POPULARITY
In dieser Folge sprechen wir über die wirtschaftliche Lage, Energiepreise, interessante Märkte und Trends. Mit unserem Gast Fuat Eker von der ColVisTec AG geht es aber auch um technische Themen. Insbesondere den industriellen Einsatz von Spektroskopie als Methode der zerstörungsfreien Prüfung. Mehr zu ColVisTec: https://www.colvistec.de/
STERNENGESCHICHTEN LIVE TOUR 2025! Tickets unter sternengeschichten.live Im Jahr 1572 fand eine Supernova statt. Und im Jahr 2008 haben wir dieselbe Explosion im All noch einmal beobachtet. Wie man in der Astronomie tatsächlich Bilder aus der Vergangenheit sehen kann, erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
In dieser Folge sprechen wir darüber, warum die Atmosphären von Venus und Erde so verschieden sind. Danach geht es ins Kapitel 5 von Szilas‘ Arbeit und darum, wie erdähnliche Planeten ihre Atmosphären wieder verlieren können. Zur Analyse der Exoplaneten müssen wir Spektroskopie betreiben. Wie und mit welchen Methoden das genau geht, steht in Kapitel 6 und wir gehen näher darauf ein. Nach der Frage lebensträchtiger Atmosphären und Biomarker stellen wir in den Space News eine aktuelle Arbeit vom IWF Graz zum Thema höheres Leben in der Milchstraße vor.
In Folge 106 wird es vielfältig! Wir probieren ein Kloster zu kaufen, planen Wasserrutschen auf dem Mars und benennen einen Quasimond der Erde. Dann erzählt Ruth von einer Galaxie, die schon kurz nach dem Urknall existiert hat und in der wir viel zu viel Kohlenstoff gefunden haben. Wir wissen nicht, wo der herkommt, aber die Chancen stehen gut, dass die allerersten Sterne des Universums dafür verantwortlich waren. Und dann erklärt uns Evi in “Science Frames” noch, wie man eine Landung auf dem Mars vortäuschen kann. Wenn ihr uns unterstützen wollt, könnt ihr das hier tun: https://www.paypal.com/paypalme/PodcastDasUniversum Oder hier: https://steadyhq.com/de/dasuniversum Oder hier: https://www.patreon.com/dasuniversum
In Folge 98 wird es verrückt! Nachdem Ruth einmal kurz nachsieht, was die ganzen großen Teleskope gerade treiben (sehr viel!), beschäftigen wir uns mit Bananen. “Going Bananas” sagt man, wenn jemand durchdreht. Und genau das haben die Medien auch geschrieben, als man bananenförmige Galaxien entdeckt hat. Die aber natürlich nicht wirklich die Form einer Banane haben. Irgendwie aber schon. Warum das höchst spannend ist, erfahrt ihr in der neuen Folge. Außerdem: Das Roman-Teleskop wird weiter gebaut, JWST findet super Spiralen und schmutzige Sterne, Deutschland und Russland kämpfen um das halbe Universum und Evi erklärt, warum “The Day after Tomorrow” gar kein so schlechter Film ist, wie man glaubt. Wenn ihr uns unterstützen wollt, könnt ihr das hier tun: https://www.paypal.com/paypalme/PodcastDasUniversum Oder hier: https://steadyhq.com/de/dasuniversum Oder hier: https://www.patreon.com/dasuniversum
Interamnia ist der fünftgrößte Asteroid im Haupt-Asteroidengürtel. Trotzdem wissen wir fast nichts über ihn. Was wir wissen ist 1) faszinierend und ihr erfahrt es 2) in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
In Folge 74 fangen wir mit Vulkanen auf der Venus an, machen mit Alien-Raumschiffen weiter und landen bei staubigen Asteroiden, die wir mit einer Raumsonde beschossen haben. Was man aus so einer Kollision lernen kann, erzählt Florian und danach diskutieren wir mit Evi über Roboter, Ethik und die Robotergesetze von Isaac Asimov. Wenn ihr uns unterstützen wollt, könnt ihr das hier ttun: https://paypal.me/PodcastDasUniversum. Oder hier: https://steadyhq.com/de/dasuniversum. Oder hier: https://www.patreon.com/dasuniversum.
Der Vatikan betreibt seit dem 16. Jahrhundert eine eigene Sternwarte. Aber warum? Was wird dort erforscht? Eine kurze Geschichte der katholischen Astronomie gibt es in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Der Stern P Cygni ist im Jahr 1600 plötzlich am Himmel aufgetaucht. Und dann wieder verschwunden. Und dann wieder aufgetaucht. Was da abgeht erfahrt in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Interview mit Dr. Felix Lambrecht, CEO von anvajo In der Nachmittagsfolge begrüßen wir heute Dr. Felix Lambrecht, CEO von anvajo, und sprechen mit ihm über die erfolgreich abgeschlossene Series-A-Finanzierungsrunde in Höhe von 17,7 Millionen Euro. Anvajo ist ein Spin-Off-Diagnostikunternehmen der Technischen Universität Dresden und forscht seit 2016 an innovativen und digitalen Lösungen der Frühdiagnostik, um Erkrankungen im Frühstadium zu erkennen und vorzubeugen. Hierbei liegt der Fokus auf der Flüssigkeitsanalyse, Labor- und Bluttests. Das MedTech aus Dresden hat nun ein tragbares Gerät entwickelt, welches insbesondere in unterversorgten Regionen genutzt werden kann. Das anvajo fluidlab verbindet zum einen die Spektroskopie und zum anderen die Mikroskopie in einem Diagnosegerät. Mit diesen Forschungsergebnissen hat anvajo 2022 die Takeda Innovation Challenge (EIT Health Germany) gewinnen können und war unter den Finalisten des health-i Awards (Handelsblatt und Techniker Krankenkasse). Das Startup wurde 2016 von Stefan Fraedrich gegründet. Nun konnte sich anvajo in einer Series-A-Finanzierungsrunde 17,7 Millionen Euro sichern. Die Runde wird von dem deutschen Pharmaunternehmen MEDICE Arzneimittel angeführt mit Beteiligung des US-amerikanischen Fonds von Johnsonville Ventures sowie von den deutschen Diagnostikspezialisten Elber Beteiligungen und Think.Health. Der Bestandsinvestor die BrückenköpfeX beteiligt sich erneut. Mit dem frischen Kapital soll der Launch in weiteren humanmedizinischen Märkten vorangetrieben werden.
Charles Piazzi Smyth hat die Astronomie auf die hohen Berge der Erde gebracht. Und behauptet, in den Pyramiden könnte man geheime Botschaften finden. Mehr über das Leben dieses kontroversen Forschers erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Wasserstoff kann leuchten, aber nur im Radio. Und damit können wir dorthin schauen, wo keine Sterne im Universum leuchten. Wie das funktioniert? Erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Die Erde ist heute der "blaue" Planet. Früher aber könnte sie vielleicht lila gewesen sein. Und das hat Auswirkungen auf unsere Suche nach außerirdischem Leben. Mehr dazu erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
In Folge 51 schauen wir zuerst kurz zurück in die Zukunft und dann auch nach vorne. Danach freuen wir uns über die Entdeckung von jeder Menge extrasolarer Kometen. Und dann kommt eine sehr nice Planetenentstehungsgeschichte. Es geht darum um das Nice-Modell, mit dem man bisher erklärt hat, wie die Planeten des Sonnensystems entstanden sind und ein neues Modell, bei dem alles ein wenig genauer und besser erklärt wird. Unter anderem mit verschwindenden Gasscheiben und hüpfenden Planeten. Und Planet 9 kommt auch kurz vorbei. Danach beantworten wir Fragen über Wechselplaneten und die Expansion des Universums. In “Neues von der Sternwarte” erzählt Evi vom Astronomischen Praktikum und am Ende sind wir erstaunt über unsere Wikipedia-Seiten.
