POPULARITY
Welche Rolle spielt die Zeit bei Prozessen, die im Boden ablaufen?
Das Thema der heutigen Episode ist »Modelle«. Was ist ein Modell in Bezug zur Realität, welche Art vom Modellen gibt es und wie sollten wir als Gesellschaft mit Modellen umgehen, im besonderen bei Fragen, die das Verhalten komplexer Systeme in die Zukunft projeziert, wie etwa Klimamodelle. Mein heutiger Gesprächspartner ist, und das freut mich besonders, ein wiederkehrender Experte, Dr. Andreas Windisch. Andreas ist ein theoretischer Physiker, der 2014 an der Universität Graz sub auspiciis praesidentis promoviert hat. Nach mehreren Jahren als PostDoc an der Washington University in St. Lous in den USA (Schrödinger Fellow des öst. Wissenschaftsfonds) kehrte er nach Österreich zurück, und übernahm die Rolle eines Forschungsteamleiters bei 'Know-Center', einem Forschungszentrum für KI. Andreas ist Mitbegründer und Leader der Reinforcement Learning Community, einer eigenständigen Arbeitsgruppe, die Teil des unabhängigen Think Tanks 'AI AUSTRIA' ist. Zudem ist Andreas Honorary Research Scientist der Washington University in St. Louis, er betreut Start-Ups bei dem European Space Agency Inkubator Science Park Graz und lehrt KI an der FH-Joanneum. Seit März 2022 hält er auch eine Stelle an der TU-Graz. Was ist ein Modell? Wie verhält sich ein Modell zur Realität, zur Natur? Welche Rolle spielen Variable und Freiheitsgrade? Andreas erklärt zunächst fundamentale Modelle — am Beispiel des Standardmodell der Teilchenphysik. »Der Natur ist unsere persönliche Sichtweise natürlich egal.« Damit ist die Suche nach der Abweichung vom Modell ein wesentlicher Aspekt der Modellierung. Was hat es mit der Filterung durch unsere Sinne und durch unsere Instrumente auf sich? Können wir überhaupt ohne Modell und Theorie Beobachtungen machen? Warum ist Platons Höhlengleichnis ein gutes Beispiel für Modell und Realität? Welche Arten der Modellierung gibt es? Vom bottom up / fundamentalen Modell zur Welt im Großen, zu effektiven Modellen? Damit stellt sich die Frage: kann ich die Welt im Großen aus dem fundamentalen Verständnis des Kleinstes modellieren? Also: kann ich mit dem Standardmodell der Teilchenphysik etwa das Klima modellieren? Sollte es nicht nur ein Modell der Welt geben? Andreas erklärt, warum dies nicht möglich ist. Damit stellt sich die Frage: was ist eine Skala? Was sind Hierarchien von Modellen nach Skala und Fragestellung? Wir diskutieren Beispiele von der Quantenmechanik über die klassische Mechanik bis zur Relativitätstheorie und wieder zurück. Wie verhält es sich im Übergang von einem Modell einer Skala oder Anwendungsbereich zu einem Modell einer andere Skala? Wo liegen die Grenzen und wie sieht es in den Übergangsbereichen aus? Wie weit kann Extrapolation gehen? Wenn ich Modelle außerhalb des Gültigkeitsbereiches »befrage«, bekomme ich Antworten, aber was ist von diesen zu halten? Gilt die heute häufig formulierte Annahme: je mehr Daten desto besser (für die Entscheidungsfindung)? Die richtige Information und Abstraktion zur richtigen Zeit ist essentiell! Wir sprechen weiters über mathematische Symmetrien, »Schönheit« und Qualität von Modellen, datengetriebenem (machine learning) vs. Modell-Zugang. Sind wir am Ende der Theorie angelangt, wie vor einiger Zeit behauptet wurde, oder war das ein Irrtum? Wie repräsentativ sind die Daten mit denen modelliert wird im Bezug auf die Daten, die in der Realität zu erwarten sind? Ändert sich das über die Zeit der Modell-Nutzung? Wir kehren dann wieder an den Anfang zurück und diskutieren ein fundamentales historisches Beispiel, das n-Körper-Problem, beziehungsweise eine vereinfachte Form davon, das Dreikörperproblem, das ja einfach physikalisch zu lösen sein sollte. Oder doch nicht? Warum nicht? Was sind die Erkenntnisse und Folgen dieses historischen Problems, getrieben von König Oskar II und Henri Poincaré? Es kann doch nicht so schwer sein, die Bahnen von Sonne, Erde und Mond zu berechnen! Aus diesem Beispiel folgend: Was sind (nicht-lineare) chaotische Systeme und was bedeutet das für Modellierung und Vorhersage, vor allem in Bezug auf die Anfangsbedingungen und die Möglichkeit diese genau zu bestimmen? Wie hängt dies mit den intrinsischen Zeitskalen des Systems zusammen? Liegen hier natürliche Grenzen der Vorhersagbarkeit, die wir auch mit stetig besseren Sensoren, Computern und Algorithmen nicht brechen können? Was sind Attraktoren komplexer dynamischer Systeme und Tipping Points (auch Kipppunkte,Phasenübergänge oder Regime Shifts genannt)? Kann man vorhersagen, wann sich ein System einem Kipppunkt nähert? Dann diskutieren wir die Konsequenzen für Risikomanagement, den Unterschied zwischen statistisch gut beschreibbaren und bekannten Systemen, versus komplexen chaotischen Systemen und dem Vorsorgeprinzip. Was können wir daraus für politische und gesellschaftliche Entscheidungsprozesse mitnehmen? Passend zur vorigen Episode disuktieren wir auch das Risiko des »Overselling« wissenschaftlicher Erkenntisse und vor allem von Modell-Ergebnissen als Wissenschafter. Zum Schluss stellen wir die Frage, wie weit wir als Gesellschaft kritischen Diskurs verlernt haben. »Alle Experten sagen...« ist keine relevante Aussage, sondern ein rhetorischer Trick um Diskurs zu beenden. Unterschiedliche Meinungen sind gerade bei komplexen (wicked) Problems von größter Bedeutung. Es gibt keine zentrale Anlaufstelle der Wahrheit, auch wenn das von manchen politischen Akteuren gerne so dargestellt wird. Was Information und Misinformation ist, stellt sich in der täglichen Praxis als sehr schwieriges Problem heraus. Auch die aktuelle Rolle der »alten« Medien ist stark zu hinterfragen. Referenzen Andere Episoden Episode 67: Wissenschaft, Hype und Realität — ein Gespräch mit Stephan Schleim Episode 55: Strukturen der Welt Episode 53: Data Science und Machine Learning, Hype und Realität Episode 47: Große Worte Episode 37: Probleme und Lösungen Episode 27: Wicked Problems Episode 25: Entscheiden unter Unsicherheit Episode 10: Komplizierte Komplexität Andreas Windisch Andreas Windisch auf LinkedIn Episode 18: Gespräch mit Andreas Windisch: Physik, Fortschritt oder Stagnation Fachliche Referenzen Chris Anderson, The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, Wired (2008) Daisyworld Model TED-Talk Bill Gates: The next outbreak, we are not ready (2015) Marten Scheffer, Catastrophic regime shifts in ecosystems: linking theory to observation (2003)
