POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
In der vorliegenden Arbeit werden mit Methoden der zeitaufgelösten Absorptions- und Fluoreszenzspektroskopie im UV und sichtbaren Spektralbereich zwei in der Photochemie grundlegende Isomerisierungsreaktionen untersucht. Einerseits die perizyklische Ringöffnungsreaktion, andererseits die Z/E-Isomerisierung. Im ersten Teil der Arbeit wird gezeigt, dass die in der Literatur etablierten Mo- delle für die perizyklische Ringöffnungsreaktion von 2,2-Diphenyl-5,6-Benzo(2H)- Chromen nicht vollständig mit den Ergebnissen der zeitaufgelösten Messungen in Übereinstimmung zu bringen sind. Mit einer Kombination von Absorptions- und Emissionsmessungen an diesem Chromen werden Inkonsistenzen der bekannten Modelle aufgezeigt. In einem neuen Reaktionsmodell zur lichtinduzierten Ringöff- nung können diese vermieden werden. Auch ist das neue Modell in der Lage weitere experimentelle Beobachtungen zu erklären. Der zweite Teil der Arbeit zeigt transiente Absorptionsmessungen von unsubstitu- iertem Hemithioindigo (HTI). HTI eignet sich aufgrund seiner moderaten Größe und der lichtinduzierbaren, reversiblen Photoreaktion als Modellsystem für die Erstellung eines Reaktionsmodells zu der von Heteroatomen beeinflussten Z/E- Isomerisierung. Die vorgestellten Messungen bilden die Grundlage für moderne quantenchemische Rechnungen. Durch die Kombination aus Experiment und Theo- rie kann eine Ursache für die großen Unterschiede in der Isomerisierungszeit und Quantenausbeute zwischen Z→E und E→Z-Isomerisierung von HTI gefunden wer- den. Die Rechnungen deuten auf die Existenz eines nicht-reaktiven Zerfallskanals hin, welcher nur vom E-Isomer aus zugänglich ist, und über den ein Großteil der Population des angeregten Zustandes ultraschnell zurück in den Grundzustand ge- langt. Im letzten Teil wird die Isomerisierung einer HTI ω-Aminosäure im Peptidrück- grat eines kurzen linearen und eines langen zyklischen Peptids untersucht. Dabei zeigt sich, dass HTI auch in einem Peptidrückgrat seine Fähigkeit zu Isomerisie- rung behält. Die Zeitkonstante τ 1 , die eine Relaxation im S 1 in einen Zustand mit Ladungstrennungs Charakter (CTC) beschreibt, liegt bei den als Referenz dienen- den reinen Schaltermolekülen und den Chromopeptiden gleichermaßen zwischen 6-10 ps. Die Isomerisierung ist bei den Peptidproben im Vergleich zu den Schalter- molekülen deutlich verlangsamt. Bei dem zyklischen Peptid wurde nach 3 ns nicht das cw-Differenzspektrum des Chromophors erreicht. Somit ist von einer weite- ren Relaxation des HTI-Schalters und des verbundenen Peptids auf einer längeren Zeitskala auszugehen. Die zeitaufgelösten Absorptionsmessungen im Sichtbaren geben zusammen mit Untersuchungen ultraschneller IR-Spektroskopie detaillierte Informationen über die Strukturdynamiken in diesen Chromopeptiden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In lebenden Organismen spielen Proteine eine wichtige Rolle bei Stoffwechselvorgängen. Für ihre Funktion ist die dreidimensionale Anordnung der Aminosäurekette von entscheidender Bedeutung. Um die frühen Faltungsprozesse von bestimmten Sekundärstrukturelementen zu analysieren, ist die Verwendung von Modellpeptiden nötig, da hier die Bildung solcher Strukturelemente getrennt beobachtet werden kann. Der Einbau eines optischen Schalters wie Azobenzol in Modellpeptide ermöglicht durch dessen lichtgetriebene cis/trans Isomerisierung eine Auslösung der Faltungsprozesse auf ultrakurzer Zeitskala (< 10 ps). Ein wesentliches Merkmal der Kombination dieses Photoschalters mit der in dieser Arbeit verwendeten Methode der UV-Anreg-Infrarot-Abtast-Spektroskopie ist die Möglichkeit, Zwischenzustände, sogenannte Intermediate, zeitlich einordnen und mittels ihrer Infrarotspektren Aussagen über ihre Struktur treffen zu können. Als Modell für das Sekundärstrukturelement des beta-Faltblatts dient eine beta-Hairpin Struktur. Diese Struktur besteht aus zwei anti-parallelen Aminosäuresträngen, welche durch Wasserstoffbrückenbindungen verbunden sind. Eine Kehre aus vier Aminosäuren schließt die Stränge auf einer Seite ab. Als photoschaltbares beta-Hairpin Modellpeptid wurde im Rahmen dieser Arbeit das AzoTrpZip2 mit der Sequenz H-Ser-Trp-Thr-Trp-Glu-AMPP-Lys-Trp-Thr-Trp-Lys-NH2 eingesetzt, wobei AMPP eine auf Azobenzol basierende pseudo-Aminosäure bezeichnet. Das Peptid AzoTrpZip2 bildet als cis-Isomer zu 45 % im Lösungsmittel Methanol-d4 eine beta-Hairpin Struktur aus. Das cis-Isomer des AMPPs ersetzt dabei zwei Aminos¨auren der Kehre. Das Ensemble an trans-Isomeren des AzoTrpZip2 hingegen besitzt eine deutlich weniger definierte Struktur. Ausgelöst durch die Isomerisierung des Schalters AMPP beginnt die Entfaltung der beta-Hairpin Struktur des AzoTrpZip2 mit einem reißverschlussartig sich fortsetzenden Bruch der schalternahen Wasserstoffbrückenbindungen und der Bildung eines desolvatisierten Zustandes mit einer Zeitkonstante von 4,1 ps. Mit 26 ps entsteht ein weiteres Intermediat, das mit einer Zeitkonstante von 630 ps in einer Klappbewegung mit den Strangmitten als Scharnier in einen Zustand übergeht, der dem Endzustand des trans- Ensemble ähnlich ist. Die Entfaltung ist nach 3 ns also weitgehend abgeschlossen. Auch bei der Faltungsreaktion erfolgt die Isomerisierung des Photoschalters auf der Pikosekundenzeitskala. Somit ist die zentrale Kehre der beta-Hairpin Struktur bereits innerhalb weniger Pikosekunden ausgebildet. Ähnlich wie bei der Entfaltung wird mit einer Zeitkonstante von 4,8 ps ein desolvatisierter Zustand erreicht, der mit einer Zeitkonstante von 64 ps in ein Faltungsintermediat übergeht. Daraus wird mit der Faltungszeitkonstante von 30 µs die beta-Hairpin Struktur gebildet. Die in der Literatur kontrovers diskutierte Frage nach dem geschwindigkeitsbestimmenden Schritt konnte für dieses Modellpeptid geklärt werden: Es ist die korrekte Anordnung der Wasserstoffverbrückung der Stränge und nicht die Ausbildung der Schleife.