In Folge 46 geht es um Dreck. Nachdem wir festgestellt haben, dass wir gerade nicht wirklich erholt sind, erzählt Florian kurz von einer enormen Sonneneruption. Danach geht es um Weltraummüll und davon, dass zuviel unnötiges Zeug in der Umlaufbahn rumfliegt. Und wenn es blöd läuft, ist bald so viel davon da, dass der erdnahe Weltraum unbenutzbar wird. Unsere Atmosphäre haben wir hier auf der Erde auch schon ziemlich zugemüllt. Mit CO2, aber auch mit FCKWs, die das Ozonloch verursacht haben. Das haben wir halbwegs in den Griff bekommen, aber wenn etwaige Aliens ähnlich verschwenderisch mit den FCKWs umgehen wie wir, dann könnten wir das theoretisch mit dem James-Webb-Weltraumteleskop beobachten. In den Fragen geht es u.a. um Neutronensterne und Teleskopkauf und mit Evi diskutieren wir in “Neues von der Sternwarte” darüber, ob auf der Uni früher alles besser war oder eher doch nicht.
Kann im Inneren eines Sterns ein anderer Stern stecken? Theoretisch wäre das möglich. Ob es solche seltsamen Objekte aber auch wirklich gibt und wie sie entstehen können, erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Ruth Grützbauch ist Astronomin, betreibt in Wien ein Popup-Planetarium, und ich lasse mir von ihr erzählen, was es am Himmel nicht zu sehen gibt, obwohl es dort ist. Darin: Wasserstoff – Radiostrahlung – Hyperfeinstruktur – Wasserstofflinie – Henk van der Hulst – Rotverschiebung – Gaia – Rotverschiebung – Russel J. Donelly – Spektroskopie – Messier 81 (auf […]
Gibt es da draußen außerirdisches Leben? Vielleicht. Und wenn es nicht um Lichtschwertschwinger oder Spitzohren geht sondern um Mikroorganismen, Pflanzen usw, dann können wir es auch finden. Wie? Hört ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten) Und stimmt für die Sternengeschichten bei diesem Voting: https://k.at/podcast-award#voting
Auf der Wega gehts ab! Der fünfthellste Stern des Nachthimmels steckt voller Mythen - aber auch voller spannender wissenschaftlicher Entdeckungen. Himmelsgötter und Trümmerscheiben: Dort gibt es alles! Mehr dazu hört ihr in der neuen Folge der Sternengeschichten.
Spektroskopie je téměř kouzelná metoda, která nám dá přesné informace o neznámém pšouku plynu v laboratoři nebo i o neznámém pšouku hvězdné mlhoviny tisíce světelných let daleko. Jelikož každý chemický prvek má originální elektronovou strukturu, oku tohoto přístrojového Sherlocka neunikne. Jednou z variant spektroskopie je i Glow Discharge Emmission Spectroskopy, která si funguje právě v laboratoři a onen příslovečný pšouk plynu si sama vyrobí odpařením zkoumané pevné látky. Jak celá metoda funguje a proč ji vědátoři potřebují vám poví přímo šéf mé fyzikální podjednotky JaRona, Dr. Radim Čtvrtlík ze Společné Laboratoře Optiky PŘF UPOL a FZÚ AV ČR. Neočekávejte však POPULARIZAČNÍ přednášku! Jedná se o odbornou přednášku pro kolegy... ale nebojte se, pár prvních motivačních slajdů pochopíte určitě... a na složitější cirkusy se klidně zeptejte v komentářích, a JaRon Vám odpoví.
Wie kann die BASF-Tochtergesellschaft trinamiX mit ihrem Spektrometer Kaffee analysieren? Was bedeutet das für Kaffeetrinker, Röstereien, Anbauer und Hersteller? Und ist die Technologie auch auf andere Lebensmittel übertragbar? Das und vieles mehr verrät Nils Mohmeyer, Head of Sales und Marketing für Spektroskopie-Lösungen bei trinamiX, in dieser Podcast-Folge.
Andere Sterne werden nicht nur von Planeten umkreist. Sondern unter anderem auch von Kometen. Die sind viel kleiner, aber wir können sie trotzdem entdecken. Durch den Staub den sie produzieren und wie das geht erfahrt ihr in der neuen Folge der Sternengeschichten.
Diese Woche gibt es eine neue Folge der Reihe "Nobelpreise der Physik" auf eure Ohren! Wir versuchen den recht komplizierten Mößbauer-Effekt anschaulich zu erklären. Viel Vergnügen!
Die astronomische Version der Chemie ist simpel. Es gibt nur Wasserstoff, Helium und Metalle. Warum das so ist und warum es durchaus sinnvoll ist das Universum so zu betrachten, erfahrt ihr heute im Podcast.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Wed, 7 Oct 2015 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/18802/ https://edoc.ub.uni-muenchen.de/18802/1/Kuehler_Paul.pdf Kühler, Paul ddc:530, ddc:500, Fakultät
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Die moderne Anrege-Abfrage-Spektroskopie (Pump-Probe-Spektroskopie) ermöglicht es, die Mehrheit der relevanten physikalischen und chemischen Prozesse zeitaufgelöst zu messen. Die Pump-Probe-Spektroskopie wird in der fundamentalen, industriellen, biomedizinischen und Umweltforschung angewendet, um ein breites Spektrum von komplizierten Substanzen zu untersuchen. Diese Dissertation demonstriert das große Potenzial der transienten Spektroskopie für die Untersuchung von ultraschnellen chemischen Reaktionen komplizierter organischer Moleküler (Allylverbindungen). Auch einige praktische Vorschläge zur Verbesserung der spektroskopischen Messroutine werden gegeben. Die Bestimmung des Zeit-Nullpunkts (zeitlicher Überlapp) der Anrege- und Abfragepulse ist sehr wichtige und keine triviale Aufgabe in einem Anrege-Abfrage-Experiment. Im Kapitel 3 werden die Ergebnisse der Untersuchung von bekannten Laserfarbstoffen und anderen Substanzen, die erfolgreich zur Zeit-Nullpunkt Kalibrierung benutzt werden können, beschrieben. In den Kapiteln 4 und 5 werden die Ergebnisse der spektroskopischen Untersuchung von einigen interessanten Allylsystemen präsentiert. Es ist uns gelungen zu zeigen, dass die spezifische molekulare Einheit (die Styrolgruppe) als Chromophor dient, was während der UV-Anregung von Allylen mit Kurzpuls-Lasern zur Lokalisierung der Anregung auf der Styrolgruppe führt. Durch die Benutzung dieser Eigenschaft und den Wechsel von Abgangsgruppen und Substituenten haben wir detailiert den Bindungsbruch und die geminate Ionenpaar-Rekombination von unsubstituierten, symmetrisch und unsymmetrisch substituierten Allylsystemen untersucht.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
In kühlen Sternen wie der Sonne wird die nuklear erzeugte Energie aus dem Inneren an die Oberfläche transportiert. Diese kann dann in den freien Weltraum entfliehen, und so können wir das Sternenlicht letztlich beobachten. Die theoretische Modellierung des photosphärischen Übergangsbereiches – vom konvektiven zum radiativen Energietransport – ist aufgrund der inhärenten dreidimensionalen (3D) Natur der Konvektion und der komplexen, nicht-linearen und nicht-lokalen Interaktionen des Strahlungsfelds mit dem stellaren Plasma sehr anspruchsvoll. Theoretische Atmosphärenmodelle stellen die fundamentale Basis für die Untersuchung von Sternen dar, daher sind Astronomen für ihr Verständnis der Sterne auf diese letztlich angewiesen. Die üblicherweise verwendeten eindimensionalen (1D) Atmosphärenmodelle beinhalten verschiedene Vereinfachungen. Insbesondere wird die Konvektion für gewöhnlich mit der Mischungswegtheorie berechnet, trotz ihrer wohlbekannten Fehler, da derzeit keine deutlich besseren Alternativen vorhanden sind. Der einzige Ausweg, um dieses Problem zu überwinden ist, die zeitabhängigen, dreidimensionalen, hydrodynamischen Gleichungen, welche mit einem realistischen Strahlungstransport gekoppelt sind, zu lösen. Aufgrund der in den vergangenen Jahrzehnten rasch gestiegenen Rechenleistung wurden bedeutende Fortschritte mit Simulationen für 3D Strahlungshydrodynamik (RHD) von Atmosphären erzielt. Diese Modelle sind außerordentlich leistungsfähig, und besitzen eine enorme Vorhersagekraft, wie präzise Vergleiche mit Sonnenbeobachtungen wiederholt beweisen konnten. Ausgestattet mit diesen ausgereiften Methoden möchte ich als Ziel meiner Dissertation die drei folgenden Fragen näher untersuchen: Was sind die Eigenschaften der Atmosphären von kühlen Sternen? Welche Unterschiede sind zwischen den 1D und 3D Modellen vorhanden? Wie verändern sich die Vorhersagen für die Sternstrukturen und Spektrallinien? Um mich dieser Aufgabenstellung systematisch anzunehmen, habe ich das Stagger-Gitter berechnet. Das Stagger-Gitter ist ein umfangreiches Gitter aus 3D RHD Atmosphärenmodellen von kühlen Sternen, welches einen großen stellaren Parameterbereich abdeckt. In der vorliegenden Dissertation beschreibe ich die Methoden, welche angewendet wurden, um die vielen Atmosphärenmodelle zu berechnen. Zudem werden die allgemeinen Eigenschaften der resultierenden 3D Modelle, auch deren zeitliche und räumliche Mittelwerte detailliert dargestellt und diskutiert. Die Unterschiede zwischen den 1D und 3D Schichtungen, sowie die Details der stellaren Granulation (die Manifestation der Konvektion unterhalb der Sternoberfläche) werden ebenfalls umfangreich erläutert und beschrieben. Des Weiteren habe ich folgende Anwendungen für die 3D Atmosphärenmodelle untersucht: Berechnung theoretischer Spektrallinien, wichtig für die Bestimmung von Sternparametern, Spektroskopie und Häufigkeiten-Analyse; die sogenannte Randverdunkelung, notwendig für die Analyse interferometrischer Beobachtungen und Suche nach extrasolaren Planeten; und die Kalibrierung der Mischungsweglänge, womit 1D-Sternmodelle verbessert werden können. Die Qualität der hochauflösenden Beobachtungen hat inzwischen die der theoretischen 1D Atmosphärenmodelle aufgrund der technischen Entwicklungen in den vergangenen Jahren überschritten. Daher hat sich der Bedarf an besseren Simulationen für Atmosphärenmodelle erhöht. Durch die Bereitstellung eines umfangreichen Gitters aus 3D RHD Atmosphärenmodellen wurde dazu ein erheblicher Beitrag geleistet. Damit werden wir den Anforderungen an die Theorie für die derzeitigen und zukünftigen Beobachtungen gerecht werden, und können somit zu einem besseren Verständnis der kühlen Sterne beitragen.