Gudrun traf im November 2019 Jan Richter. Er ist einer der Gründer der Batemo GmbH in Karlsruhe. Mit den Kollegiaten von SiMET hatte Gudrun das Unternehmen kurz vorher in der Technologiefabrik besucht und dabei das Podcast-Gespräch vereinbart. Batemo ist noch ein recht junges Unternehmen. Es wurde im März 2017 von Michael Schönleber und Jan Richter gegründet. Die beiden haben an der KIT-Fakultät für Elektrotechnik und Informationstechnik promoviert. Sie hatten sich schon länger mit der Idee auseinandergesetzt, im Anschluss an die Promotionszeit den Schritt zur Unternehmensgründung zu wagen. Es war klar, dass sie sich mit einem Thema beschäftigen möchten, das Ihnen ermöglicht, die Entwicklung von Akkus zu beeinflussen. Außerdem wollten sie gern ohne finanzielle Fremdmittel auskommen, um in jedem Moment die volle Kontrolle zu behalten. Inzwischen ist das gut gelungen und die Firma ist auf Simulationssoftware für Lithium-Ionen-Batterien spezialisiert. Für beliebige Lithium-Ionen-Zellen erstellen sie einen digitalen Zwilling, also ein Modell im Computer. Dass sie damit glaubwürdig für zahlungsfähige Kunden sind, liegt daran, dass sie auch die Validität dieser Modelle im gesamten Betriebsbereich nachweisen. Die Modelle sind sehr komplexe und stark nichtlinear gekoppelte Systeme aus algebraischen und partiellen Differentialgleichungen, die die physikalischen, chemischen und thermodynamische Prozesse abbilden. Sie sind auch dafür geeignet, das Verhalten der Akkus über die Lebenszeit der Zellen hin nachzubilden. Es ist besonders herausfordernd, da die Prozesse in unterschiedlichen Längen- und Zeitskalen ablaufen. Zwei Fragen, die beim Besuch mit den SiMET-Kollegiaten im Mittelpunkt des Gespräches standen, sind: Mit welchen Betriebsstrategien wird die Lebensdauer der Zellen erhöht? Wie werden innovative Schnellladeverfahren entwickelt, die die Zellen nicht zu schnell altern lassen? Im Gespräch berichtet Jan auch davon, wieso er sich für ein Studium der Elektrotechnik entschieden hat und wie er den Weg in die Selbstständigkeit von heute aus bewertet. Literatur und weiterführende Informationen A. Latz, J. Zausch: Thermodynamic consistent transport theory of Li-ion batteries, Journal of Power Sources 196 3296--3302, 2011. M. Maier: The Mathematical Analysis of a Micro Scale Model for Lithium-Ion Batteries. PhD Thesis KIT 2016 M. Kespe, H. Nirschl: Numerical simulation of lithium-ion battery performance considering electrode microstructure, International Journal of Energy Research 39 2062-2074, 2015. Podcasts A. Jossen: Batterien, Gespräch mit Markus Völter im Omega Tau Podcast, Folge 222, 2016. J. Holthaus: Batterien für morgen und übermorgen, KIT.Audio Podcast, Folge 2, 2016. D. Breitenbach, U. Gebhardt, S. Gaedtke: Elektrochemie, Laser, Radio, Proton Podcast, Folge 15, 2016. M. Maier: Akkumulatoren, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 123, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. V. Auinger: Optimale Akkuladung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 160, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Carelli, G. Thäter: Batteries, Gespräch im Modellansatz Podcast, Folge 211, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
Gudrun spricht mit Axel Voigt. Er ist Professor für Wissenschaftliches Rechnen und Angewandte Mathematik an der TU Dresden. Axel war Ende Oktober 2019 zu Gast in Gudruns Arbeitsgruppe, um seine Modelle für Kristallgitter zu diskutieren. Der Wunsch der Gruppe war, sowohl die Modelle als auch die dafür passenden numerischen Verfahren besser zu verstehen. Sie sind insbesondere für die Simulation der Vorgänge in Akkumulatoren interessant, die im Rahmen das Graduiertenkollegs SiMET vorangetrieben werden. Viele feste Körper haben eine Gitterstruktur. Für z.B. Silizium, Aluminium und Stahl ist dies ein Kristallgitter. In der Schule wird es der Einfachheit halber oft so dargestellt, als wäre das Kristallgitter eine feste Größe für solche Stoffe. In der Natur sind es aber polykristalline Materialien. D.h. sie bestehen aus vielen unterschiedlichen Einzelkristallen. Diese sind durch Korngrenzen voneinander getrennt. Das Studium polykristalliner Materialien erfordert theoretische und rechnerische Techniken, die Untersuchungen auf unterschiedlich großen Skalen ermöglichen. Kristallgitterverformungen können mikroskopisch beschrieben werden, indem die Position der Atome explizit berücksichtigt wird, oder makroskopisch durch Kontinuumselastizität. Grobkörnige, mesoskalige Ansätze sind daher geeignete Werkzeuge, um Informationen über polykristalline Materialien bereitzustellen. In seiner Forschung betrachtet Axel sie als kontinuierliche elastische Felder, die aus einer atomistischen Darstellung der kristallinen Strukturen abgeleitet sind. So enthält sie auch wichtige Merkmale, die für die mikroskopische Skala typisch sind. Die Größe und Phase der Amplituden der Fourierspektrum, zusammen mit der kontinuierlichen Beschreibung der Dehnungen, sind in der Lage, Kristalldrehungen, Gitterverformungen und Versetzungen zu charakterisieren. Darüber hinaus stellen sie in Kombination mit der so genannten Amplitudenerweiterung des Phasenfeld-Kristallmodells ein geeignetes Werkzeug zur Überbrückung mikroskopischer bis makroskopischer Skalen dar. Die Amplitudenerweiterung des Phasenfeld-Kristallmodells ermöglicht es, die Kristallgittereigenschaften auf diffusen Zeitskalen zu beschreiben, indem sie sich auf kontinuierliche Felder konzentriert, die auf Längenskalen variieren, die größer als der Atomabstand sind. So ermöglicht es die Simulation großer Systeme, die noch Details des Kristallgitters beibehalten. Axel Voigt hat an der TU München studiert und promoviert. Nach einem Ausflug in die Wirtschaft war er ab 2001 Gruppenleiter am Forschungsinstitut caesar in Bonn und hat sich dort auch habilitiert. Seit 2007 ist er in Dresden an der TU als Professor tätig. Literatur und weiterführende Informationen M. Salvalaglio, A. Voigt, K. R. Elder: Closing the gap between atomic-scale lattice deformations and continuum elasticity. npj Computational Materials 5 (2019), 48 S. Praetorius, M. Salvalaglio, A. Voigt: An efficient numerical framework for the amplitude expansion of the phase-field crystal model. Modelling Simul. Mater. Sci. Eng. 27 (4) (2019), 044004 M. Salvalaglio, R. Backofen, K. R. Elder, A. Voigt: Defects at grain boundaries: a coarse-grained, three-dimensional description by the amplitude expansion of the phase-field crystal model. Phys. Rev. Materials 2 (2018), 053804 Podcasts S. Carelli, G. Thäter: Batteries, Conversation im Modellansatz Podcast, Episode 211, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. L. Wagner, G. Thäter: Elastoplastizität, Gespräch im Modellansatz Podcast, Folge 210, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. M. Maier: Akkumulatoren, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 123, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Hier ist Folge 29 unserer Mandelbrot Talks! In dieser Folge präsentieren wir Euch unsere Diskussionsrunde vom 26. Januar 2019, die wir mit drei Gästen im Rahmen der Göttinger Nacht des Wissens geführt haben. Unser Oberthema waren dabei Biophysik und die Arbeit im Labor. Unsere Gäste waren: Jörg Enderlein: Professor Enderlein studierte an der Universität Odessa Physik und schloss an dieses Studium eine Promotion der Humboldt-Universität Berlin an. Nach Aufenthalten in Los Alamos, Regensburg, am Forschungzentrum Jülich und Tübingen ist er seit 2008 Professor am dritten physikalischen Institut an der Universität Göttingen. Er forscht mit seiner Gruppe an Einzelmolekül-Fluoreszenzmikroskopie und deren Bildgebung und an Protein Dynamik und der Faltung selbiger. In seiner Gruppe forschen Physiker, Biologen und Informatiker an Methodenverbesserung, in Zusammenarbeit mit dem Sonderforschungsbereich 937 und vielen weiteren auch internationalen Gruppen. Jan-David Nicolas: Jan-David studierte an der Universität Göttingen Physik und promovierte hier dann von 2015 bis 2018 am Institut für Röntgenphysik. Sein Thema war die Röntgenanalyse von biologischen Zellen und Gewebe durch Streuung, sowie kohärente Bildgebung auf verschiedenen Skalen. Nach der Promotion ist er in Göttingen geblieben und arbeitet weiter an diesen Themen. Michael Berger: Michael studierte an der Universität Bochum Physik und spezialisierte sich während seines Studiums auf dem Gebiet der Neuroinformatik. Anschließend promovierte er am Deutschen Primatenzentrum, DPZ, hier in Göttingen. Dabei untersucht er, wie das Gehirn Armbewegungen plant und ausführt. Nach seiner Promotion arbeitet er auch weiterhin am DPZ an diesem Thema. Mit diesen drei Gästen haben wir zunächst einzeln über ihre Forschung, bevor wir dann zu gemeinsamen Themen gekommen sind, darunter die Zeitskalen von Forschungsprojekten, die Bedeutung wissenschaftlicher Kooperationen, das Leben und die Karriereplanung im Wissenschaftsbetrieb sowie das Gelingen guter Wissenschaftskommunikation. Uns hat dieses etwas andere Format sehr viel Spaß gemacht, wir hoffen, euch gefällt diese Folge ebenfalls. Liebe Grüße, Jeanette und Christoph
Diese Folge ist eines von drei Gesprächen mit Mathematikerinnen und Mathematikern an der TU München in Garching bei München, die Gudrun am 10. April 2017 dort geführt hat. Christina Kuttler enwickelt und untersucht mathematische Modelle, die helfen, Bakterien-Kommunikation besser zu verstehen. Ausgangspunkt des Forschungsthemas war die Beobachtung, dass bestimmte Meeresbakterien (nämlich Aliivibrio fischeri) im Leuchtorgan des Tintenfisches Euprymna scolopes Licht aussenden können, sobald genug von ihnen vorhanden sind. Natürlich stellte sich die Frage: Wie stellen sie fest, dass sich leuchten lohnt, d.h. dass genug Bakterien ihrer Art versammelt sind? Biologie musste also durch gezielte Experimente und allgemeine Beobachtungen klären: Was und wie kommunizieren diese und andere Bakterien? Die typischen Antwort im Umfeld der Arbeitsgruppe von Christina Kuttler sind: Bakterien eruieren über chemische Signalstoffe, die in den Zellen produziert und ausgetauscht werden, ob in örtlicher Nähe noch mehr Bakterien ihrer Art vorhanden sind und in welcher Konzentration. Dafür haben sie Rezeptoren in den Zellen, die die Signalstoffkonzentration messen. Auf die gleiche Weise können sich auch bestimmte Krankheitserreger zunächst vermehren ohne den Wirt anzugreifen. Erst wenn eine gewisse Schwelle überschritten wird, ändern sie ihr Verhalten und beginnen ihre Wirkung zu entfalten. Die Änderung des Verhaltens unter den Bedingungen "ich bin fast allein" bzw. "wir sind viele" erfolgt über Genregulationssysteme, d.h. konkrete Informationen auf den Genen werden aktiviert oder ausgeschaltet - je nachdem welche Signalstoffkonzentration gemessen wird. In diese Prozesse kann man durch Marker in experimentellen Untersuchungen eingreifen und dadurch auch messen. Die dabei gewonnenen Daten werden in Modelle gegossen, die so komplex sind, dass man sich dafür Mathematiker und Mathematikerinnen ins Team holt. Meist werden große Systeme von Differentialgleichungen aufgestellt und durch Untersuchung der Lösungseigenschaften der Gleichungen kann man überprüfen, welche Experimente noch weiter Aufschluss darüber geben können, ob das System ein gutes Modell für das Verhalten der Bakterien ist. Hierzu sind einerseits qualitative Untersuchungen der Gleichungen hilfreich, die z.B. Bereiche finden, in denen bestimmte Werte steigen oder fallen (und wie schnell, d.h. in welcher Ordnung) oder wo Stabilitätseigenschaften vorliegen. Es kommt dabei z.B. vor, dass Stabilitätsbereiche mathematisch detektiert werden, die erst später durch Experimente nachgestellt und dadurch verifiziert werden. Andererseits erfolgt eine quantitative Untersuchung, d.h. die Systeme von Differentialgleichungen werden numerisch (näherungsweise) gelöst. Es ist möglich auf diese Weise auch für verschiedene dem Prozess inhärente Zeitskalen die Modelle zu simulieren, denn dafür stehen gute und gut verstandene numerische Verfahren zur Verfügung. Beide Zugänge führen zu Ergebnissen, die als gemeinsame Erfolge von Mathematik und Biologie veröffentlicht werden. Im Wesentlichen konzentrieren sich die Forschergruppen darauf, Prinzipien zu verstehen, die hinter der beobachteten Bakterien-Kommunikation stehen. In der bisherigen Arbeit und in naher Zukunft werden noch kaum stochastische Effekte in Modellen berücksichtigt und in der Regel sind nur gemittelte Werte im Modell dargestellt. Im Moment wird der Zugang auf die Untersuchung von Bakteriophagen ausgedehnt und könnte dazu führen, dass man Alternativen zu klassischen Antibiotika entwickeln kann. Prof. Christina Kuttler hat seit 2008 die Professur für Mathematik in den Lebenswissenschaften an der TUM inne. Sie hat in Tübingen Mathematik, Physik & Informatik studiert und dort auch promoviert. Sie wechselte 2004 nach München - zunächst als Postdoc im Institut für Biomathematik und Biometrie am dortigen Helmholtzzentrum. Literatur und weiterführende Informationen B.A. Hense, C. Kuttler e.a.: Efficiency Sensing - was messen Autoinduktoren wirklich? Biospektrum 01.08 (18-21), 2008. Stephen J. Hagen (Ed.): The Physical Basis of Bacterial Quorum Communication, Springer Verlag, 2015. P. Kumberger, C. Kuttler, P. Czuppon, B.A. Hense: Multiple regulation mechanisms of bacterial quorum sensing, Biomath 5, 1607291 (open access), 2016. L. Tetsch: Tintenfisch mit Taschenlampe, Spektrum Magazin, 2016. Podcasts L. Adlung: Systembiologie, Gespräch mit G. Thäter und S. Ritterbusch im Modellansatz Podcast, Folge 39, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. K. Leinweber, M. von Toor: Betreutes Überleben, KonScience Podcast, Folge 30, 2015.