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Photoinduzierte Isomerisierungsreaktionen von Molekülen mit Kohlenstoff-Doppelbindungen sind an zahlreichen wichtigen biologischen und biochemischen Prozessen beteiligt. Ein grundlegendes Verständnis ihrer Reaktionsmechanismen ist deshalb von enormer Bedeutung. Wichtige Anwendungen von Molekülen mit Photoisomerisierungsreaktionen sind ihr Einsatz als mechanische Trigger in Peptidstrukturen oder als optische Datenspeicher. Diese Arbeit stellt eine spektroskopisch bisher unbearbeitete Verbindungsklasse vor, deren Struktur aus zwei verschiedenen Molekülen (Stilben, Thioindigo) zusammengesetzt ist. Die photochrome Verbindung Hemithioindigo isomerisiert im Pikosekundenzeitbereich. Im Rahmen der Arbeit kann gezeigt werden, dass spezielle Hemithioindigo-Derivate als Peptidschalter zum Studium initialer Faltungsprozesse eingesetzt werden können. Diese Demonstration erfordert die detaillierte spektroskopische Analyse der Z/E-Isomerisierungsreaktionen des Moleküls. Die vorliegende Arbeit behandelt dabei die folgenden Fragestellungen: 1) Nach welchem Mechanismus läuft die Z/E-Isomerisierung von Hemithioindigo ab?} Die Kombination verschiedener spektroskopischer Techniken (Absorptions-, Emissions- und Infrarotspektroskopie) erlaubt es, den kinetischen Ablauf der photoinduzierten Isomerisierungsreaktionen zu verfolgen. Unter Ausnutzung aller erzielten Resultate kann ein detailliertes Reaktionsmodell der Pikosekundenreaktionen Z-E und E-Z aufgestellt werden. 2) Wie können bestimmte Charakteristika der Isomerisierung, beispielsweise die Reaktionszeit, kontrolliert werden? Es wird gezeigt, dass die Reaktionsraten der photoinduzierten Isomerisierungen durch Potentialbarrieren im elektronisch angeregten Zustand bestimmt werden. Polare Substituenten erlauben es, die Barrierenhöhe systematisch zu verändern. Diese Effekte können sogar quantitativ durch das Konzept der linearen freien Enthalpie-Beziehung, der Hammett-Gleichung, beschrieben werden. Auf diese Weise kann die Reaktionsgeschwindigkeit kontrolliert und für unbekannte Substanzen vorhergesagt werden. Die Auswirkungen der Substituenten-Effekte auf unterschiedliche Parameter werden diskutiert und in ein gemeinsames Reaktionsmodell eingebettet. 3) Stilben vs. Thioindigo: Welcher Bestandteil dominiert die dynamischen Eigenschaften von Hemithioindigo? Zur Klärung dieser Frage werden die Ergebnisse der vorliegenden Arbeit mit Reaktionsmodellen von Stilben und Thioindigo verglichen. Es wird sehr deutlich, dass Hemithioindigo und Stilben in vielen Eigenschaften große Ähnlichkeiten aufweisen. 4) Sind Hemithioindigo-Derivate zur Untersuchung initialer Faltungsvorgänge in Chromopeptiden geeignet? Die Arbeit zeigt, dass Hemithioindigo-Aminosäuren als ultraschnelle mechanische Schalter in Peptidsystemen eingesetzt werden können. Dazu werden verschiedene auf Hemithioindigo basierende Pseudoaminosäuren und Chromopeptide vorgestellt. Untersuchungen dieser Modellpeptide zeigen, dass Hemithioindigo auch in Peptidstrukturen eine Isomerisierung ausführt und das Chromophor als spektroskopische Sonde für Peptidfaltungsprozesse genutzt werden kann. Hemithioindigo stellt somit eine vielversprechende Alternative zu bekannten molekularen Schaltern, wie z. B. Azobenzolderivaten, dar.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die zeitaufgel"oste Fluoreszenzspektroskopie stellt einen Zugang zur Dynamik von Molek"ulen dar. Da schnelle molekulare Vorg"ange, wie z.B. Isomerisierungen, innerhalb weniger 100 fs oder sogar darunter ablaufen k"onnen, erfordert ihre Untersuchung Techniken, die Zeitaufl"osungen in diesem Bereich erlauben. Elektronische Me"sverfahren erreichen derartige Zeitaufl"osungen jedoch nicht. Daher wird bei zeitaufgel"osten Fluoreszenzmessungen auf optische Methoden zur"uckgegriffen. In dieser Arbeit wird der Aufbau und die Weiterentwicklung eines Me"ssystems f"ur die zeitaufgel"oste Beobachtung von Fluoreszenzspektren molekularer Proben auf der Basis des Kerr-Effekts vorgestellt. Nach Anregung der Proben mit Laserimpulsen im ultravioletten oder sichtbaren Spektralbereich kann bei einer Zeitaufl"osung von ca. 100 fs gleichzeitig eine Messung "uber einen sehr breiten Spektralbereich vom nahen Ultravioletten bis ins nahe Infrarote durchgef"uhrt werden. Auf dieser Grundlage wird die Fluoreszenz einer Reihe von Proben untersucht, die nach optischer Anregung isomerisieren. Es handelt sich hierbei um die Molek"ule 4-Nitro-4'-(Dimethylamino)-Azobenzol, Bakteriorhodopsin und Proteorhodopsin. Das Push-Pull substituierte Azobenzolderivat 4-Nitro-4'-(Dimethylamino)-Azobenzol (NA) isomerisiert nach Photoanregung ebenso wie das unsubstituierte Azobenzol. Trotz stark unterschiedlicher elektronischer Struktur offenbart sich eine erstaunliche "Ahnlichkeit in der Dynamik beider Molek"ule. Beide Systeme besitzen in der Emission ein "ahnliches biphasisches Verhalten. F"ur NA wurden Zeitkonstanten von 0.08 ps und 0.8 ps und ein verz"ogerter Anstieg der Fluoreszenz im langwelligen Teil der Spektren bestimmt. Ein Unterschied zu unsubstituiertem Azobenzol besteht in den um etwa den Faktor