Schwerpunkt: Thomas Pfeifer vom Max-Planck-Institut für Kernphysik nutzt Lichtpulse, die nicht einmal eine billiardstel Sekunde andauern, um Atome und Moleküle zu untersuchen || Nachrichten: Blick ins Innere von Uranus und Neptun | Weltraummission Kepler vermutlich vor dem Aus | Fundamentale Eigenschaften des seltensten natürlichen Elements gemessen || Veranstaltungen: Bremen | Bayreuth | Augsburg
Analyse von organischen und anorganischen Substanzen und Materialien
Opto-elektrische Untersuchungen von Flüssigkeiten und Dünnschichten
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Quantum control spectroscopy denotes the combination of optical quantum coherent control with femtosecond spectroscopy. The molecular response to a photo induced process, controlled by shaped ultrashort light pulses, carries information about the system and the induced chemical reaction not obtainable by unshaped pulses. In this work quantum control spectroscopy is used to investigate the photochemical process of beta-carotene during its first few hundred femtoseconds, which are important in the photosynthesis of light harvesting complexes. A special class of shaped pulses, called pulse trains, are investigated. Pulse trains are obtained from Fourier limited pulses, by modulation with a sinusoidal phase mask $phi(omega) = a sin(bomega_0+c)$, leading to a sequence of three or more phase stabilized Gaussian shaped pulses in the time domain. The intensities of these pulses are defined by a, they are separated by equal interpulse distances b and have a distinct phase relation which is defined by c. In this work it will be shown that it is possible to draw a very unique relation between molecular properties and the molecular response to the electrical field in dependance of these parameters. In terms of quantum coherent control, sinusoidal modulated pulse trains have attracted special attention in the context of mode selectivity. In a series of experiments it was observed that pulse train excitation can suppress spectral features in the detection signal when the interpulse distance is adjusted to molecular characteristics like vibrational frequencies. Furthermore, in many control experiments aiming to steer a chemical reaction, the use of learning loops for field optimization leads to pulse shapes that could be reduced to sequences of pulses, comparable to the pulse trains introduced. Replacement of optimized light fields by appropriate adjusted pulse trains were successful in experiments controlling the energy flow in a light harvesting complex. Control could be obtained by variation of the phase parameter c, suggesting that the achieved effect was of coherent origin. The assumption that the carotene units in LH2 were responsible for the successful control, was the motivation for the presented work of quantum control spectroscopy of beta-carotene. Although many efforts have been made to understand the non-linear effects induced by pulse trains, the underlying mechanism is not yet clear. Neither the background of mode selectivity nor the mechanism of chemical reaction control could be deciphered satisfactorily. For spectroscopical investigations, however, the knowledge of the underlying process and its connection to the molecular response is inevitable and are analyzed in detail. Starting with a simple model of bound states in a diatomic molecule, the induced dynamics of the molecular system and the characteristics of the response field are analyzed. First phenomenological investigations of the pulse train induced wave packet dynamics show dependancies between the populations and coherences of the generated molecular state and the choice of the sinusoidal mask parameters. Further investigations imply a mechanism connecting the outcome of the control experiment with the pulse train parameters and the molecular properties which is confirmed by derivation of a formula based on time dependent perturbation theory. The proposed mechanism leads to results which are in accordance with many experimentally observed effects. It is found that pulse train excitation generates vibrational wave packets that can exhibit symmetric phase space structures. Comparable structures appear during long time evolution after excitation with Fourier limited pulses and are known as partial revival states. Experimentally observed effects, like annihilation of spectral signals, are attributed to temporal interference effects between phase shifted vibrational coherences of these symmetric phase space structures. Contribution of such temporal interference effects are found to be essential for the signal interpretation in the case of time limited detection periods in the femtosecond regime. From a detailed analysis rules are extracted which serve to predict and to interprete the outcome of quantum control experiments using sinusoidally modulated pulse trains. It is found that the degree of rotational symmetry of the generated phase space pattern is determined by the ratio of the classical oscillation period of a vibrational mode to the interpulse distance b. In contrast, at a fixed value of b, the variation of the phase parameter c causes an oscillatory exchange between phase shifted components of the generated phase space structures, leading to an oscillatory disturbance of the phase space symmetry. While the phase space symmetry induced by b leads to destructive interference of spectral signals, this effect can be partially removed by c. The resulting oscillations of the peak amplitudes with c reflect the symmetry of the b-generated phase space structures. In a next step the model is extended towards the description of complex biological systems. Investigated are environmental effects, the model expansion to polyatomic molecules and the influence of electronic coupling elements, leading to the participation of additional electronic states. Using the density matrix description, the influence on the pulse train mechanism of elastic and inelastic environmental processes is investigated. Limits are figured out, defining the scope of the extracted rules for the two mask parameters b and c in dissipative environment. Increasing the dimensionality of the model, it is found that the derived mechanism still holds in polyatomic molecules. In accordance with experimental results, it is possible to damp spectral signals of selective vibrational modes by the mentioned destructive interference effects, adapting the interpulse distance to participating modes. By combination of the effects of b and c it is even possible to selectively damp near resonant modes. To come closer to the description of beta-carotene, the model system is extended by an additional diabatically coupled electronic state. Now the spectroscopic response function after Fourier limited excitation, recording the evolution of the excited state population, comprises information exclusively of the reactive coupling modes. Thus, the electronic coupling process can be traced without disturbance of inreactive spectator modes by detection of the excited state population, acting as a window to coupling modes. Additionally it is shown, that the mechanism of pulse train excitation found for bound state potentials still holds in the presence of electronic coupling. The described interference effects appearing in the spectroscopical signals after pulse train excitation, show that a rethinking is required in the interpretation of pulse train control experiments. On the other hand, the different aspects of pulse train control offer a manifold of new applications in various fields of spectroscopy. Parallels to experiments, applying