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Die grundlegenden Funktionsprinzipien der Natur zu verstehen, ist seit jeher Antrieb der Naturwissenschaften. Verhalten und Eigenschaften von Festkörpern werden dabei häufig von dynamischen Prozessen auf atomarer Skala (< 10^-10 m) bestimmt, welche typischerweise auf Zeitskalen im Bereich von zehn Femtosekunden (10^-15 s) bis hin zu vielen Picosekunden (10^-12 s) ablaufen. Zeitaufgelöste Elektronenbeugung an kristallinen Festkörpern ermöglicht die direkte Beobachtung solcher Prozesse in Raum und Zeit. Die bislang mit diesem Verfahren erreichte Zeitauflösung von etwa 100 fs eignet sich jedoch nicht zur Beobachtung der schnellsten Prozesse in Festkörpern. Auch die, zur zuverlässigen Auflösung von großen Elementarzellen molekularer Kristalle erforderliche, transversale Kohärenz ist unzureichend. Eine wesentliche Ursache für diese beiden Probleme liegt in der gegenseitigen Coulomb-Abstoßung der Elektronen innerhalb eines Pulses und den daraus resultierenden Veränderungen der Geschwindigkeitsverteilungen in radialer und longitudinaler Richtung. Während erstere zu verringerter transversaler Kohärenz führt, hat letztere längere Elektronenpulsdauern und damit eine begrenzte Zeitauflösung zur Folge. In dieser Arbeit wird ein Messaufbau zur zeitaufgelösten Elektronenbeugung vorgestellt, welcher auf der Erzeugung von nur einem Elektron pro Puls basiert. Aufgrund der Vermeidung von Coulomb-Abstoßung innerhalb der Pulse ist dieser Ansatz eine vielversprechende Basis zur konzeptionell nahezu unbegrenzten Verbesserung der Zeitauflösung. Eine hier eigens entwickelte, thermisch stabilisierte Elektronenquelle garantiert einen hohen Grad an Kohärenz bei gleichzeitig hervorragender Langzeitstabilität der Photoelektronenausbeute. Insbesondere letzteres ist für zeitaufgelöste Beugungsexperimente mit Einzeleelektronen aufgrund der längeren Integrationszeit unerlässlich, konnte jedoch durch vorhergehende Quellen nicht erreicht werden. Darüber hinaus werden in dieser Arbeit die besonderen Ansprüche der Einzelelektronenbeugung an die zu untersuchenden Materialien diskutiert und Strategien zur Vermeidung von Schäden an der Probe durch akkumulierte Anregungsenergie entwickelt. Diese erfordern neue Schwerpunkte bei der Probenpräparation, welche entwickelt und diskutiert werden. Die Beobachtung der komplexen Relaxationsdynamik in Graphit-Dünnfilmen mit zeitaufgelöster Einzelelektronenbeugung demonstriert abschließend die generelle Eignung dieses Verfahrens als zuverlässige Methodik zur Untersuchung von reversibler, struktureller Dynamik in Festkörpern mit atomarer Auflösung. Nicht-relativistische Einzelelektronenpulse können mit Hilfe von zeitabhängigen Feldern bei Mikrowellenfrequenzen bis in den 10 fs-Bereich komprimiert werden, eventuell sogar bis in den Attosekundenbereich. Die hier demonstrierte langzeitstabile und hochkohärente Elektronenquelle, sowie die Methodiken zur Probenpräparation und zeitaufgelösten Beugung mit Einzelelektronenpulsen liefern die Basis für zukünftige Experimente dieser Art.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
In der vorliegenden Arbeit wird mit Hilfe der verallgemeinerten Eichtheorie/Gravitations-Dualität, welche stark gekoppelte Eichtheorien mit schwach gekrümmten gravitativen Theorien verbindet, stark korrelierte Quantenzustände der Materie untersucht. Der Schwerpunkt liegt dabei in Anwendungen auf Systeme der kondensierten Materie, insbesondere Hochtemperatur-Supraleitung und kritische Quantenzustände bei verschwindender Temperatur. Die Eichtheorie/Gravitations-Dualität entstammt der Stringtheorie und erlaubt eine Umsetzung des holographischen Prinzips. Aus diesem Grund wird eine kurze Einführung in die Konzepte der Stringtheorie und ihre Auswirkungen auf das holographische Prinzip gegeben. Für das tiefere Verständnis der effektiven Niederenergie-Feldtheorien wird zusätzlich die Supersymmetrie benötigt. Ausgestattet mit einem robusten Stringtheorie-Hintergrund wird die unterschiedliche Interpretation der Dirichlet- oder D-Branen, ausgedehnte Objekte auf denen offene Strings/Fäden enden können, diskutiert: Zum einen als massive solitonische Lösungen der Typ II Supergravitation und auf der anderen Seite, ihre Rolle als Quelle für supersymmetrische Yang-Mills Theorien. Die Verbindung dieser unterschiedlichen Betrachtungsweise der D-Branen liefert eine explizite Konstruktion der Eichtheorie/Gravitations-Dualität, genauer der AdS_5/CFT_4 Korrespondenz zwischen der N=4 supersymmetrischen SU(N_c) Yang-Mills Theorie in vier Dimensionen mit verschwindender beta-Funktion in allen Ordnungen, also eine echte konforme Theorie, und Type IIB Supergravitation in der zehn dimensionalen AdS_5 X S^5 Raumzeit. Darüber hinaus wird das Wörterbuch, das zwischen den Operatoren der konformen Feldtheorie und den gravitativen Feldern übersetzt, im Detail eingeführt. Genauer gesagt, die Zustandssumme der stark gekoppelten N=4 supersymmetrischen Yang-Mills Theorie im Grenzwert großer N_c, ist identisch mit der Zustandssumme der Supergravitation unter Berücksichtigung der zugehörigen Lösungen der Bewegungsgleichungen, ausgewertet am Rand des AdS-Raumes. Die Anwendung der perturbativen Quantenfeldtheorie und die Verbindungen zur quantenstatistischen Zustandssumme erlaubt die Erweiterung des holographischen Wörterbuchs auf Systeme mit endlichen Dichten und endlicher Temperatur. Aus diesem Grund werden alle Aspekte der Quantenfeldtheorie behandelt, die für die Anwendung der ``Linear-Response''-Theorie, der Berechnung von Korrelationsfunktionen und die Beschreibung von kritischen Phänomenen benötigt werden, wobei die Betonung auf allgemeine Zusammenhänge zwischen Thermodynamik, statistischer Physik bzw. statistischer Feldtheorie und Quantenfeldtheorie liegt. Des Weiteren wird der Renormierungsgruppen-Formalismus zur Beschreibung von effektiven Feldtheorien und kritischen Phänomene im Kontext der verallgemeinerten Eichtheorie/Gravitations-Dualität ausführlich dargelegt. Folgende Hauptthemen