drei k"urzeren Zeitkonstanten von NA. Der prim"are Schritt im Photozyklus von Bakteriorhodopsin (BR) besteht in der Isomerisierung des Retinalmolek"uls, welches als Chromophor dient. W"ahrend die Zeitskalen dieser Isomerisierung aus transienten Absorptionsexperimenten bereits bekannt sind, unterliegen die damit assoziierten molekularen Prozesse weiterhin einer kontroversen Diskussion. In den hier durchgef"uhrten Emissionsmessungen wurde neben den bereits bekannten Zeitkonstanten von < 0.15 ps und 0.45 ps f"ur den Fall niedriger Anregungsdichten das erste Mal ein dynamischer Stokes-Shift auf der Zeitskala von 0.2 ps entdeckt. Im Falle hoher Anregungsdichten k"onnen die deutlichen "Anderungen der zeitaufgel"osten Spektren Mehrphotonenabsorptionen zugeordnet werden. Erst vor kurzer Zeit wurde das Proteorhodopsin (PR) als neues Mitglied der Familie der rhodopsinartigen Proteine entdeckt. Ebenso wie bei BR ist der prim"are Schritt des Photozyklus die Isomerisierung seines Retinalmolek"uls. Hier wurden zum ersten Mal zeitaufgel"oste Fluoreszenzmessungen an PR durchgef"uhrt. Es wurde, wie auch bei BR, ein dynamischer Stokes-Shift gefunden. Im Gegensatz zu BR besitzt PR in der Emission jedoch drei Zeitkonstanten von < 0.15 ps, 0.45 ps und 4 ps. Die dritte Zeitkonstante kann mit einem spektral dunklen Zwischenzustand assoziiert werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Das Ziel dieser Arbeit war die Untersuchung der Primaerreaktion der Photosensoren Sensorrhodopsin I und II aus dem Archaebakterium Halobacterium salinarum und Sensorrhodopsin II aus Natronobacterium pharaonis sowie die Durchfuehrung vergleichender Messungen an dem zur selben Familie gehoerenden Membranprotein Bakteriorhodopsin. Spektral aufgel�oste Anreg-Abtast-Experimente im sichtbaren Spektralbereich ermoeglichten dabei einen umfassenden Einblick in die schnellsten Prozesse nach der Lichtanregung. Da Femtosekundenlasersysteme mit den erforderlichen Spezifikationen zu Beginn dieser Arbeit noch nicht kommerziell erhaeltlich waren, musste zur Realisierung der Experimente ein Ti:Saphir-Laseroszillator und ein CPA-Verstaerker entwickelt werden, der die benoetigten Lichtimpulse von ca. 100 fs Dauer und 1 mJ Ausgangsleistung bei hoher Stabilitaet lieferte. Erste Hinweise auf das Verhalten der elektronisch angeregten Zustaende der Sensorrhodopsine vermittelten die in einem modifizierten hochempfindlichen Ramanspektrometer aufgenomenen Fluoreszenzspektren. Dabei konnten erstmalig die Fluoreszenzquantenausbeuten der Sensorrhodopsine bestimmt werden und unter gewissen Annahmen auch die Lebensdauern ihrer elektronisch angeregten Zustaende abgeschaetzt werden. Die Anreg-Abtast-Experimente wurden mit einer Zeitau �osung von ca. 100 fs im Spektralbereich von etwa 400 nm bis 700 nm durchgef�uhrt, wobei Absorptionsaenderungen im Promillebereich aufgeloest werden konnten. Innerhalb der ersten 200 fs nach der Lichtanregung wurden bei allen untersuchten Proben schnelle, nichtexponentielle Reaktionskinetiken beobachtet, die durch eine stark gedaempfte Abwaertssbewegung des auf der Potential flaeche des elektronisch angeregten Zustands praeparierten Wellenpakets interpretiert werden koennen. Diese Ergebnisse stuetzen mehrdimensionale Modelle der Primaerreaktion, bei denen der Isomerisierung des Retinals eine schnelle Relaxation hochfrequenter Schwingungsmoden vorausgeht. Die Rueckreaktion in den elektronischen Grundzustand und die damit verbundene Isomerisierung des Retinals verlaeuft im Fall des Photosensors Sensorrhodopsin II trotz der unterschiedlichen Grundzustandsspektren sehr aehnlich zu Bakteriorhodopsin. Bei Sensorrhodopsin I wurde jedoch eine sehr langsame Rueckreaktion innerhalb einiger Pikosekunden beobachtet, die bei dem eingestellten pH-Wert vermutlich zumindest teilweise durch eine veraenderte elektrostatische Wechselwirkung mit dem Gegenion der Schiss- schen Base verursacht wird. Ueber den Vergleich mit Literaturdaten an Halorhodopsin und BR-Mutanten konnten Vermutungen, dass die Geschwindigkeit der Primaerreaktion stark von dieser Wechselwirkung beein usst wird, weiter bestaetigt werden. Aus den aufgenommenen Daten konnten weiterhin die erst lueckenhaft bekannten Photozyklen der Sensorrhodopsine um einige Schritte ergaenzt werden und die Absorptionsquerschnite der gefundenen Zwischenzust�ande berechnet werden. Schliesslich konnte ein qualitatives Modell fuer die Prim�arreaktion der Familie der Retinalproteine vorgeschlagen werden, das als Grundlage fuer zuk�unftige Arbeiten dienen kann.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Verfärbt sich die Probe während eines in situ Ramanexperimentes, wird die gemessene Ramanintensität stark abgeschwächt. Um einen Intensitätsvergleich zwischen den zu verschiedenen Zeitpunkten erhaltenen Ramanspektren zu ermöglichen, muß daher der Zusammenhang zwischen der Absorption der Proben und der gemessenen Ramanintensität berücksichtigt werden. Für die Abhängigkeit der Ramanintensität ψ∞ und der Reflektivität R der Probe gilt näherungsweise: Ψ∞=ρ I (0 ) s ⋅R ∞(1 R ∞) (1 R ∞)=ρ I (0 ) s ⋅G (R ∞) (= Ramanstreukoeffizient, s= Reflektivitätskonstante, I(0)= Eingestrahlte Lichtintensität) Es wird vorgeschlagen, daß die Reflektivität R der Probe parallel zum in situ Ramanexperiment, z.B. durch Einkoppelung einer Plasmalinie des Lasers, gemessen wird und die Ramanintensität mit Hilfe der Beziehung G (R ∞)=R ∞(1 R ∞) (1 R ∞)korrigiert wird. Die Funktion G(R ) ist hierbei proportional zur beobachteten Ramanintensität. Da der Ramanstreukoeffizient ρ proportional