pulse trains under different conditions, like for example nonresonant excitation, lead to the assumption, that the introduced effects are more general. Pulse trains in spectroscopy may enhance the sensitivity and the selectivity of spectral features and could be applied to achieve higher contrast in coherent microscopy. By selective damping of near-resonant modes, application of pulse trains in combination with transient spectroscopy could provide access to the direct observation of dynamical processes. Furthermore, the characteristic response to parameter variations under pulse train excitation can serve to differentiate between vibrational and electronic origins of spectral features. It is this method, that is used in the present work to apply quantum control spectroscopy to the early steps of the photochemical process in beta-carotene, i.e. the energy loss channel due to quenching via a conical intersection. Based on experimental observations, by the described modular construction a model system for beta-carotene is proposed, comprising the key components of the induced photochemical energy transfer process during the first few hundred femtoseconds. The outcome of quantum control experiments of beta-carotene could be predicted and interpreted. By comparison with results of quantum control experiments on beta-carotene, performed in the group of M.~Motzkus (Heidelberg University), it is possible to verify the key assumptions made for the construction of the model system. Observed spectral features in dependance of the parameters b and c can be definitely assigned to vibrational coherences, indicating that a low frequency mode is responsible for the electronic coupling between the excited states S2 and S1 of beta-carotene. The achieved agreement between simulations and experimental results allow to conclude that the process of investigation is described well within the constructed beta-carotene model. The photochemical quenching process takes place on solely two excited states and no further electronic state plays a mentionable role.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Experimente mit hohen Struktur- und Zeitauflösungen sind Voraussetzungen, um ein detailliertes Verständnis grundlegender Prozesse auf molekularer Ebene zu erlangen. Zeitauflösungen im Bereich von Femtosekunden kann die Anreg-Abtast-Laserspektroskopie erreichen. Mit Abtastimpulsen im infraroten Spektralbereich lassen sich zudem die nötigen strukturellen Informationen gewinnen. Im Rahmen dieser Arbeit wurde ein transientes Femtosekunden-Infrarotspektrometer für verschiedene Anwendungen auf dem Gebiet der Molekülphysik weiterentwickelt. Dieses betraf zum Einen eine Erzeugung für abstimmbare Ultraviolett-Anregungsimpulse, zum Anderen eine mehrstufige, optisch parametrische Frequenzkonversion zur Generierung spektral schmalbandiger, abstimmbarer Pumpimpulse im Mittelinfraroten. An Propionsäure-Dimeren, einem Modellsystem für die biologisch relevanten Wasserstoffbrückenbindungen, wurden Infrarot-Anreg-Infrarot-Abtast-Experimente durchgeführt. Die Anregung erfolgte dabei im Bereich der OH-Streckschwingungen, während die CO-Streck- und CH-/OH-Biegeschwingungen abgetastet wurden. Es konnte gezeigt werden, dass diese Schwingungen stark aneinander koppeln. Die genaue Wellenlänge der Infrarot-Pumpimpulse hat Einfluss auf die Relaxation der Schwingungsenergie. Intramolekulare Energieumverteilung findet mit Zeitkonstanten von 0,5 ps und 1,5 ps statt; eine weitere intramolekulare Relaxation, vornehmlich aus mitangeregten CH-Streckschwingungen, sowie das Kühlen zum Lösungsmittel, geschehen mit Zeiten von 12 ps. Darüber hinaus wurde das transiente Brechen nur einer der beiden Wasserstoffbrückenbindungen der Propionsäure-Dimere nach der Infrarot-Anregung beobachtet. Neben umfangreichen Experimenten mittels Ultraviolett-/Sichtbar-Anreg-Infrarot-Abtastspektroskopie wurde an photochromen Fulgiden und Fulgimiden eine Zuordnung von Schwingungsbanden mit Hilfe von Dichtefunktionaltheorie-Rechnungen durchgeführt. Lichtinduzierte, ultraschnelle und reversibel schaltbare Ringschluss- sowie Ringöffnungsreaktionen zwischen den thermisch stabilen Konformeren wurden untersucht. Mit dem Zerfall eines elektronisch angeregten Zustands, dessen Lebensdauer auf der Zeitskala weniger Pikosekunden anzusiedeln ist, wird das entsprechende Photoprodukt gebildet. Alle Photoreaktionen sind nach 50 ps abgeschlossen. Durch spektral sehr breitbandiges Abtasten konnten auch Infrarotspektren des elektronisch angeregten Zustandes gewonnen und dessen Absorptionsbanden teilweise auch Normalschwingungen zugeordnet werden. Die potentielle Eignung von Fulgiden als ultraschneller, optischer Speicher wurde in einem Schreib-Lösch-Zyklus demonstriert. Mit einem ersten Ultraviolett-Impuls wurde die Ringschluss-, mit einem weiteren Impuls im Sichtbaren nach nur 4 ps die Ringöffnungsreaktion induziert, entsprechend einer möglichen Schalttaktrate von 250 GHz. Die Absorptionsunterschiede aufgrund der Konformationsänderungen konnten im Infraroten ausgelesen werden, ohne die jeweilige Konformation der Moleküle zu verändern.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Aromatic nitro-compounds are known to photochemically abstract hydrogen atoms from adjacent hydrocarbon moieties. For ortho-substituted nitro-aromatics these abstractions proceed intra-molecularly and trigger secondary processes. Due to these processes aromatic nitro-compounds are used as, e.g., photo-labile protecting groups and as the leaving group in caged compounds. Here, a prototypical nitro-compound, ortho-nitrobenzaldehyde (o-NBA), which is photochemically transformed into ortho-nitrosobenzoic acid is studied. This reaction is known for more than 100 years but is still not totally specified. Tracing these photochemical processes requires high temporal resolution down to about 100 fs and a detection technique that is sensitive to structural changes after starting the photoreaction. Femtosecond vibrational spectroscopy fulfils these conditions in observation of ultrafast chemical processes. So transient IR spectroscopy and the recently developed femtosecond stimulated Raman spectroscopy (FSRS) are used to record the ultafast structural changes in this photoreaction. In addition the kinetics of the o-NBA photoreaction are monitored by means of visible femtosecond absorption spectroscopy. The novel implementation of FSRS uses a white light continuum as the Stokes probe pulse in the stimulated Raman process. The reaction is started by a actinic laser pulse thereby the transient Raman spectra can be recorded in pump-probe fashion and are compared with calculated spectra of possible intermediates of the reaction. With the use of these techniques the photoreaction of NBA into intermediates can be followed and a reaction mechanism is described.