werden in dieser Arbeit behandelt: Die Untersuchung der optischen Eigenschaften von holographischen Metallen und ihre Beschreibung durch das Drude-Sommerfeld Modell, ein Versuch das Homes'sche Gesetz in Hochtemperatur-Supraleitern holographisch zu beschreiben indem verschiedene Diffusionskonstanten und zugehörige Zeitskalen berechnet werden, das mesonische Spektrum bei verschwindender Temperatur und schlussendlich holographische Quantenzustände bei endlichen Dichten. Entscheidend für die Anwendung dieses Rahmenprogramms auf stark korrelierte Systeme der kondensierten Materie ist die Renormierungsgruppenfluss-Interpretation der AdS_5/CFT_4 Korrespondenz und die daraus resultierenden emergenten, holographischen Duale, welche die meisten Beschränkungen der ursprünglichen Theorie aufheben. Diese sogenannten ``Bottom-Up'' Zugänge sind besonders geeignet für Anwendungen auf Fragestellungen in der Theorie der kondensierten Materie und der ``Linear-Response''-Theorie, mittels des holographischen Fluktuations-Dissipations-Theorem. Die Hauptergebnisse der vorliegenden Arbeit umfassen eine ausführliche Untersuchung der R-Ladungs-Diffusion und der Impulsdiffusion in holographischen s- und p-Wellen Supraleitern, welche durch die Einstein-Maxwell Theorie bzw. die Einstein-Yang-Mills Theorie beschrieben werden, und eine Vertiefung des Verständnisses der universellen Eigenschaften solcher Systeme. Als zweites wurde die Stabilität der kalten holographischen Quantenzustände der Materie untersucht, wobei eine zusätzliche Diffusions-Mode entdeckt wurde. Diese Mode kann als eine Art ``R-Spin-Diffusion'' aufgefasst werden, die der Spin-Diffusion in Systemen mit frei beweglichen ``itineranten'' Elektronen ähnelt, wobei die Entkopplung der Spin-Bahn Kopplung die Spin-Symmetrie in eine globale Symmetrie überführt. Das Fehlen der Instabilitäten und die Existenz einer ``Zero-Sound'' Mode, bekannt von Fermi-Flüssigkeiten, deuten eine Beschreibung der kalten holographischen Materie durch eine effektive hydrodynamische Theorie an.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Sonification - the study of the acoustic conversion of experimental data - covers various fields of application, such as monitoring and comprehension of physical phenomena, audio perception of the environment by visually impaired people, and musical composition. Among the various existing sonification techniques, the acoustic conversion of molecular vibrational spectra is well-suited for the exploration of microscopic structures. Non-audible oscillations naturally occur in molecules, at rates that are orders of magnitude faster than acoustic vibrations, in a frequency range extending from 30 GHz to 300 THz and can be recorded with spectrometers. Usual analyses of such spectra involve visual examinations, comparison of experimental data with spectral databases or computed spectra. An extended method for the acoustic and musical conversion of vibrational spectral data considers any piece of music as a combination of elementary waveforms. This method leads to molecular sounds, molecular scales and even molecular musical pieces. It translates into an audible signal the same physical phenomenon at different time scales. Its versatility allows the choice of the selected musical parameters and of the time scale descriptions of the corresponding waveforms, in order to obtain the most compelling musical results. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Sonifikation - die Umwandlung experimenteller Daten in Klangereignisse - findet breite Anwendung, etwa in der Untersuchung und Überwachung physischer Phänomene, in akustischen Wahrnehmungshilfen für Sehbehinderte oder in der Musik. Die Transposition molekularer Schwingungsspektren in Tonsignale eignet sich ideal zur Erforschung mikroskopischer Strukturen. Moleküle oszillieren um ein Vielfaches schneller als Schallschwingungen in einem Frequenzbereich zwischen 30 GHz und 300 THz. Instrumente zur Aufzeichnung dieser Phänomene (Spektrometer) benutzen optische Komponenten und elektromagnetische Licht- und Infrarotstrahlung. Die Auswertung der höchst aufschlussreichen Schwingungsspektren erfolgt zumeist auf visuellem Weg oder durch den Vergleich mit gespeicherten oder rechnerisch erzeugten Spektren. Eine erweiterte Methode zur akustischen und musikalischen Darstellung molekularer Schwingungsfrequenzdaten definiert jedes beliebige Musikstück als Kombination elementarer Wellenformen. Die skizzierte Methode erzeugt molekulare Töne, molekulare Tonleitern und molekulare Musikstücke. Sie wird entlang verschiedener Zeitskalen in Tonsignale umgesetzt. Dieser flexible Ansatz ermöglicht die Auswahl der Ton- und Zeitparameter, die mit einer bestimmten Wellenform verbunden sind, und gewährleistet dadurch überzeugende musikalische Resultate.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Viele neurodegenerative Erkrankungen, wie die transmissiblen spongiformen Enzephalopathien (TSE), die Alzheimer- und die Huntington-Krankheit, sind durch charakteristische Ablagerungen im Gehirn, sogenannte Amyloide, gekennzeichnet. Amyloide sind oftmals fibrilläre Aggregate von normalerweise löslichen Proteinen, deren dreidimensionale Strukturen sich bei der Aggregation verändern. Bedauerlicherweise waren hochauflösende Methoden biophysikalischer Strukturaufklärung bislang auf Amyloide nicht anwendbar. Dagegen können Molekulardynamik (MD)-Simulationen amyloidogener Proteine und Peptide in ihrer Lösungsmittelumgebung dazu beitragen, die Mechanismen der auftretenden Konformationsänderungen zu verstehen und die Strukturen amyloider Fasern aufzuklären. Die korrekte und effiziente Beschreibung der Lösungsmittelumgebung spielt dabei eine entscheidende Rolle. Im ersten Teil dieser Arbeit wird die Konformationsdynamik Amyloid bildender Peptide und Proteine in expliziter wässriger Umgebung untersucht. In MD-Simulationen des zellulären Prion Proteins (PrPC) werden durch Einführung der Punktmutationen M205S und M205R entscheidende Faktoren für die korrekte Faltung und strukturelle Stabilität des Proteins identifiziert. Ferner wird für die Grundstruktur der bei TSE auftretenden pathogenen Isoform PrPSc ein Modell basierend auf dem Strukturmotiv einer parallelen beta-Helix entwickelt. Analog dazu werden Peptide aus poly-Glutamin, die den mutmaßlichen Aggregationskeim bei der Huntington-Krankheit darstellen, als parallele beta-Helizes unterschiedlicher Formen und Größen modelliert. In MD-Simulationen ermitteln wir aus diesen Strukturen thermodynamisch stabile monomere und