe Nanopartikeln untersucht. Zunächst wurde ein Verfahren entwickelt, das es ermöglicht, aus dem statischen Infrarotspektrum Informationen über die Qualität der organischen Hülle und das Bindungsverhalten der Liganden zu gewinnen. An qualitativ hochwertigen und gut charakterisierten Proben wurde anschließend die Dynamik des niederenergetischsten Elektronenniveaus 1S nach optischer Anregung im Sichtbaren zeitaufgelöst gemessen. Als Referenz diente CdSe TOPO, das durch Proben mit den Liganden Octanthiol, Octansäure, Octylamin, Naphthoquinon, Benzoquinon und Pyridin ergänzt wurde. Die untersuchten Nanopartikel hatten einen Durchmesser von 4.86 nm. Mit Hilfe des Anreg-Abtast- oder Pump-Probe-Verfahrens wurden zunächst Messungen im Pikosekundenbereich durchgeführt. Die Anregungswellenlängen wurden dabei spektral eingeschränkt und so gewählt, dass selektiv die Übergänge 1S-1S und 1P-1P, nicht aber der dazwischenliegende 2S-1S-Übergang, angeregt wurden. Die Anregungsintensitäten wurden bewusst so niedrig gehalten, dass die Anregung mehrerer Exzitonen in einem Kristall vermieden werden konnte. Die Abtastwellenlänge im Infraroten entsprach der Energiedifferenz zwischen den Elektronenniveaus 1S und 1P. Die Transienten im Pikosekundenbereich zeichnen sich durch einen steilen Anstieg des Signals aus, auf den ein multiexponentieller Zerfall folgt. Der Anstieg, der die Bevölkerung des angeregten Zustands widerspiegelt, ist unabhängig von der Wahl der Liganden. Der Einfluss der organischen Hülle wird erst in den unterschiedlichen Zerfallszeiten der angeregten Elektronenniveaus sichtbar. Der Zerfall des Messsignals von CdSe TOPO lässt sich näherungsweise mit drei Zeitkonstanten beschreiben: eine Zerfallszeit im frühen Pikosekundenbereich, eine Zeitkonstante um die hundert Pikosekunden und eine Zeitkonstante bei einigen Nanosekunden. Bei ansteigender Abtastwellenlänge werden die Zerfallszeiten länger. Durch gezielte Anregung des 1S-1S und des 1P-1P-Übergangs konnte der Zerfall des 1P-Zustands in den energetisch günstigeren 1S-Zustand beoachtet werden, der im verzögerten Anstieg des Messsignals bei Anregung des 1P-1P-Übergangs sichtbar wird. Dem Übergang zwischen den Elektronenniveaus 1P und 1S konnte eine Zeitkonstante von ca. 190 fs zugewiesen werden, die nicht von der Wahl der organischen Hülle beeinflusst wird. Nanopartikel mit den Liganden TOPO, Pyridin und Octanthiol zeigen auch nach 3 ns noch ein gut sichtbares Messsignal. An diesen Proben wurden Messungen im Nanosekundenbereich durchgeführt. Auch hier ist der Einfluss der organischen Hülle auf die Dynamik der Nanopartikelprobe deutlich zu erkennen. Mit der Kombination beider Messreihen konnte erstmals ein Zeitbereich abgedeckt werden, der sich von einigen hundert Femtosekunden bis in den Mikrosekundenbereich hinein erstreckt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die zeitaufgel"oste Fluoreszenzspektroskopie stellt einen Zugang zur Dynamik von Molek"ulen dar. Da schnelle molekulare Vorg"ange, wie z.B. Isomerisierungen, innerhalb weniger 100 fs oder sogar darunter ablaufen k"onnen, erfordert ihre Untersuchung Techniken, die Zeitaufl"osungen in diesem Bereich erlauben. Elektronische Me"sverfahren erreichen derartige Zeitaufl"osungen jedoch nicht. Daher wird bei zeitaufgel"osten Fluoreszenzmessungen auf optische Methoden zur"uckgegriffen. In dieser Arbeit wird der Aufbau und die Weiterentwicklung eines Me"ssystems f"ur die zeitaufgel"oste Beobachtung von Fluoreszenzspektren molekularer Proben auf der Basis des Kerr-Effekts vorgestellt. Nach Anregung der Proben mit Laserimpulsen im ultravioletten oder sichtbaren Spektralbereich kann bei einer Zeitaufl"osung von ca. 100 fs gleichzeitig eine Messung "uber einen sehr breiten Spektralbereich vom nahen Ultravioletten bis ins nahe Infrarote durchgef"uhrt werden. Auf dieser Grundlage wird die Fluoreszenz einer Reihe von Proben untersucht, die nach optischer Anregung isomerisieren. Es handelt sich hierbei um die Molek"ule 