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Kontinuierliche, kohärente Strahlung bei der 1S-2P-Übergangsfrequenz des Wasserstoffatoms, kurz Lyman-alpha, wird eine Schlüsselrolle bei Experimenten mit Antiwasserstoffatomen spielen: Sie ist zum Laserkühlen und zur Spektroskopie unumgänglich. Für die Lyman-alpha-Strahlung gibt es seit einigen Jahren eine Reihe gepulster Quellen, deren Effizienz beim Kühlen gefangener Atomen allerdings durch die Repetitionsrate und Bandbreite limitiert ist. Daher wurde vor wenigen Jahren in der Arbeitsgruppe von Prof. Hänsch eine kontinuierlich kohärente Lyman-alpha-Quelle durch Vier-Wellen-Mischen in Quecksilberdampf realisiert. Die vorliegende Arbeit geht der Frage nach, wie durch elektromagnetisch induzierte Transparenz die Konversionseffizienz des Vier-Wellen-Mischens erhöht werden kann. Erstmals wurden in Quecksilberdampf gemischte Zustände induziert und eine Aufspaltung des Ein-Photonenübergangs 6^1S->6^3P und des Zwei-Photonenübergangs 6^1S->7^1S beobachtet. Dazu wurden kontinuierliche Laserlichtquellen für 254 nm und 408 nm aufgebaut, die jeweils in der Frequenz soweit durchgestimmt werden können, daß Spektroskopie an allen natürlichen Quecksilberisotopen vorgenommen werden konnte. Die im Experiment beobachteten Effekte werden durch Rechnungen im Dichtematrixformalismus unter Berücksichtigung von Dopplerverbreiterung und endlicher Wechselwirkungzeit wiedergegeben. Dabei wurden auch Besonderheiten der Zwei-Photonenabsorption im von zwei starken kohärenten Lichtquellen getriebenen Drei-Niveausystem untersucht und im Modell der bekleideten Zustände erklärt. Aus den Ergebnissen der vorliegenden Arbeit lassen sich Anforderungen an eine künftige Apparatur ableiten, welche die Erzeugung von kontinuierlich kohärenter Lyman-alpha-Strahlung mit hoher Konversionseffizienz ermöglichen wird.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Eine bestimmte statistische Verteilung der Fluktuationsbreiten einer quantenmechanischen Anregungsfunktion wird als "Ericson-Fluktuation" bezeichnet. Anregungsfunktionen mit diesem Merkmal wurden zuerst bei Compound-Kern-Reaktionen gemessen. Für die heutige Forschung sind Ericson-Fluktuationen in zweierlei Hinsicht von besonderer Bedeutung. Zum einen benötigt das zu ihrer theoretischen Beschreibung dienende Modell lediglich den Rahmen der quantenmechanischen Streutheorie, was sie in den Rang einer universellen quantenmechanischen Erscheinung erhebt. Zum anderen spielen sie eine Schlüsselrolle in der noch jungen "Quantenchaos"-Forschung, in der sie nach einer Vorhersage von Blümel und Smilansky quantenmechanische Streuvorgänge kennzeichnen, für die es ein klassisches Modell gibt, das chaotisches Verhalten aufweist. Diese herausgehobene theoretische Bedeutung der Ericson-Fluktuationen bedarf allerdings noch der experimentellen Rechtfertigung. Vor diesem Hintergrund sind die Ergebnisse des in dieser Arbeit aufgebauten Experimentes besonders wertvoll. Es liefert nicht nur die erste Messung von Ericson-Fluktuationen in der Atomphysik, sondern auch die erste experimentelle Bestätigung der Vorhersage von Blümel und Smilansky. Dazu wird in einem He(4)-Bad-Kryostat die Anregungsfunktion der Photoabsorption von Rb(85)-Atomen in gekreuzten statischen homogenen magnetischen und elektrischen Feldern an einem thermisch erzeugten Atomstrahl gemessen. Die magnetische Induktion wird durch supraleitende Magnetspulen in Helmholtz-Anordnung und das elektrische Feld durch einen Plattenkondensator erzeugt. Als Photonenquelle dient ein kontinuierlich betriebener frequenzstabilisierter Farbstoff-Laser. Im Zuge einer schrittweisen Durchstimmung des Farbstoff-Lasers wird die Anregungsfunktion in guter Näherung bis auf eine Proportionalitätskonstante bestimmt. Eine geeignete Geometrie des Experimentes unterdrückt den Doppler-Effekt und den bewegungsvermittelten Stark-Effekt bei der Spektroskopie am Atomstrahl. Eine zweistufige Anregung mit optischem Pumpen eines Zeeman-verschobenen Hyperfeinstrukturübergangs der Rb(85)-D2-Linie durch einen frequenzstabilisierten Dioden-Laser wählt einen bestimmten Unterzustand aus. Die Anregungsfunktion entspricht dann in guter Näherung der eines Atoms in einem reinen atomaren Zustand unter dem Einfluß festgelegter äußerer Felder. Angeregte Zustände werden unabhängig von ihrem Autoionisationsverhalten detektiert. Die Stärken der statischen Felder betragen etwa 22 kV/m und 1...2 T und werden mit hoher Genauigkeit bestimmt. Die relativen Fehler betragen etwa 2,5*10^(-3) für die elektrische Feldstärke und 5*10^(-4) für die magnetische Induktionsstärke. Mit Hilfe eines Referenz-Lasers und eines Michelson-Interferometers zur absoluten sowie eines längenstabilisierten Fabry-Perot-Interferometers zur relativen Frequenzmessung werden die Anregungsfunktionen auf eine absolute Frequenzskala umgerechnet. Knapp unterhalb der feldfreien Ionisationsschwelle kann beim Anlegen gekreuzter Felder mit geeigneten Werten für die elektrische Feldstärke und die magnetische Induktionsstärke im klassischen Modell des Valenzelektrons mit chaotischer Streuung gerechnet werden. Die angeregten Zustände haben dann eine starke Autoionisationsneigung. Die gemessene Anregungsfunktion für die Anregung dieser Elektronenenergien weist ausgeprägte Ericson-Fluktuationen auf. In Übereinstimmung mit numerischen Berechnungen für Wasserstoff nimmt die Deutlichkeit der Ericson-Fluktuationen mit der magnetischer Induktionsstärke zu. Die Ericson-Fluktuationen erweisen sich als sehr empfindlich gegen zahlreiche störende elektromagnetische Einflüsse. Diese müssen während der Messung unterdrückt werden. In dieser Arbeit werden Ericson-Fluktuationen auf einer Skala beobachtet, die zehn Größenordnungen unter der liegt, die für Compound-Kern-Reaktionen ermittelt wurde. Bis auf die Skalierung weisen die Verteilungen der Fluktuationsbreiten allerdings eine große Ähnlichkeit auf. Dies spricht für die Universalität der Ericson-Fluktuationen.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die Absorptionsspektroskopie im mittleren infraroten (MIR, etwa 500-4000 cm-1) Spektralbereich ist ein wichtiges Hilfsmittel in der biomolekularen Forschung. Mit ihrer Hilfe können z.B. strukturelle Eigenschaften von Proteinen und enzymatisch katalysierte Reaktionen sichtbar gemacht werden. Zur Interpretation solcher Spektren benötigt man jedoch Rechenmethoden, vermittels derer MIR Spektren mit hoher Genauigkeit vorhergesagt werden können. Im ersten Teil dieser Arbeit betrachte ich Cyclopyrimindimere (CPD), die durch ultraviolette Strahlung in dem Erbgutmolekül DNS entstehen und potentiell mutagene oder lethale Folgen für die Zelle haben. Um zukünftige Experimente zu leiten, welche die licht-induzierte Reparaturreaktion dieser Defekte durch das Enzym Photolyase mit zeitaufgelöster Spektroskopie verfolgen wollen, habe ich mit Hilfe der Dichtefunktionaltheorie (DFT) die MIR Spektren von Modellstrukturen einzelner Intermediate der CPD Reparatur berechnet. Die Ergebnisse zeigen, dass die Intermediate der CPD Reparatur anhand der spezifischen MIR Absorption ihrer Carbonylmoden identifiziert werden können und dass der Weg der Spaltung eines CPD in native DNS Basen auf diese Weise aufgeschlüsselt werden kann. Im zweiten Teil dieser Arbeit untersuche ich jene Methoden, die in der Literatur zur Berechnung von MIR Spektren aus Molekulardyamik (MD) Simulationen, bei denen eine DFT Beschreibung eines Moleküls mit einer molekülmechanischen (MM) Beschreibung der Umgebung kombiniert wird, vorgeschlagen worden sind. Dazu leite ich die Vorschriften der verschiedenen Methoden für den Fall eines einzelnen Moleküls in einem polaren Lösungsmittel aus der linearen, quantenmechanischen Störungstheorie her. Anhand dieser Herleitung und der Ergebnisse einer exemplarischen Anwendung der Methoden auf eine DFT/MM-MD Simulation eines Formaldehydmoleküls in Wasser diskutiere ich die den jeweiligen Methoden zugrundeliegenden Annahmen und Näherungen sowie mögliche neue Verfahren zur Korrektur der durch die Näherungen induzierten Fehler bei der Berechnung von MIR Spektren. Ferner entwickle ich aus dieser Analyse ein neues Verfahren zur Berechnung von MIR Spektren kleiner Moleküle in polaren Lösungsmitteln, mit dessen Hilfe sich die Frequenzfluktuationen des gelösten Moleküls, die durch die Wechselwirkung mit der fluktuierenden Lösungsmittelumgebung entstehen, mit einer Auflösung von etwa 10-30 fs berechnen lassen. Anhand einer exemplarischen Anwendung zeige ich, dass es diese Methode erlaubt, die Ursachen der Frequenzfluktuationen im Detail zu untersuchen und deren Beiträge zu MIR Linienbreiten zu ermitteln.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