zu ν 4 ist, kann er durch c ⋅ν 4 ersetzt werden. Wird die Frequenzabhängigkeit von R berücksichtigt, so gibt die Funktion Ψ ∞die Abhängigkeit des Ramanstrahlungsflusses von der verwendeten Erregerfrequenz an: Ψ∞(ν)=c ν 4 I (0 ) s ⋅R ∞(ν)(1 R ∞(ν)) (1 R ∞(ν))=c I (0 ) s ⋅G (R ∞(ν))⋅ν 4 R (ν)kann direkt aus dem UV-vis-Spektrum der Probe erhalten werden. Das Maximum der Funktion Ψ∞(ν)zeigt die erwartete optimale Laserfrequenz an. Zu hohe Laserleistung kann zur Veränderungen der Probe innerhalb des Laserspots führen. Um Artefakte zu vermeiden, sollte die optimale Laserleistung durch Vergleich mehrerer in situ Ramanexperimente bei verschiedenen Laserleistungen ermittelt werden. Zirkondioxid-Proben neigen zu erhöhtem Untergrund in den Ramanspektren. Die physikalischen Ursachen dafür sind weitgehend ungeklärt, es könnte sich aber um einen Streuprozess handeln, der mit dem Hydratisierungsgrad der Probe zu tun hat. Um erhöhten Untergrund zu vermeiden, sollten diese Proben vor jedem Ramanexperiment bei Temperaturen zwischen 673 und 773 K in trockenem Sauerstoff vorbehandelt werden. Die Charakterisierung durch DTA-TG, Ramanspektroskopie, UV-vis, TPR und FTIR am unpromotierten WO3/ZrO2-Katalysator (WZ) bestätigt die in der Literatur beschriebenen Strukturmodelle 9,11,96,103 . . Die Wolframphase liegt nicht als kristallines Wolframtrioxid, sondern als amorphe Oberflächenwolframate vor, wobei die Wolframatome weitgehend verzerrt oktaedrisch koordiniert und über W—O—W-Brücken untereinander verknüpft sind. Diese Spezies sind über W—O—Zr-Brücken mit dem tetragonalen Zirkondioxid-Träger verbunden. W=O-Gruppen kommen ebenfalls vor und sättigen möglicherweise die Valenzen an den Rändern der Oberflächenwolframate. Hochtemperatur-FTIR-Spektroskopie zeigt, daß trotz Dehydratisierung in trockenem Sauerstoff bei 573 K molekulares Wasser auf dem Katalysator verbleibt. ESR-Spektroskopie an der oxidierten WZ-Probe zeigt, abgesehen von Fe 3+ -Verunreinigungen, die im Zirkondioxid-Träger lokalisiert sind, keinerlei paramagnetische Spezies. ESR-Spektroskopie und UV-vis-Spektroskopie zeigen, daß unter Reaktions-temperaturen (> 473 K) durch die Wechselwirkung mit Wasserstoff die WZ-Probe reduziert wird, wobei W 5+ -Zentren entstehen. Es können mehrere W 5+ -Zentren unterschieden werden, wobei ein O2-Adsorptionsexperiment nahelegt, daß zum einen koordinativ ungesättigte oberflächennahe W 5+ -Zentren und zum anderen tiefergelegene W 5+ -Zentren entstehen. Mit steigender Reduktionstemperatur werden zunehmend tiefergelegene W 5+ -Zentren reduziert. In weit geringerem Maße entstehen bei der Reduktion auch Zr 3+ -Zentren. Ramanspektroskopie am mit Wasserstoff reduzierten Katalysator zeigt keine nennenswerten Veränderungen, da bei den verwendeten Reduktionstemperaturen nur eine partielle Reduktion eintritt. FTIR-Spektroskopie am mit Wasserstoff bzw. Deuterium reduzierten Katalysator zeigt die Entstehung von neuen OH- bzw. OD-Gruppen. Tieftemperatur-CO-Adsorption läßt darauf schließen, daß die durch die Reduktion gebildeten OH-Gruppen weniger azide sind als die OH-Gruppen, die vor der Reduktion vorhanden sind. Insgesamt läßt sich sagen, daß die in der Literatur postulierte Bildung von W 5+ -Zentren 11,13,103,116,117 und OH-Gruppen 11,13,103,116,117,118 durch die Wechselwirkung mit Wasserstoff voll bestätigt werden kann. WZ besitzt Aktivität für die Isomerisierung von n-Pentan zu Isopentan, wobei aber neben Isopentan zahlreiche gesättigte und ungesättigte Crack-Produkte entstehen. Es wird der typische, bereits in vorhergehenden Arbeiten beschriebene Aktivitätsverlauf beobachtet. Nach einer Induktionsperiode und einem Aktivitätsmaximum kommt es zur Des-aktivierung und Stabilisierung auf niedrigem Aktivitätsniveau. Die Produktverteilung spricht weder für einen Haag-Dessau-Cracking-Mechanismus noch für einen monomolekularen oder bimolekularen Mechanismus. Eine mögliche Erklärung für das konstante Verhältnis der Entstehungsraten der Nebenprodukte zum Hauptprodukt Isopentan wäre, daß alle Produkte aus der gleichen höhermolekularen Zwischenstufe entstehen und somit alle Produkte über den gleichen Reaktionsweg (Reaktionsweg A) gebildet werden. Dieser Reaktionsweg steht wahrscheinlich mit höhermolekularen organischen Ablagerungen in Zusammenhang, bei denen es sich möglicherweise um Polyalkenyl-Spezies handelt. Die unpromotierte WZ-Probe zeigt Aktivität für die Hydrierung von Propen. Nach dem Prinzip der mikroskopischen Reversibiltät erscheint eine Aktivierung der Alkane durch Dehydrierung an den Wolframaten möglich, wobei das W 5+ /W 6+ -Redoxsystem ausgenutzt wird. Das Zusammenlagern der Alken-Zwischenstufen führt möglicherweise zu den höhermolekularen organischen Ablagerungen, deren langsame Bildung eine Erklärung für die Induktionsperiode wäre. Die Zugabe von Wasserstoff in den Produktstrom führt zu einer Zunahme der Selektivität für Isopentan. Dies ist wahrscheinlich auf die zusätzliche Ermöglichung eines monomolekularen Reaktionsweges (Reaktionsweg B) zurückzuführen. Dieser mono-molekulare Reaktionsweg wird durch die Reduktion der Wolframate durch Wasserstoff im Eduktstrom ermöglicht und führt zur effektiveren Desorption der Alken-Zwischen-stufen. Diese zeigen wegen der verringerten Lebensdauer / Konzentration eine geringere Tendenz, sich zu höhermolekularen Ablagerungen zusammenzuschließen. Es wird vorgeschlagen, daß bei diesem monomolekularen Reaktionsweg B die Desorption über die Hydrierung des verzweigten Alkens an den Wolframaten, d.h. über den umgekehrten Weg der Aktivierung des linearen