dimere Aggregationskeime. Da die erreichbaren Simulationszeiten in expliziten Lösungsmitteln verglichen mit den Zeitskalen der Proteindynamik zu kurz sind, wird im zweiten Teil dieser Arbeit eine effiziente Kontinuumsmethode für Proteine in polaren Lösungsmitteln weiterentwickelt. In dieser Methode wird das durch die Polarisation des Lösungsmittels hervorgerufene Reaktionsfeld (RF) durch normalverteilte RF-Dipoldichten an den Orten der Proteinatome beschrieben. Die sich daraus ergebenden RF-Kräfte auf die Proteinatome berücksichtigen aber nicht den Druck an den dielektrischen Grenzflächen, der vom Kontinuum auf das Protein ausgeübt wird, und verletzen damit das 3. Newtonsche Gesetz. Dies führt in MD-Simulationen zu erheblichen Artefakten. In dieser Arbeit wird diese Kontinuumsmethode so umformuliert und erweitert, dass die resultierenden RF-Kräfte dem Prinzip Actio=Reactio gehorchen. Die modifizierte Kontinuumsmethode wird in ein MD-Programm implementiert und an Hand geeigneter Systeme parametrisiert. In ausgedehnten MD-Simulationen des Alanin-Dipeptids wird die Korrektheit und Effizienz der Methode demonstriert.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In der vorliegenden Arbeit wurden die physikalische Eigenschaften aktiver galaktischer Kerne untersucht. Aktive galaktische Kerne (AGN) sind durch ihr breitbandiges Spektrum und schnelle, gewaltige Leuchtkraftvariationen charakterisiert. Beobachtungen und Analyse beider Eigenschaften koennen dazu beitragen, die zentralen Energiequelle besser zu verstehen. Als erster Schritt wurden die Roentgenbeobachtungen der Seyfert-Galaxie PKS 0558-504 betrachtet, um die Variationen des Flusses und des Spektrums zu erforschen. Mit Hilfe des spektralen zwei-Komponenten-Modells findet man, dass die Variabilitaet meistens von der niederenergetischen Komponente hervorgerufen wird, waehrend die andere Komponente relativ stabil bleibt. Die Luminositaet aendert sich staendig waehrend der gesamten Beobachtungszeit, und mit Hilfe des spektralen Modells wurde eine Korrelation zwischen dem Fluss und den physikalischen Parametern (optische Tiefe und/oder Temperatur) der Emissionsregion gefunden. Diese Korrelation weist auf einem Zusammenhang zwischen der Emissionsquelle (die die Luminositaet reguliert) und den physikalischen Bedingungen innerhalb des Streumediums (das das Roentgenspektrum bestimmt) hin. MGC-6-30-15 ist eine andere prominente Seyfert 1 Galaxie, die starke Variabilitaet im Roentgenbereich auf vielen Zeitskalen zeigt. Gleichzeitige Beobachtungen dieses Objekts im Roentgen- und Ultaviolettband wurden dazu benutzt, Korrelation der Variabilitaet zu bestimmen. Es wurde gefunden, dass die UV-Strahlung mit kleineren Amplituden und laengeren Zeitskalen als die Roentgenstrahlung variiert. Die beiden Lichkurven sind stark korreliert, wobei die Roentgen- nach der UV-Strahlung den Beobachter erreicht. Diese Korrelation wird wahrscheinlich bei der Akkretion der Materie dadurch hervorgerufen, dass Fluktuationen in der aeusseren Akkretionsscheibe entstehen und sich dann auf das Zentralenobjekt zubewegen, so dass sie erst die optische und UV-Emission der Scheibe modulieren, und erst spaeter das Roentgenlicht, das sehr nahe dem Zentrum entsteht. Diese und andere Beobachtungen sind ein starker Beweis fuer dieses Modell der propagierenden Fluktuationen, und ein wichtiger Grund fuer die weitere detaillierte Untersuchung dieses Typs von Modellen, die die Emissionsvariabilitaet der AGN erklaeren. Basierend auf der Arbeit Lyubarskiis (1997) wurde ein phaenomenologisches Modell fuer die AGN Variabilitaet entwickelt. In diesem Modell propagieren die Akkretionsratefluktuationen einwaerts durch die Akkretionsscheibe und modulieren die Emission der inneren Regionen. Das in dieser Doktorarbeit verwendete Modell wurde nur fuer die Erklaerung der Roentgenemission benutzt, da die Natur der Zusammenhaenge zwischen der Akkretionsscheibe (optische/UV-Emission) und der Korona (Roentengstrahlung) theoretisch noch nicht gut genug bekannt ist und zusaetzliche freie Parameter braucht. Wir haben das Modell verwendet um numerisch die Lichtkurven auszurechnen, die man dann mit Beobachtungen vergleichen kann. Das Modell reproduziert viele der Eigenschaften der Beobachtungen: lineare Abhaengigkeit der Amplitude vom Fluss, log-normale Verteilung der Fluesse, Potenzgesetz des Leistungsspektrums (PSD) mit einem cut-off bei hohen Frequenzen. Die Korrelationen zwischen verschiedenen spektralen Roentgenbaeandern konnten auch reproduziert werden. Das Modell bestaetigt dass, wenn die harte Strahlung mehr im Zentralbereich der Scheibe konzentriert ist als die weiche, sie auch mehr Leistung bei hohen Fourierfrequenzen zeigt und auch spaeter beim Beobachter ankommt, verglichen mit der weichen Roentgenstrahlung, wie beobachtet. Das Modell kann auch Eigenschaften der Kreuzkorrelationen erklaeren, wie z.B. Kohaerenzen. Weil diese Analysen jedoch eine hoehere Qualitaet der Daten verlangen als fuer AGN normalerweise verfuegbar sind, haben wir das Modell auch auf einen Kandidaten fuer ein galaktisches schwarzes Loch, Cyg X-1, angewandt, von dem man bessere Beobachtungsdaten hat. Das Modell propagierender Akkretionsratefluktuationen kann die Variabilitaetseigenschaften der Roentgenlichtkurven dieser Systeme in einem oder mehreren Energiebaendern gut reproduzieren. Die bessere Qualitaet der Beobachtungsdaten dieser Systeme kann die Modellparameter besser einschraenken und bietet dadurch eine komplementaere Methode fuer die Untersuchung der Akkretionsprozesse.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die Dynamik von Makromolekülen spielt bei Transportprozessen in weicher Materie eine wichtige Rolle. Fluoreszenz-Korrelations-Spektroskopie (FCS) kann die Dynamik spezifisch fluoreszenzmarkierter Moleküle in Lösung verfolgen. Das Prinzip der Methode basiert auf der Analyse von Intensitätsfluktuationen innerhalb eines Volumens in der Größenordnung eines Femtoliters (1 fl = 1 Kubikmikrometer). In dieser Arbeit wurde mit FCS die Dynamik von DNA, Aktin und Hyaluronsäure untersucht. Die Schwerpunktsdiffusion in Lösung, die intramolekulare Kettendynamik und das Verhalten von Polymerlösungen im Scherfluss wurden studiert. Die Möglichkeit für Messungen der Dynamik an Grenzflächen wurde geschaffen. Die Autokorrelation fluoreszenzmarkierter DNA in Lösung zeigt auf verschiedenen Zeitskalen charakteristische Abfälle, die ihre Ursache in unterschiedlichen dynamischen Prozessen haben. Mit den in dieser Arbeit entwickelten Modellfunktionen für die