[NiFe]-Hydrogenasen besitzen in ihrem aktiven Zentrum neben den namengebenden Metallen Nickel und Eisen die Nicht-Protein-Liganden CO und CN. Die Synthese und der Einbau dieses NiFe(CN)2CO Zentrums ist ein komplexer Prozess mit neuartigen bioanorganischen Fragestellungen, an dem eine Reihe von Hilfsproteinen beteiligt sind. Im Fall von Escherichia coli handelt es sich hierbei um die sieben Reifungsenzyme HypA, HypB, HypC, HypD, HypE und HypF. Zusätzlich bedarf es einer spezifischen Endopeptidase sowie ATP, GTP und Carbamoylphosphat als niedermolekulare Substrate. Die vorliegende Arbeit beschäftigt sich mit dem Ablauf der Hydrogenasereifung und der Charakterisierung der am Metalleinbau beteiligten, akzessorischen Proteinen. Im Einzelnen wurden folgende Resultate erzielt: 1. Die Funktion von HypA/HybF in vivo wurde als die eines Metallochaperons bestimmt, was einhergeht mit der Forderung nach Nickelbindung. Diese konnte experimentell nachgewiesen werden. Das Auffinden von stöchiometrischen Mengen an Zink sowie ein konserviertes Cysteinmotiv deuten auf einen “Zinkfinger“ hin, der von struktureller Bedeutung für das HybF-Protein ist. Ein Reifungsnetzwerk zwischen den drei Hydrogenasen von E. coli wurde erstellt, welches eine Regulation epistatisch zur Expression der Gene darstellt. 2. Die Charakterisierung des HypD Proteins durch Mössbauer-Spektroskopie ergab, dass es ein EPR-stilles [4Fe-4S]2+ Cluster enthält, welches ihm die gelbliche Farbe und das typische UV-VIS Spektrum verleiht. Die Bestimmung der Eisen- und Schwefelmenge im Wildtyp-Protein und in HypD-Varianten verstärkten diesen Befund. Austausche der konservierten Aminosäuren von HypD ergaben, dass ein C-terminales Cysteinmotiv zur Stabilität des Proteins beiträgt, weshalb die Cysteinreste als Liganden des FeS-Clusters vorgeschlagen wurden. 3. Da Carbamoylphosphat (CP) für die Synthese der Cyanidliganden notwendig ist, wurde ein CP-negativer E. coli Stamm näher untersucht. Dabei wurde ein Proteinkomplex aus zwei Hilfsproteinen (HypC und HypD) entdeckt, der ein Reifungsintermediat darstellt. 4. Die am HypE-Protein synthetisierte Cyanidgruppe wird auf den HypC-HypD Komplex übertragen. Dieser in vitro Befund führte zur Aufstellung eines neues Reifungsmodels als Zusammenfassung dieser Arbeit, wobei ein Gerüstkomplex zur Ligandensynthese postuliert wird.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die Dynamik von Makromolekülen spielt bei Transportprozessen in weicher Materie eine wichtige Rolle. Fluoreszenz-Korrelations-Spektroskopie (FCS) kann die Dynamik spezifisch fluoreszenzmarkierter Moleküle in Lösung verfolgen. Das Prinzip der Methode basiert auf der Analyse von Intensitätsfluktuationen innerhalb eines Volumens in der Größenordnung eines Femtoliters (1 fl = 1 Kubikmikrometer). In dieser Arbeit wurde mit FCS die Dynamik von DNA, Aktin und Hyaluronsäure untersucht. Die Schwerpunktsdiffusion in Lösung, die intramolekulare Kettendynamik und das Verhalten von Polymerlösungen im Scherfluss wurden studiert. Die Möglichkeit für Messungen der Dynamik an Grenzflächen wurde geschaffen. Die Autokorrelation fluoreszenzmarkierter DNA in Lösung zeigt auf verschiedenen Zeitskalen charakteristische Abfälle, die ihre Ursache in unterschiedlichen dynamischen Prozessen haben. Mit den in dieser Arbeit entwickelten Modellfunktionen für die Autokorrelation lassen sich die charakteristischen Größen der verschiedenen Prozesse durch Anpassung an die experimentellen Daten gewinnen. Bei kurzen Zeiten im Mikrosekundenbereich fällt die Korrelationsfunktion auf Grund photochemischer Prozesse der Fluoreszenzfarbstoffe exponentiell ab. Im Bereich von 10-100 Mikrosekunden zeigen die Daten einen weiteren Abfall, der stark von der Anzahl der Farbstoffe auf der Polymerkette abhängt. Die On-Off-Kinetik eines Ensembles von Fluorophoren wurde in ein Modell für die Korrelationsfunktion umgesetzt. Intensitätsfluktuationen im Bereich von 1 - 100 Millisekunden stammen von der Diffusion und den internen Relaxationsmoden der Polymerketten. Ein Modell für die Korrelationsfunktion der Schwerpunktsdiffusion für Polymerketten mit kontinuierlicher Farbstoffverteilung entlang der Kontur wurde entwickelt und mit experimentellen Daten von DNA-Fragmenten unterschiedlicher Länge (1019 bp bis 7250 bp) bestätigt. Ausgehend von den dynamischen Strukturfaktoren der Modelle von Rouse, Zimm und semiflexibler Ketten in Lösung wurden Korrelationsfunktionen für interne Relaxationen berechnet und an Messdaten mit Lambda-DNA (48502 bp) angepasst. Über den Abstand der Farbstoffe entlang der Polymerkontur werden Moden selektiert, deren Relaxationsdynamik sich in die Autokorrelationsfunktion überträgt. Bei Abständen, die viel größer als die Persistenzlänge der DNA sind, liefert das angepasste Modell die erwarteten Werte für die Zimm-Dynamik. Aktinfilamente mit Längen im Bereich von 100 Nanometern bis 50 Mikrometer wurden als Modellsysteme semiflexibler Polymere untersucht. Für Filamentlängen, die kleiner als das Beobachtungsvolumen sind, ist die Korrelationsfunktion bestimmt durch die Schwerpunktsdiffusion. Für längere Filamente dominieren die Biegemoden. Charakteristisch für diese Form der internen Relaxation ist das zeitliche Skalenverhalten mit dem Exponenten 3/4. Theoretische Korrelationsfunktionen, die in Zusammenarbeit mit Roland Winkler vom Forschungszentrum Jülich entstanden sind, zeigen eine sehr gute Übereinstimmung mit den experimentellen Daten. Erstmals wurden Korrelationsfunktionen einzelner Aktinfilamente im halbverdünnten Bereich gemessen. Die charakteristische Abfallzeit der Korrelationsfunktion als Maß für die Dynamik der Biegemoden sinkt mit steigender Aktinkonzentration. Für Aktinkonzentrationen von 0,01 mg/ml bis 1 mg/ml folgt die Abfallzeit einem Skalengesetz tau ~ c^(-0,48 +- 0,03). Neben der Diffusion wurde in dieser Arbeit die Dynamik in Strömungen untersucht. Zur Verfolgung von gerichteten Transportprozessen wurden zwei Foki mit einem lateralen Abstand von 5 Mikrometern erzeugt. Durch eine Kreuzkorrelation der beiden getrennten Intensitätssignale lässt sich die Zeit bestimmen, die die Teilchen zum Durchlaufen des Abstandes der beiden Foki benötigen. Mit dieser mikroskopischen "Lichtschranke" wurden Flussgeschwindigkeiten in einem 100 Mikrometer hohen Kanal mit mikrometergenauer Ortsauflösung gemessen. Die Scherverdünnung einer Hyaluronsäurelösung konnte anhand des Geschwindigkeitsprofils nachgewiesen und eine kritische Scherrate von 285 +- 30 s^(-1) bei einer Polymerkonzentration von 2,5 mg/ml bestimmt werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die Spektroskopie eines verbotenen optischen Übergangs eines einzelnen Ions verspricht ein optisches Frequenznormal mit einer Genauigkeit im Bereich von 10^(-18) zu ermöglichen. Die Vorraussetzungen dafür sind neben außergewöhnlich geringen systematischen Frequenzverschiebungen des Referenzübergangs ein hohes Maß an Kontrolle der Bewegung des Ions, realisiert durch die Speicherung und Laserkühlung in einer Quadrupolfalle und die daraus resultierende, praktisch unbegrenzte Beobachtungszeit. Diese Arbeit beschreibt Experimente im Hinblick auf die Realisierung eines der aussichtsreichsten Kandidaten für ein optisches Frequenznormal, einem gespeicherten Indium-Ion. Zunächst wird in Kapitel 2 das Konzept der Indium-Uhr, der bisher experimentell erreichte Stand der Spektroskopie, mit einer relativen