Alkans (Dehydrierung), geschieht. Vorreduktion führt zu niedrigerer Aktivität und höherer Selektivität. Es wird keine Induktionsperiode der Gesamtaktivität beobachtet. Bei niedrigen Laufzeiten dominiert wahrscheinlich der monomolekulare Mechanismus (Reaktionsweg B). Der Einfluß des für die Induktionsperiode verantwortlichen Reaktionsweg A ist zu gering, als daß sich die Induktionsperiode auf die Gesamtaktivität auswirken würde. in situ UV-vis-Spektroskopie zeigt, neben starker Verfärbung des Katalysators, Banden organischer Ablagerungen (405, 432, 613 nm), die mit zunehmender Laufzeit stärker werden. Es handelt sich wahrscheinlich um Polyalkenylkationen, die mit dem Reaktionsweg A in Zusammenhang stehen. Die Kettenlänge der Polyalkenylkationen scheint sich mit zunehmender Laufzeit zu vergrößern. in situ Ramanspektroskopie zeigt die Bildung prägraphitischer Ablagerungen. Zunehmende Laufzeit, die Zugabe von Wasserstoff in den Produktstrom sowie Vorreduktion des Katalysators haben keinerlei Einfluß auf die Art der Ablagerungen. Es kann keinerlei Zusammenhang zwischen der beobachteten Aktivität / Selektivität und der Bildung der prägraphitischen Teilchen beobachtet werden. Die beobachteten prägraphitischen Teilchen stehen mit der Isomerisierungsreaktion nicht in Zusammenhang, sondern sind ein Nebenprodukt. Sie tragen möglicherweise, aber nicht ausschließlich, zur Desaktivierung des Katalysators bei. in situ ESR-Spektroskopie zeigt die Bildung von organischen Radikalen sowie von oberflächennahen W 5+ -Zentren nach der Reaktion mit n-Pentan. Die Bildung von organischen Radikalen ist möglicherweise ein Hinweis auf eine schrittweise Oxidation zum Alken. Möglicherweise sind die beobachteten Radikale aber auch auf höhermolekulare, ungesättigte organische Ablagerungen zurückzuführen. Der mit Platin promotierte Katalysator PtWZ wird durch die Wechselwirkung mit Wasserstoff erheblich leichter reduziert. Analog zu der unpromotierten Probe führt die Reduktion der Wolframate zu W 5+ -Zentren und OH-Gruppen. ESR-Spektroskopie zeigt, daß alle bei 673 K reduzierbaren Zentren auch bei Raumtemperatur reduziert werden. Tieftemperatur CO-Adsorption läßt darauf schließen, daß die durch die Reduktion gebildeten OH-Gruppen weniger azide sind als die OH-Gruppen, die vor der Reduktion vorhanden sind. Die Effekte sind darauf zurückzuführen, daß Pt die Reduktion mit Wasserstoff katalysiert, wobei der Wasserstoff dissoziativ auf der Platinoberfläche adsorbiert wird und auf die Wolframate übertritt („Spillover“). Die in der Literatur postulierte erleichterte Reduktion der Wolframate durch Wasserstoff bei der An-wesenheit von Platin unter Bildung von W 5+ -Zentren 11,13,103,116,117 und OH-Gruppen 11,13,103,116,117,118 kann bestätigt werden. PtWZ zeigt bei der Isomerisierung von n-Pentan ohne Wasserstoff eine leicht erhöhte Aktivität gegenüber der unpromotierten Probe WZ. Das verstärkte Auftreten von Alkenen wird auf Nebenreaktionen an den durch das Alkan partiell reduzierten PtOx-Partikeln zurückgeführt (Reaktionsweg C). Die Zugabe von Wasserstoff in den Produktstrom bei der Isomerisierung von n-Pentan an PtWZ führt zu einer ca. 60 mal höheren Aktivität im Vergleich zur maximalen Aktivität von WZ sowie zu Selektivitäten für Isopentan von ca. 95%. Erhöhte Aktivität und Selektivität werden auf das hauptsächliche Vorliegen des selektiv und schnell ablaufenden monomolekularen Reaktionsweges (Reaktionsweg B) zurückgeführt. Die Nebenprodukte entstehen wahrscheinlich durch Hydrogenolyse des n-Pentans an den Platinpartikeln (Reaktionsweg D). Vorreduktion führt zur maximalen Aktivität und Selektivität zu Anfang der Reaktion. Das Experiment bestätigt, daß die Rolle des zugegebenen Wasserstoffs nicht nur in der Reduktion der PtOx-Partikel zu metallischem Platin besteht, sondern daß Wasserstoff eine aktive Rolle bei der Isomerisierung spielt. Durch den Verlust des im System gespeicherten Wasserstoffes werden die Reaktionswege B und D, die an PtWZ in Anwesenheit von Wasserstoff ablaufen, durch die Reaktionswege A und C abgelöst, die an PtWZ in Abwesenheit von Wasserstoff ablaufen. Eisenpromotierung erschwert generell die Reduktion durch Wasserstoff. Die Wolframate der mit Eisen promotierten FeWZ-Katalysatoren (FeWZ(N) und FeWZ(S)) können erst bei einer Reduktionstemperatur von 673 K unter Ausbildung von W 5+ -reduziert werden. Bei einsetzender Reduktion der Wolframate werden die Eisen(III)-Zentren zu niedrigeren Oxidationsstufen reduziert. Es konnten keine Unterschiede im Reduktionsverhalten zwischen der FeWZ(N) und der FeWZ(S)-Probe festgestellt werden. PtFeWZ-Katalysatoren (PtFeWZ(N) und PtFeWZ(S)) werden im Gegensatz zu dem PtWZ-Katalysator bei Raumtemperatur nur in geringem Maße reduziert. Im Gegensatz zu PtWZ, wo bereits bei Raumtemperatur die maximale Intensität des W 5+ -Signals zu beobachten ist, vergrößert sich das Signal mit steigender Reduktionstemperatur. Mit steigender Reduktionstemperatur wird zunehmend Fe 3+ zu niedrigeren Oxidationstufen reduziert. Die erschwerte Reduktion ist wahrscheinlich auf einen kinetischen Effekt zurückzuführen, wobei die Eisenpromotierung einen der Platinpromotierung entgegen-gesetzten Effekt hat und die Reduktion der Wolframate kinetisch hemmt. FeWZ(N) ist unter den gegebenen Reaktionsbedingungen mit oder ohne Zugabe von Wasserstoff nahezu inaktiv. Die beiden PtFeWZ-Proben zeigen ohne Zugabe von Wasserstoff ebenfalls nur geringe Aktivität. Produktverteilung und Aktivitätsverlauf ähneln den bei PtWZ beobachteten. Eisen hat nur einen positiven Effekt auf die