Autokorrelation lassen sich die charakteristischen Größen der verschiedenen Prozesse durch Anpassung an die experimentellen Daten gewinnen. Bei kurzen Zeiten im Mikrosekundenbereich fällt die Korrelationsfunktion auf Grund photochemischer Prozesse der Fluoreszenzfarbstoffe exponentiell ab. Im Bereich von 10-100 Mikrosekunden zeigen die Daten einen weiteren Abfall, der stark von der Anzahl der Farbstoffe auf der Polymerkette abhängt. Die On-Off-Kinetik eines Ensembles von Fluorophoren wurde in ein Modell für die Korrelationsfunktion umgesetzt. Intensitätsfluktuationen im Bereich von 1 - 100 Millisekunden stammen von der Diffusion und den internen Relaxationsmoden der Polymerketten. Ein Modell für die Korrelationsfunktion der Schwerpunktsdiffusion für Polymerketten mit kontinuierlicher Farbstoffverteilung entlang der Kontur wurde entwickelt und mit experimentellen Daten von DNA-Fragmenten unterschiedlicher Länge (1019 bp bis 7250 bp) bestätigt. Ausgehend von den dynamischen Strukturfaktoren der Modelle von Rouse, Zimm und semiflexibler Ketten in Lösung wurden Korrelationsfunktionen für interne Relaxationen berechnet und an Messdaten mit Lambda-DNA (48502 bp) angepasst. Über den Abstand der Farbstoffe entlang der Polymerkontur werden Moden selektiert, deren Relaxationsdynamik sich in die Autokorrelationsfunktion überträgt. Bei Abständen, die viel größer als die Persistenzlänge der DNA sind, liefert das angepasste Modell die erwarteten Werte für die Zimm-Dynamik. Aktinfilamente mit Längen im Bereich von 100 Nanometern bis 50 Mikrometer wurden als Modellsysteme semiflexibler Polymere untersucht. Für Filamentlängen, die kleiner als das Beobachtungsvolumen sind, ist die Korrelationsfunktion bestimmt durch die Schwerpunktsdiffusion. Für längere Filamente dominieren die Biegemoden. Charakteristisch für diese Form der internen Relaxation ist das zeitliche Skalenverhalten mit dem Exponenten 3/4. Theoretische Korrelationsfunktionen, die in Zusammenarbeit mit Roland Winkler vom Forschungszentrum Jülich entstanden sind, zeigen eine sehr gute Übereinstimmung mit den experimentellen Daten. Erstmals wurden Korrelationsfunktionen einzelner Aktinfilamente im halbverdünnten Bereich gemessen. Die charakteristische Abfallzeit der Korrelationsfunktion als Maß für die Dynamik der Biegemoden sinkt mit steigender Aktinkonzentration. Für Aktinkonzentrationen von 0,01 mg/ml bis 1 mg/ml folgt die Abfallzeit einem Skalengesetz tau ~ c^(-0,48 +- 0,03). Neben der Diffusion wurde in dieser Arbeit die Dynamik in Strömungen untersucht. Zur Verfolgung von gerichteten Transportprozessen wurden zwei Foki mit einem lateralen Abstand von 5 Mikrometern erzeugt. Durch eine Kreuzkorrelation der beiden getrennten Intensitätssignale lässt sich die Zeit bestimmen, die die Teilchen zum Durchlaufen des Abstandes der beiden Foki benötigen. Mit dieser mikroskopischen "Lichtschranke" wurden Flussgeschwindigkeiten in einem 100 Mikrometer hohen Kanal mit mikrometergenauer Ortsauflösung gemessen. Die Scherverdünnung einer Hyaluronsäurelösung konnte anhand des Geschwindigkeitsprofils nachgewiesen und eine kritische Scherrate von 285 +- 30 s^(-1) bei einer Polymerkonzentration von 2,5 mg/ml bestimmt werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die moderne Astrophysik steht vor der Herausforderung, neueste Beobachtungen mit den theoretischen und numerischen Modellen der Galaxienentstehung und -entwicklung zu konfrontieren. So hofft man, die wichtigsten physikalischen Prozesse und ihre Zeitskalen identifizieren zu koennen. In dieser Arbeit nehmen wir eine komplette, helligkeits--limitierte Auswahl von 1862 Galaxien aus der Sloan Digital Sky Survey (SDSS), um eine Anzahl von globalen und strukturellen Parametern zu untersuchen. Diese Auswahl beinhaltet helle Objekte mit einer r--Band Helligkeit von < 15.9 im nahen Universum mit einer Rotverschiebung von z < 0.12. Sie enthaelt elliptische, Spiral- und irregulaere Galaxien. Photometrische Daten sind fuer die u, g, r, i und z--Baender angegeben und von 1588 Galaxien wurden nachtraeglich Spektra genommen. Die `Bulge' Komponente der Galaxien wird mit Sersic und de Vaucouleurs Modellen modelliert, waehrend die Scheibenkomponente mit einer exponentiellen Verteilung modelliert wird. Die Messung des Lichtanteils in `Bulge' und Scheibenkomponente gibt Aufschluss ueber die Effizienz des hierarchischen Strukturbildungsprozesses. In Kapitel 3 zeigen wir, dass der mittlere Anteil des Lichts aus der Scheibe stark mit der totalen absoluten Helligkeit der Galaxie zunimmt. Unabhaengige r und i Band Analysen ergeben einen sehr aehnlichen Trend. Zum ersten Mal schaetzen wir den volumengemittelten Anteil des Lichts aus der Scheibenkomponente von Galaxien ab und stellen fest, dass ungefaehr (55 +- 2) % des gesamten Lichts im lokalen Universum aus Scheiben kommt. Wir ermitteln auch die Leuchtkraftfunktion fuer reine 'Bulges', also fuer Strukturen ohne Scheibenanteil, die nicht einfache Spheroide sind. In Kapitel 4 studieren wir die Abhaengigkeiten von visuellen und quantitativen morphologischen Klassifikationskriterien mit dem Ziel sauberere Galaxienkataloge zu erstellen, besonders bei hohen Rotverschiebungen, wo die Klassifikation schwierig ist. Wir finden, dass Galaxienfarben, effektive Oberflaechenhelligkeit, Masse/Licht Anteil, und Asymmetrie Parameter einen Mehrparameter Raum aufspannen, in der alle Galaxien je nach morphologischem Typ eindeutig positioniert sind. In Kapitel 5 beobachten wir einen klaren Trend, mit dem die Skalenlaenge der Scheiben mit ihrer Helligkeit zunimmt, und dieser Trend ist unabhaengig vom photometrischen Band und der morphologischen Klasse. Es existiert auch eine klare Abhaengigkeit zwischen dem effektiven Radius des `Bulge' und seiner Helligkeit, aber die Steigung dieser Relation aendert sich mit dem morphologischem Typ. Sie ist steiler fuer fruehere Typus, was uns zu der Schlussfolgerung fuehrt, dass die Skalenlaenge weniger von der Morphologie abhaengt als die Skalenlaenge des `Bulges'. Dies legt nahe, dass `Bulges' in fruehen und spaeteren Galaxien in unterschiedlichen Prozessen gebildet werden. Wir finden auch eine Korrelation zwischen den strukturellen Parametern von Scheiben und `Bulges', insbesondere zwischen effektivem Radius der `Bulges' und der Skalenlaenge der Scheiben in Systemen fruehen Typus. Wir interpretieren dies als Beweisstueck zugunsten von saekularen Evolutionsmodellen.