Auflösung von 10^(-13), und eine Abschätzung der limitierenden Verschiebungen des 1S0-3P0 Referenzübergangs dargestellt. Kapitel 3 führt danach in das Prinzip der Speicherung und die konkrete Umsetzung im In+-Experiment ein, behandelt dabei auftretende Probleme und liefert mögliche Lösungen. In Kapitel 4 wird eine neu implementierte Methode der Photoionisation von Indium-Atome vorgestellt, die mit nur einem Laser bei 410 nm über eine Zweiphotonen-Anregung zur Ionisierung führt. Gegenüber der bislang verwendeten Elektronenstoßmethode konnte damit die Ionisierungseffizienz um zwei Größenordnungen gesteigert, und so Probleme, die einen kontinuierlichen Betrieb des Frequenznormals behindern, vermieden werden. Im Hinblick auf eine Erhöhung der Mittelungszeit wurde ein kontinuierlich betreibbares Kühllasersystem aufgebaut, das in Kapitel 5 beschrieben wird. Ein gitterstabilisierter Diodenlaser bei 922 nm wird zunächst in seiner Frequenz auf unter 100 Hz relativ zu einem Referenzresonator stabilisiert. Nach dem Durchgang durch einen frequenztreuen Trapezverstärker werden danach in einer ersten Frequenzverdopplung mit Hilfe eines periodisch gepolten KTP-Kristalls mehr als 200 mW blaues Licht bei 461 nm erzeugt. Eine zweite Frequenzverdopplung mit BBO führt nachfolgend zu etwa 1 mW bei 231 nm, der Wellenlänge des 1S0-3P1 Kühlübergangs von In+. Neben der demonstrierten Nutzung im Indium-Experiment bietet sich dieses System durch seine große Leistung im blauen Spektralbereich, die weite Durchstimmbarkeit und die hohe Frequenzstabilität für viele Anwendungen in der Atomphysik und Quantenoptik an. Kapitel 6 beschreibt Ergebnisse der Seitenbandkühlung, für deren Umsetzung Indium ein einzigartiges Modellsystem darstellt. Anhand einer spektroskopischen Temperaturbestimmung in optisch-optischer Doppelresonanz wird die praktisch erreichte Grundzustandskühlung bestätigt. Es ergibt sich eine Temperatur unterhalb von 300 muK, entsprechend einer Amplitude der Säkularbewegung von unter lambda/10. Durch die zusätzliche Kontrolle der Mikrobewegung unter lambda/20 sind insgesamt relative Frequenzverschiebungen des Referenzübergangs aufgrund einer Bewegung des Ions im Bereich von 10^(-18) zu erwarten. Die Mikrobewegung besitzt einen starken Einfluss auf die Kühldynamik, der in einem erweiterten Modell der Seitenbandkühlung semiklassisch beschrieben wird. Es ergibt sich die verblüffende Situation, dass eine Kühlung auch für Laserfrequenzen oberhalb der Resonanzfrequenz des ruhenden Ions möglich ist. Kühlrate und Einfangbereich dieser Kühlung werden simuliert. Die präzise Kontrolle der zusätzlichen Mikrobewegung erlaubt eine Prüfung der Vorhersagen im Experiment. Durch Spektroskopie am Kühlübergang konnte eine effektive Kühlung bei positiver Laserverstimmung experimentell demonstriert werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In der vorliegenden Arbeit werden die Weiterentwicklung des experimentellen Aufbaus zur 1S-2S-Zweiphotonenspektroskopie an atomarem Wasserstoff sowie die damit durchgeführten Messungen beschrieben. Die natürliche Linienbreite des dipolverbotenen 1S-2S-Übergangs ist mit 1,3 Hz sehr gering. Dieser Übergang kann durch Absorption zweier gegenläufiger Photonen bei einer Wellenlänge von 243 nm Doppler-frei angeregt werden. Für eine möglichst hohe Auflösung der Resonanz muß die den Übergang treibende Strahlung eines frequenzverdoppelten Farbstofflasers, dessen Fundamentale nahe 486 nm liegt, spektral schmal und stabil sein. Daher wird der Farbstofflaser auf einen Referenzresonator hoher Finesse stabilisiert. Der im Rahmen dieser Arbeit neu aufgebaute Referenzresonator wurde weitestgehend von Umwelteinflüssen entkoppelt, so daß die Drift des auf ihn stabilisierten Lasers nun weniger als 1 Hz/s und seine Linienbreite in 2 s weniger als 100 Hz bei 486 nm beträgt. Eine modifizierte Atomstrahlapparatur mit differentiell gepumptem Wechselwirkungsbereich und effizienterer Detektion der 2S-Atome erlaubt nun die Spektroskopie bei niedrigerer Lichtleistung und damit geringerer Verbreiterung des Übergangs durch Ionisation metastabiler Atome. Desweiteren können kältere Atome untersucht werden, deren Spektren kleinere geschwindigkeitsabhängige systematische Effekte aufweisen. Mit diesem Aufbau wurden Spektren einer Breite von nur 500 Hz bei 243 nm aufgenommen, was einer relativen Auflösung von 4x10^-13 entspricht. Nach Einführung einer differentiellen Meßmethode konnte die Hyperfeinaufspaltung des 2S-Niveaus in atomarem Wasserstoff erstmals mit optischen Methoden bestimmt werden, wobei das Ergebnis von 177 556 860(16) Hz den bisher genauesten Wert für diese Größe darstellt. Ein daraus abgeleiteter Test der QED gebundener Systeme bestätigt die Theorie auf einem Niveau von 1,2x10^-7. In Zusammenarbeit mit dem Frequenzkamm-Labor wurde die Frequenz des 1S-2S-Übergangs erneut gegen die transportable FOM-Cs-Fontände des BNM-SYRTE, Paris, absolut gemessen und zu 2 466 061 413 187 087(34) Hz bestimmt. Dies entspricht einer verbesserten relativen Auflösung von 1,4x10^-14. Im Vergleich mit dem Ergebnis der vorigen Messung aus dem Jahre 1999 und unter Berücksichtigung der Drift eines Uhrenübergangs in 199-Hg+ kann daraus erstmals eine obere Grenze für die relative Drift der Feinstrukturkonstanten von (-0,9 +- 2,9)x10^-15 pro Jahr abgeleitet werden, ohne daß zusätzliche Annahmen über die Stabilität der anderen Kopplungskonstanten getroffen werden müsssen. Diese Drift ist im Rahmen des Fehlers mit Null verträglich.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In der vorliegenden Arbeit wurden die Anwendungsmöglichkeiten der Emissionsdetektion bei der Anregung-Abtast-Spektroskopie erarbeitet. Es wurden zwei unterschiedliche Messungen mit dieser Anordnung durchgeführt: die Bestimmung der Fluoreszenzlebensdauer im Femtosekundenbereich durch den Raman-Loss-Effekt und die Untersuchung der Schwingungsbesetzungsdynamik durch nicht-resonante anti-Stokes Raman Streuung nach ultraschnellen internen Konversion.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
This doctoral thesis presents new approaches for the characterisation of ultrafast energy flow in complex systems, based on concepts of coherent control. By initiating a photoreaction with femtosecond pulses whose temporal phase and amplitude are shaped in such a manner that specific molecular vibrations and states are addressed, the energy flow can be steered at will. The comparison between the ensuing energy flow patterns following shaped and unshaped excitation pulses constitutes a differential measurement of the function of the controlled vibrations and states within the photoreaction. Coherent control as a spectroscopic tool is first applied to biological systems, specifically the light harvesting complex LH2 from the photosynthetic purple bacterium Rhodopseudomonas acidophila, and the isolated carotenoid donor of the same complex. The pump-probe method using shaped excitation pulses is shown to be successful for the first time in controlling the natural function of a biological system, namely the flow of excitation energy in the complex network of states in LH2. By means of a closed-loop optimisation of parametrised excitations, a bending mode in the carotenoid donor can be identified as being responsible for steering the energy flow. This bu vibrational mode couples the carotenoid S2-S1 states; its frequency is determined to be 160±25cm-1. Furthermore the deactivation of the carotenoid S2 state in LH2 and in solution is studied with pump-probe and pump-deplete-probe spectroscopy. Here it is shown that there exists an alternative singlet state S*T (1Bu-) involved in the