Isomeriserung von n-Pentan, wenn sowohl Platin vorhanden ist als auch Wasserstoff in den Produktstrom hinzugegeben wird. Sind diese Bedingungen erfüllt, verbessert Eisenpromotierung die Selektivität der PtFeWZ-Proben. Im Fall der Isomerisierung an PtFeWZ(S) kann zusätzlich zur verbesserten Selektivität eine deutlich erhöhte Aktivität beobachtet werden. Da die Nebenprodukte, die zur Erniedrigung der Selektivität führen, wahrscheinlich durch Hydrogenolyse des n-Pentans auf den Platinpartikeln (Reaktionsweg D) entstehen, wird die Erhöhung der Selektivität gegenüber n-Pentan durch den Einfluß der Eisenpromotierung auf die Platin-partikel erklärt. Möglicherweise hat die Eisenpromotierung Einfluß auf die Dispersion des Platins, oder es bilden sich Fe/Pt-Legierungen bzw. -Verbindungen aus. Die erhöhte Aktivität der PtFeWZ(S)-Probe wird auf einen kooperativen Effekt zwischen den Wolframaten und SO4 2- -Spezies zurückgeführt, die nach der Synthese möglicherweise auf der Oberfläche des PtFeWZ(S)-Katalysators vorhanden sind. Ramanspektroskopie an SZ zeigt den typischen tetragonalen Träger sowie zwei verschiedene Sulfat-Spezies. Zeitabhängige in situ Ramanspektroskopie an SZ während der Isomeriserung von n-Pentan zeigt, daß im Laufe der Reaktion eine dieser Spezies verschwindet. Dies wird auf Reduktion zu H2S durch das eingesetzte Alkan zurückgeführt. Gleichzeitig wird der für diese Proben typische Aktivitätsverlauf (Induktionsperiode, rasche Desaktivierung) beobachtet. Im Gegensatz zu Berichten in der Literatur kann keine Bande bei 1600 cm -1 beobachtet werden, die in dieser Arbeit auf prägraphitische Teilchen zurückgeführt wurde. Geht man davon aus, daß die Isomerisierung an SZ ähnlich wie an WZ abläuft, bestätigt dies, daß es sich bei diesen Spezies um ein Nebenprodukt handelt, das nicht direkt mit der Isomerisierungsreaktion zu tun hat.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
1. Propargylkationen - Erzeugung, Struktur und Reaktivität In Anlehnung an die literaturbekannte Addition [71] eines Lithiumacetylids an ein Aldehydderivat werden unter zusätzlicher Chromtricarbonylaren-Komplexierung diastereomerenreine Substratvorläufer 91 erhalten. Mit dem Ziel, die relevanten Einflußfaktoren und Stabilisierungsmechanismen für eine stereo- und regioselektive kationische Propargylierungsreaktion mit den ortho-substituierten planar chiralen Systemen 91 zu ermitteln, wird die Reaktionssequenz der formalen nucleophilen Substitution in ihre Einzelschritte zerlegt (Ionisation und nucleophile Addition). Die Ionisation der gelben Acetate 77 (entspricht 91 mit R1 = H, R2 = C6H5) bzw. 91 (R1 ¹ H) zu den purpurrot- bis violettfarbigen übergangsmetallstabilisierten Propargylkationen 17 (R1 = H, R2 = C6H5) bzw. 92 (R1 ¹ H) wird zwischen -70 und -40 °C in Dichlormethan durchgeführt und NMR- bzw. UV/Vis-spektroskopisch untersucht (Schema 0.1). Dabei stellt man fest, daß unter der Voraussetzung einer ausreichend starken Lewis-Säure bei tiefen Temperaturen zunächst unter kinetischer Kontrolle das konformativ fixierte s-syn- Propargylkation 92 (R1 ¹ H) irreversibel unter Nachbargruppenbeteiligung des Chroms erzeugt wird, das jedoch bei höheren Temperaturen zum thermodynamisch günstigeren s-anti- Isomer 92' isomerisiert. Aus den Geschwindigkeitskonstanten zweiter Ordnung und den bekannten N- und s- Parametern der eingesetzten Nucleophile (Allyltrimethylsilan, Allylchlordimethylsilan, Anisol, Dimethylphenylsilan) wird mit Mayrs Gleichung [lg k (20°C) = s (E + N)] [103] der Elektrophilie-Parameter E für das Propargylkation 17 (R1 = H, R2 = C6H5) zu E = 1.24 ± 0.39 ermittelt und in seiner Reaktivität mit verwandten Propargylsystemen verglichen (z.B. Nicholas-Kationen E = -1.34 und g-(aren)Cr(CO)3-substituierten Propargylkationen E = -0.35). 2. Diastereoselektive Propargylierungsreaktion Planar chirale ortho-(aren)Cr(CO)3-stabilisierte Propargylkationen 92 reagieren mit einer Vielzahl von O-, S-, N- und p-Nucleophilen regioselektiv zu den entsprechenden Propargylderivaten 93 in guten Ausbeuten (65 bis 90 %) und ausgezeichneten Diastereoselektivitäten (93 : 93' mit d.r. > 9 : 1) (Schema 0.2). Die relative Stereochemie der Produkte wird anhand zahlreicher Kristallstrukturanalysen manifestiert und auf Basis eines Doppel-Inversions-Mechanismus unter Retention der Konfiguration am Propargylzentrum erklärt. Ein Arylsubstituent an der g-Position (R2) steigert die Stabilität der kationischen Zwischenstufe 92, aber auch 92e mit einem g-Alkylsubstituenten wird erfolgreich in der diastereoselektiven nucleophilen Substitutionsreaktionen eingesetzt (Tabelle 0.1). Nur starke Lewis-Säuren ermöglichen durch eine irreversible Ionisation die bevorzugte Bildung des Diastereomers 93 (Tabelle 0.1, siehe Ionisation des Propargylacetats 91e mit unterschiedlichen Säuren). Die Diastereoselektivität wird zudem durch die Stabilität des Propargylkations (92a > 92b-e) und die Reaktivität des angreifenden Nucleophils (Amin ³ Thiol > Silylenolether) erhöht. (Tabelle 0.1). Die stufenseparierte nucleophile Substitution ist unumgänglich, weil bei der in situ-Ionisation des Acetats 91e mit einer starken Lewis-Säure (TiCl4) unter gleichzeitiger Anwesenheit des Nucleophils 110f eine Verringerung der Selektivität (d.r. = 34 : 66) sowie eine Selektivitätsumkehr zugunsten des thermodynamisch kontrollierten Produkts 93' resultiert. 