4-Nitro-4'-(Dimethylamino)-Azobenzol, Bakteriorhodopsin und Proteorhodopsin. Das Push-Pull substituierte Azobenzolderivat 4-Nitro-4'-(Dimethylamino)-Azobenzol (NA) isomerisiert nach Photoanregung ebenso wie das unsubstituierte Azobenzol. Trotz stark unterschiedlicher elektronischer Struktur offenbart sich eine erstaunliche "Ahnlichkeit in der Dynamik beider Molek"ule. Beide Systeme besitzen in der Emission ein "ahnliches biphasisches Verhalten. F"ur NA wurden Zeitkonstanten von 0.08 ps und 0.8 ps und ein verz"ogerter Anstieg der Fluoreszenz im langwelligen Teil der Spektren bestimmt. Ein Unterschied zu unsubstituiertem Azobenzol besteht in den um etwa den Faktor drei k"urzeren Zeitkonstanten von NA. Der prim"are Schritt im Photozyklus von Bakteriorhodopsin (BR) besteht in der Isomerisierung des Retinalmolek"uls, welches als Chromophor dient. W"ahrend die Zeitskalen dieser Isomerisierung aus transienten Absorptionsexperimenten bereits bekannt sind, unterliegen die damit assoziierten molekularen Prozesse weiterhin einer kontroversen Diskussion. In den hier durchgef"uhrten Emissionsmessungen wurde neben den bereits bekannten Zeitkonstanten von < 0.15 ps und 0.45 ps f"ur den Fall niedriger Anregungsdichten das erste Mal ein dynamischer Stokes-Shift auf der Zeitskala von 0.2 ps entdeckt. Im Falle hoher Anregungsdichten k"onnen die deutlichen "Anderungen der zeitaufgel"osten Spektren Mehrphotonenabsorptionen zugeordnet werden. Erst vor kurzer Zeit wurde das Proteorhodopsin (PR) als neues Mitglied der Familie der rhodopsinartigen Proteine entdeckt. Ebenso wie bei BR ist der prim"are Schritt des Photozyklus die Isomerisierung seines Retinalmolek"uls. Hier wurden zum ersten Mal zeitaufgel"oste Fluoreszenzmessungen an PR durchgef"uhrt. Es wurde, wie auch bei BR, ein dynamischer Stokes-Shift gefunden. Im Gegensatz zu BR besitzt PR in der Emission jedoch drei Zeitkonstanten von < 0.15 ps, 0.45 ps und 4 ps. Die dritte Zeitkonstante kann mit einem spektral dunklen Zwischenzustand assoziiert werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die Arbeit liefert neue Beiträge zu zwei wichtigen biophysikalischen Fragestellungen der Peptid-/Proteinfaltung: 1. Welchen Einfluss hat das Lösungsmittel auf die initiale Konformationsdynamik? Das Molekül Azobenzol dient dazu, gezielt in einem ringförmigen Oktapeptid getriebene Konformationsänderungen auszulösen. Azobenzol isomerisiert nach Lichtanregung innerhalb weniger Pikosekunden. Es werden neue Ergebnisse zum Isomerisierungsmechanismus präsentiert, die wichtige Hintergrundinformationen zum Verständnis der Moleküldynamik liefern. Durch die Isomerisation ändert sich die Länge des Azobenzols um fast den Faktor zwei, wodurch in den Azobenzol-Peptiden konformationelle Umorganisationen ausgelöst werden. Bereits früher durchgeführte Messungen an DMSO-löslichen Azobenzol-Peptiden zeigten, dass kinetische Prozesse, die mit Zeitkonstanten von ~10ps und ~100ps ablaufen, der Bewegung des Peptid-Teils zugeordnet werden können. Die hier präsentierten Ergebnisse an Azobenzol-Peptiden, die in Wasser löslich sind zeigen, dass Prozesse auf Zeitskalen >5 ps in Wasser um den Faktor 1.5-2 beschleunigt ablaufen. Man sieht in diesen ultraschnellen Kinetiken echte Umorganisationen des Peptid-Rückgrats, deren Geschwindigkeit durch die Viskositat des Lösungsmittels bestimmt sind 2. Wie schnell ist die Kontaktbildung in Peptiden? Fur ein Verständnis der Proteinfaltung ist wichtig zu wissen, wie lange es dauert, bis zwei (räumlich entfernte) Aminosäuren innerhalb eines Peptids einen Kontakt ausbilden. Zur Bestimmung dieser Kontaktbildungsrate werden Experimente an Xanthon-Peptiden präsentiert, die zwei Marker-Moleküle enthalten. Messungen ergeben, dass der durch einen kurzen Lichtimpuls angeregte Donor Xanthon innerhalb weniger Pikosekunden einen langlebigen Triplett-Zustand besetzt. Weiterhin wird gezeigt, dass bei direktem Kontakt zum Akzeptor Naphthalin ein Triplett-Triplett Energietransfer innerhalb