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die Arbeit liefert neue Beiträge zu zwei wichtigen biophysikalischen Fragestellungen der Peptid-/Proteinfaltung: 1. Welchen Einfluss hat das Lösungsmittel auf die initiale Konformationsdynamik? Das Molekül Azobenzol dient dazu, gezielt in einem ringförmigen Oktapeptid getriebene Konformationsänderungen auszulösen. Azobenzol isomerisiert nach Lichtanregung innerhalb weniger Pikosekunden. Es werden neue Ergebnisse zum Isomerisierungsmechanismus präsentiert, die wichtige Hintergrundinformationen zum Verständnis der Moleküldynamik liefern. Durch die Isomerisation ändert sich die Länge des Azobenzols um fast den Faktor zwei, wodurch in den Azobenzol-Peptiden konformationelle Umorganisationen ausgelöst werden. Bereits früher durchgeführte Messungen an DMSO-löslichen Azobenzol-Peptiden zeigten, dass kinetische Prozesse, die mit Zeitkonstanten von ~10ps und ~100ps ablaufen, der Bewegung des Peptid-Teils zugeordnet werden können. Die hier präsentierten Ergebnisse an Azobenzol-Peptiden, die in Wasser löslich sind zeigen, dass Prozesse auf Zeitskalen >5 ps in Wasser um den Faktor 1.5-2 beschleunigt ablaufen. Man sieht in diesen ultraschnellen Kinetiken echte Umorganisationen des Peptid-Rückgrats, deren Geschwindigkeit durch die Viskositat des Lösungsmittels bestimmt sind 2. Wie schnell ist die Kontaktbildung in Peptiden? Fur ein Verständnis der Proteinfaltung ist wichtig zu wissen, wie lange es dauert, bis zwei (räumlich entfernte) Aminosäuren innerhalb eines Peptids einen Kontakt ausbilden. Zur Bestimmung dieser Kontaktbildungsrate werden Experimente an Xanthon-Peptiden präsentiert, die zwei Marker-Moleküle enthalten. Messungen ergeben, dass der durch einen kurzen Lichtimpuls angeregte Donor Xanthon innerhalb weniger Pikosekunden einen langlebigen Triplett-Zustand besetzt. Weiterhin wird gezeigt, dass bei direktem Kontakt zum Akzeptor Naphthalin ein Triplett-Triplett Energietransfer innerhalb
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die vorliegende Arbeit beschäftigt sich mit einem Modell, das Oszillationen der Massentransferrate in halbgetrennten, kompakten Doppelsternsystemen auf verhältnismäßig großen Zeitskalen erklären kann. Der kompakte Stern, ein Weißer Zwerg, Neutronenstern oder Schwarzes Loch akkretiert Materie von seinem ausgedehnteren Begleiter. Durch die entstehende Akkretionsleuchtkraft wird der masseverlierende Stern bestrahlt und seine äußersten, dem Begleiter zugewandten Schichten werden aufgeheizt. Besitzt der masseverlierende Stern eine konvektive Hülle, so ist sein thermischer Gleichgewichtsradius von der äußeren Bestrahlung abhängig, und der Stern reagiert auf Änderungen in der Bestrahlung auf der Kelvin-Helmholtz-Zeitskala der konvektiven Hülle. Da die Massentransferrate wiederum empfindlich vom Sternradius abhängt, kommt es zu einer Rückkopplung auf den Massentransfer. Dieser Effekt kann dazu führen, daß die stationäre Massentransferrate instabil wird und sich das System quasi immer entweder im "High State" bei erhöhtem Massentransfer oder im "Low State" bei verringertem oder sogar abgeschaltetem Massentransfer befindet. In Frage kommen hierfür Systeme mit einem massearmen Hauptreihenstern oder Riesen als Massegeber, also Kataklysmische Veränderliche (CV) und Massearme Röntgendoppelsterne (LMXB). Es gibt ein auf einfachen Sternmodellen beruhendes analytisches Modell für das Auftreten von Massentransferzyklen sowie einzelne numerische Entwicklungsrechnungen, die auf jenen vereinfachten Modellen basieren. Das Hauptziel der vorliegenden Arbeit besteht nun darin, dieses analytische Modell und insbesondere die Grenzen der Instabilitätsbereiche durch numerische Rechnungen mit vollen 1D-hydrostatischen Sternmodellen für den masseverlierenden Stern zu bestätigen. Es wird daher zunächst ein impliziter Algorithmus entwickelt, der es ermöglicht, insbesondere das Ein- und Ausschalten des Massentransfers numerisch mit der erforderlichen Genauigkeit zu verfolgen, und der für Langzeitrechnungen möglichst wenig Zeitschritte benötigt. Des weiteren wird das analytische Modell ausführlich mittels linearer Stabilitätsanalyse hergeleitet und diskutiert sowie durch Hinzunahme eines bisher vernachlässigten Terms verbessert. Es ergibt sich schließlich eine einfache Ungleichung als Bedingung für das Auftreten von bestrahlungsinduzierten Massentransferzyklen. Schließlich werden numerische Langzeitentwicklungen sowohl für nuklear unentwickelte als auch nuklear entwickelte Sterne gerechnet. Vergleiche mit dem analytischen Modell zeigen eine recht gute quantitative Übereinstimmung für unentwickelte Sterne. Für stark entwickelte Sterne, für die das analytische Modell formal nicht anwendbar ist, zeigen sich deutliche Unterschiede. Dennoch ist es mit dem verbesserten analytischen Modell nun möglich, für ein vorgegebenes System anzugeben, ob und für welche Parameter Massentransferzyklen auftreten sollten.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Mit der vorliegenden Arbeit wird die weltweit erste numerische Simulation eines selbstinduzierten freien Elektronen Lasers (FEL) vorgestellt. Zu ihrer Durchf¨uhrung wurde ein massen– und energieerhaltender ”Particle in Cell Code“–(PIC) verwendet, der es erlaubt eine Region in einer Pulsarmagnetosph¨are entsprechend der kinetischen Plasmatheorie zu behandeln und damit den dort agierenden FEL–Prozeß zu modellieren. Zun¨achst wird die Existenz eines FEL–Szenarios in einer Pulsarmagnetosph¨are motiviert und die physikalischen Parameter an einem solchen Ort dargelegt. Anschließend werden die f¨ur diese Arbeit relevanten Teile der relativistischen, kinetischen Plasmatheorie erarbeitet, soweit dies f¨ur das Verst¨andnis des FEL notwendig ist. Nach einer genauen Beschreibung der verwendeten, numerischen Verfahren werden die Ergebnisse aus der Simulation im Detail diskutiert. Dabei wird nicht nur auf das Anwachsen von elektrostatischen Langmuirwellen eingegangen, sondern auch die Energetik der beteiligten Plasmen und der emittierten Strahlung genau besprochen. In der Simulation zeigen sich viele, bisher nur in theoretischen Arbeiten vorhergesagte Vorg¨ange, deren prognostiziertes Auftreten in der Natur nun noch st¨arker untermauert werden kann. Insgesamt best¨atigen die Ergebnisse aus der Simulation auf eindrucksvolle Weise die Vorstellung, wie ein FEL–Prozeß in einer Pulsarmagnetosph ¨are ablaufen soll. Sowohl die Zeitskalen, als auch die emittierte Leistung und Frequenzen lassen sich gut mit den Erkenntnissen aus den Radiobeobachtungen von Pulsaren in Einklang bringen, was ein starkes Argument f¨ur den FEL als zugrundeliegenden, koh¨arenten Emissionsmechanismus bei Pulsaren ist.