3. Diastereofaciale Selektivität Es kann gezeigt werden, daß der Angriff eines prostereogenen Nucleophils an ein (aren)Cr(CO)3-substituiertes und damit konfigurationsstabiles Propargylkation 92a mit einer Vorzugsorientierung einhergeht (Schema 0.3). Mehrere stereochemisch kontrollierende Elemente (durch den Chromtricarbonyltripoden einseitig abgeschirmtes Kation und prostereogenes Nucleophil) ergeben neben der einfachen stereochemischen Kontrolle des Propargylzentrums auch eine hohe diastereofaciale Selektion bezüglich des zweiten neu generierten Stereozentrums zum Produkt 121. Im Fall des 1-Morpholinocyclohexens (110h) und -pentens (110i) erreicht man in guten Ausbeuten (59 und 68 %) und ausgezeichneten Selektivitäten von d.r. = 88 : 22 und 94 : 6 die Ketone 126a und 127b. In der Reaktion des acyclischen Aminoacrylats 110m und anschließender Reduktion kann ebenfalls in beachtlicher Selektivität von d.r. = 80 : 20 das entsprechende Produkt 131 gewonnen werden. Kristallstrukturanalysen stützen die Zuordnung der relativen Stereochemie der Stereozentren. 4. Versuch einer sukzessiven asymmetrischen Induktion auf drei stereogene Zentren Nach der Addition des 1-Morpholinocyclohexens (110h) an das aus dem Propargylacetat 91a erzeugte Kation und abschließenden Reduktion des intermediären Iminiumions 134 wird das dritte, benachbarte Stereozentrum nur mit einer geringen Stereodifferenzierung (d.r. = 55 : 45) gebildet (Schema 0.4). Jedoch deutet die Entstehung von lediglich zwei Diastereomeren 135 darauf, daß die Propargyl- sowie die Homopropargylzentren hochgradig stereoselektiv entstanden sein müssen. 5. Bemerkenswerte Amphoterie der propargylsubstituierten Arentricarbonylchrom- Komplexe Die elektronisch hermaphroditische Natur der (Aren)Cr(CO)3-Komplexe wird bei der Darstellung eines stabilisierten Propargylanions 137a (-25 °C, THF) in einer einzigartigen Reaktionssequenz zur Seitenkettenfunktionalisierung genutzt (Schema 0.5). In einer sukzessiven Reaktionsfolge wird die Vorstufe 78d über die in dieser Arbeit entwickelten kationischen Propargylierungsreaktion mit Anisol (110d) als Nucleophil hergestellt. Das Propargylderivat 78d wird ohne zusätzliche Einführung von Elektronenakzeptoren direkt mit Lithiumhexamethyldisilazid in das Propargylanion 137a übergeführt, das dann der elektrophilen Addition von Methyliodid zum Propargylderivat 138a unterzogen werden kann. Die Additionen von Protonen oder Trimethylsilylchlorid liefern hingegen nach ausschließlichem g-Angriff die entsprechenden Allene 139 in guten Ausbeuten um 70 %. Die anionische Zwischenstufe 137a kann bei tiefen Temperaturen in Tetrahydrofuran sowohl NMR- als auch UV/Vis-spektroskopisch nachgewiesen werden. 6. Ungewöhnliche Propargyl-Allenyl-Isomerisierung in den Abfangreaktionen der Propargylkationen Anstelle der erwarteten Propargylderivate 93 liefert die Addition des Triphenylphosphans 140 an die (aren)Cr(CO)3-substituierten Propargylkationen 17 bzw. 92 die Allenylphosphoniumsalze 141 (Schema 0.6). Diese ungewöhnliche Reaktionssequenz in saurem Medium, die man bei der nucleophilen Addition des Phosphans an das Kation 17 bzw. 92 beobachtet, kann über eine konsekutive, wahrscheinlich prototropische Isomerisierung gedeutet werden. Die Strukturen der komplexsubstituierten Allenylphosphoniumsalze 141 werden mit der NMR-Spektroskopie und zusätzlich über Röntgenstrukturanalysen von 141b und 141c unzweifelhaft identifiziert. Die Produktverhältnisse der als Diastereomere erhaltenen Phosphoniumsalze 141b und 141c lassen auf keinen stereochemisch induzierten Verlauf bei der nachgeschalteten prototropen Isomerisierung schließen. 7. Regioselektiver a-Angriff der Thiole an mono- und disubstituierte (Aren)Cr(CO)3- Propargykationen Während die ortho-substituierten Arylpropargylkationen 92 (R1 ¹ H und unabhängig vom g-Substituenten R2) mit Thiolen die erwarteten Propargylthioether 118 bilden, entstehen bei dem monosubstituierten Vertreter 17 (R1 = H) die Allenylthioether 79 (Schema 0.7). Die Anwesenheit eines ortho-Substituenten R1 unterbindet vermutlich aus sterischen Gründen eine Folgereaktion der Alkine zu den thermodynamisch stabileren Allenen. Kristallstrukturanalysen untermauern neben der NMR-Spektroskopie die a-Verknüpfung der Propargyleinheit mit dem eingesetzten Thiol. Der gelbe Allenylthioether 79c ergibt nach einer Kristallisationsdauer von mehreren Wochen aus Acetonitril bei 0 °C rote Einkristalle eines einzigen [2+2]-Additionsprodukts 144 der angegebenen Stereochemie, dessen Struktur mittels der Kristallstrukturanalyse aufgeklärt werden kann (Schema 0.8). 8. Totalsynthese des rac-O,O'-Dimethylethers des pharmakologisch interessanten Hinokiresinols Aufbauend auf der etablierten, hochgradig stereoselektiv geführten Propargylierungsreaktion über ein (aren)Cr(CO)3-substituiertes Propargylkation 92 wird eine neuartige Totalsynthese zu einem Derivat 153b des pharmakologisch bedeutenden und in der Natur vorkommenden Hinokiresinols vorgestellt (Schema 0.9). Im Schlüsselschritt wird ein E-Vinylsilan an das aus dem Acetat 188a bei -78 °C generierte Propargylkation 189 addiert. Neben der beachtlich hohen Ausbeute von 36 % über acht lineare Syntheseschritte bietet dieser Syntheseweg die Möglichkeit, unter Verwendung enantiomerenreinen Ausgangsmaterials 188a die Synthese enantioselektiv zu führen sowie durch die Addition des entsprechenden Z-Vinylsilans den isomeren Nyasoldimethylether darzustellen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurde die Funktion ausgesuchter Aminosäuren in der archaealen Protonenpumpe Bacteriorhodopsin (BR) bei der Entstehung der zweidimensional kristallinen Purpurmembran (PM) in Halobacterium salinarum untersucht. Mittels gerichteter Mutagenese wurden aromatische Gruppen (W12, Y64, W80) gegen andere Reste ausgetauscht und die mutierten Gene homolog exprimiert. Die Tryptophanmutationen hatten dabei eine drastische Störung der PM-Bildung zur Folge, was auf wichtige Wechselwirkungen mit Lipidmolekülen schließen ließ. Insbesondere der Tryptophanrest W80, der mit dem Phythanylrest eines Glykolipids im Zentrum des Trimers wechselwirkt, zeigte seine essentielle Bedeutung für die PM-Bildung. Eine Abhängigkeit der PM-Bildung von der vorhandenen BR-Menge und Wachstumsphase konnte beim Wildtyp (WT) ausgeschlossen werden. Gefrierbruchelektronenmikroskopische Aufnahmen von ganzen Zellen zeigten bei der Mutante BR-W12I zahlreiche kleinere kristalline Bereiche auf der Oberfläche, während die Zellen mit BR-W80I nahezu keine geordneten Flächen aufwiesen. Mit Hilfe von Rotationsdiffusionsmessungen in Vesikeln und Elektronenspinresonanz(ESR)-Spektroskopie von spinmarkierten Cysteinmutanten wurde eine Zunahme der Mobilität der markierten Seitenketten und des mittleren Abstands der BR-Moleküle nachgewiesen. Lichtinduzierte Proteinvernetzung zeigte eine deutliche Auflockerung der kristallinen Struktur der mutierten BR-Moleküle in der Zellmembran, vor allem bei BR-W80I. Die Funktion von BR als Protonenpumpe wurde durch die Mutationen nicht beeinträchtigt, ebenso wurde keine durch die PM bewirkte höhere Photophosphorylierungsrate in den Zellen nachgewiesen, weshalb eine Begünstigung dieser Prozesse als Erklärung für die in vivo- Kristallisation ausgeschlossen wurde. Der Einfluß der Mutationen auf die spektroskopischen Eigenschaften war vergleichsweise gering. Jedoch bot die Abnahme der Lichtadaptationsfähigkeit und Zunahme des Anteils an inaktiven 9- und 11-cis-Retinalisomeren in lichtadaptierten Proben eine plausible Erklärung für die Bildung der kristallinen PM. Die Bildung des 9-cis-Isomeren führt zur Spaltung der Bindung zwischen Retinal und dem Protein. Dies wurde durch Belichtung von Zellen mit BR-W80I nachgewiesen, die innerhalb weniger Stunden ihren aktiven Chromophor in BR verloren. Demnach wird durch die kristalline Anordnung von BR die thermoreversible Isomerisierung von all-trans- zu 13-cis-Retinal so stark bevorzugt, dass die funktionelle Stabilität des Proteins gewährleistet ist. Dies erklärt den evolutionären Vorteil des kristallinen Form des BR als Purpurmembran. Das Vorkommen von zweidimensionalen Kristallen von Halorhodopsin (HR) mit hexagonaler Ordnung im Überexpressionsstamm D2 wurde mittels Gefrierbruchelektronenmikroskopie nachgewiesen. Eine ähnliche Anordnung wurde in 3D-Kristallen gefunden, die im Rahmen dieser Arbeit durch Aufreinigung des Proteins und Kristallisation in kubischen Lipidphasen erhalten wurden (Kolbe et al., 2000). Damit wurde gezeigt, dass in den 3D-Kristallen von HR die gleiche Anordnung wie in der Zellmembran auftreten kann. Dies ließ auch auf eine physiologische Relevanz des Palmitatmoleküls schließen, das im Innern des HR-Trimers in der Kristallstruktur gefunden wurde. Die Affinität dieser Fettsäure zu HR wurde durch Markierung der Zellen mit 3H-Palmitat untersucht. Aus diesen Experimenten ging hervor, dass die Affinität der Palmitinsäure zu HR im Vergleich zu BR nicht höher ist. Eine BR-Mutante, die in einer nichtkristallinen Anordnung vorlag, wurde als Kontrolle verwendet. Es wurde ein Vektor konstruiert, der die Klonierung und homologe Expression von Genen für lösliche Proteine als Fusionsprotein am C-terminus von BR ermöglicht. Dies wurde mit dem Gen für das Ferredoxin von H. salinarum erfolgreich durchgeführt. Die rasche Aufreinigung der entstandenen PM mittels Zentrifugation in einem Saccharosedichtegradienten führte zu einer einfachen Abtrennung von einem Großteil anderer Proteine. Durch Einführung spezifischer Proteaseschnittstellen wurde auch eine Spaltung des Fusionsproteins ermöglicht. Die Koexpression löslicher Proteine mit BR in der PM bietet enorme Vorteile aufgrund der hohen Expressionsrate des Bacterioopsingens (bop), der Induzierbarkeit des bop-Promoters, die einfache Aufreinigung und der Möglichkeit zur Expression von Mutanten von essentiellen Genen ohne deren vorherige Deletion. Die Eignung dieses Systems für die einfache Isolierung von löslichen Proteinen als Fusionsprotein mit BR wurde im Rahmen dieser Arbeit bestätigt.
In den Tetrafluoroborato-Komplexen (η5-C5H5)(CO)2LMFBF3 (M = Mo, W; L = CO, PPh3, P(OPh)3) und (η5-C9H7)(CO)3WFBF3 lassen sich das koordinierte Fluoratom und die endständigen F-Atome des BF4-Liganden durch ihre 19F-NMR-Signale unterscheiden. An Hand der 19F- und 31P-NMR-Spektren lässt sich für (η5-C5H5)(CO)2P(OPh)3WFBF3 eine bei höherer Temperatur erfolgende cis → trans-Isomerisierung sowie eine rasche Rotation des koordinierten BF4-Liganden nachweisen.
Durch D-, 13C- und Doppelmarkierungsexperimente wird gezeigt, daß die Isomerisierung der Homoadamantan-3-carbonsäure (2) zur Homoadamantan-1-carbonsäure (3) unter den Bedingungen der Koch-Haaf-Synthese durch reversible Decarbonylierung zustande kommt, die von intermolekularem Hydridtransfer zwischen den Brückenkopfpositionen der Homoadamantan-1-und Homoadamantan-3-carbenium-Ionen und Homoadamantanderivaten begleitet ist. Die Umlagerung ist mit Äquilibrierung der Isotopenmarkierung aller Methylengruppen verbunden. Hierfür wird die gleichzeitig stattfindende bekannte Adamantylmethyl-3-Homoadamantylcarbenium-Umlagerung verantwortlich gemacht. Im Gegensatz zu Hydridübertragungen im Adamantyl-system beteiligen sich die Methylenwasserstoffe des Homoadamantylsystems nicht an der Hydridübertragung zwischen den Brückenköpfen.