deactivation process, though only in LH2. Its function as a precursor of ultrafast triplet population and as a donor for photosynthetic energy transfer is characterised with a novel evolutionary target analysis of conventional pump-probe spectra. Secondly, coherent control as a measurement technique is applied to another extremely complex system, in this case a material dominated by non-linear interactions with instantaneous dynamics: Propagation of femtosecond pulses in optical fibres that are only a few micrometers in diameter to generate a supercontinuum of optical frequencies. Here shaped pump pulses succeed in resolving for the first time the sequential steps leading to the enormous spectral broadening. Open-loop variations of precompression allows the evolution and fission of optical solitons to be followed, while closed-loop optimisations render observable the coupling of solitons with phase-matched visible frequencies. On atoms, finally, open-loop control of interfering pathways from the ground to the excited state by application of strongly modulated spectra seeks to establish a direct link between coherent control experiments and theory. The novel phenomenon of a Fresnel zone plate in the time domain is first developed in theory and then successfully realised in experiment.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Im ersten Teil dieser Arbeit wurden Dauerstrich-Experimente im mittelinfraroten Spektralbereich bei Variation der Probentemperatur an Collagen-Modellsystemen durchgeführt. Durch die Untersuchung temperaturinduzierter Konformationsdynamik in den Modellsystemen konnten subtile Variationen in den Molekülwechselwirkungen nachgewiesen werden. Es gelang die Trennung der Entfaltung differenzierter lokaler Bereiche wie einer labilen Collagenase-Schnittstelle und einem rigiden Homotrimer-Segment. Zur Anpassung der Meßdaten wurde eine neue, einfache und mathematisch leicht zu handhabende Modellfunktion vorgeschlagen. --- Der zweite Teil dieser Arbeit befaßte sich mit Dauerstrich- sowie zeitaufgelösten Untersuchungen im mittelinfraroten Spektralbereich bei konstanter Temperatur an Azo-Peptid-Verbindungen. Die reversible, optisch induzierte Faltungsdynamik in zyklischen Azo-Peptid-Verbindungen konnte direkt mit optischer Spektroskopie nachgewiesen werden. Der Nachweis gelang, daß wichtige Teile der Konformationsdynamik auch im Peptid in weniger als 10 Nanosekunden abgeschlossen sind.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war zum Einen die Synthese von neuartigen (Bakterio-)Chlorophyll-Derivaten zur Einlagerung in Proteine und ihre Charakterisierung in Lösung, zum Anderen Bindungsstudien an Komplexen dieser Derivate mit modularen Proteinen und dem Lichtsammler-Komplex 1 aus Rhodobacter sphaeroides. 1.) Darstellung von Fe-(Bakterio-)Pheophytinen: Es wurde ein Verfahren etabliert, das die Metallierung von Pheophytin a, Bakteriopheophytin a und deren Derivate mit Eisen ermöglicht. Zusätzlich wurde diese Methode so weit modifiziert und optimiert, dass ausgehend vom Mohrschen Salz auch die Einlagerung von 57Fe möglich ist, wodurch eine Erweiterung der spektroskopischen Methoden (Mößbauer-Spektroskopie) erreicht wird. Da die Fe Komplexe nicht mit den für (Bakterio-)Chlorophyll-Derivate etablierten Methoden gereinigt werden können, wurde für diese Komplexe ein neues Chromatographiesystem entwickelt. 2) Spektroskopische Untersuchung der Fe-(Bakterio-)Pheophytine: Es ist bekannt, dass Fe-Porphyrine leicht zu µ-oxo-Komplexen (Fe(III)(B)Phe a)2O dimerisieren und das Zentralion in zwei Oxidationsstufen (+2 und +3) vorliegen kann. Die Dimerisierung des Fe Phe und Fe-BPhe wurde durch Säure-Base-Titration absorptionsspektroskopisch untersucht. In aerober Lösung liegt das Zentralmetall des Fe-(B)Phe dreiwertig vor ((Fe(III)(B)Phe a)Cl). Dieses lässt sich „klassisch“ mit Na-Dithionit allein durch Ligandierung mit Pyridin zum zweiwertigen Fe(II)(B)Phe a reduzieren. Die drei Zustände der Fe-Komplexe (Fe(III)(B)Phe a)Cl, (Fe(III)(B)Phe a)2O und Fe(II)(B)Phe a wurden durch ESR- und Absorptionsspektroskopie charakterisiert. Die Oxidationsstufen der drei Zustände wurden für 57Fe-Me-Pheid a durch Mößbauerspektroskopie bestätigt. 3) Einlagerung von Fe-Bakteriopheophytin a in LH1 von Rhodobacter sphaeroides: Zur Untersuchung, ob Fe-BPhe von BChl-Bindungstaschen akzeptiert wird, wurde versucht Fe-BPhe ins LH1 von Rb. sphaeroides einzulagern. Die Ergebnisse dieser Untersuchungen deuten zwar auf einen Einbau von Fe-BPhe hin, allerdings nur in sehr geringem Maß. Zur Quantifizierung des Fe-BPhe-Gehalts wurden verschiedene Methoden getestet. Der einfachste und vielversprechendste Weg war die Differenzabsorptionsspektroskopie, bei der die unterschiedliche Absorption von µ-oxo-Dimer und Monomer des Fe-BPhe ausgenützt wird. 4) Darstellung von Formyl-(Bakterio-)Chlorophyll-Derivaten: Eine kovalente Bindung von Chlorophyll-Derivaten an synthetische Peptide ist durch die Kopplung von Formyl-Gruppen mit einem modifizierten Lysin-Rest unter Bildung eines Oxims möglich. [3 Formyl]-Me-Pheid a konnte durch oxidative Spaltung des C-3-Vinyl des Chlorophyll a mit Ozon hergestellt werden. Ebenfalls mit Ozon konnte die Phytyl-Doppelbindung von Pheophytin a unter Bildung des Ethanal-Pheid a erreicht werden. Somit stehen insgesamt drei Chlorophyll-Derivate für die kovalente Bindung an synthetische Peptide zur Verfügung, welche die Formyl-Gruppen an verschiedenen Positionen tragen, wodurch eine unterschiedliche Orientierung der Pigmente im Protein erreicht werden kann. Es wurde versucht, in Analogie zum Pheophytin a das [3-Vinyl]-Me-BPheid a mit Ozon zu spalten. In Folge der leichten Oxidation des Makrozyklus lieferte diese Reaktion das Zielprodukt [3-Formyl]-Me-BPheid a nur in äußerst geringen Mengen, so dass diese Methode für die präparative Synthese dieser Verbindung nicht geeignet ist. 5) Nicht-kovalente Bindung von [M]-BPheid (M = Ni, Zn, Fe) in synthetische modulare Proteine (MOP): Ni-, Zn-, und Fe-BPhe wurden auf ihre Komplexbildung mit 216 verschiedenen, synthetischen Vier-Helix-Bündel-Proteinen untersucht. Die [M] BPheid-MOP-Komplexe wurden absorptionsspektroskopisch auf die Stärke der Bindung, die Koordination des Zentralmetalls und auf die Hydrophobizität der Umgebung untersucht. Alle MOP binden [M] BPheid in sehr unterschiedlichem Maße. Stärke und Art der Bindung werden in erster Linie durch die Bindehelix bestimmt. Eine quantitative Modulation findet allerdings auch durch die Abschirmhelix statt. Ni-BPheid zeigt in den Komplexen drei mögliche Koordinationszustände (nc = 4, 5, 6). Eine hohe Koordinationszahl geht immer mit einer stabilen Bindung und einer schmalen Qy Bande einher. Zn-BPheid ist in allen Komplexen fünffach koordiniert, das Fe-BPheid vierfach. Qualitativ zeigen alle drei Pigmente ein gleiches Muster in Bezug auf das Bindungsverhalten, so dass ausgehend von Häm-Bindungstaschen die Bildung von BChl-Bindungstaschen bestätigt werden konnte.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
The shape of a nucleus can be defined in a classical view by a sphere of constant density of positive space-charge in a body-fixed frame of reference. Experimental observations can be interpreted as deviations from spherical symmetry of the nucleus. Static shapes of nuclei in the periodic table near the valley of stability predominantly are rotationally symmetric and mostly quadrupole deformed (American football or lens). For nuclei in time-dependent excited states asymmetric terms are known, like octupole deformation (pear shape). The group of actinides lies in a transition region with possible "static octupole deformation". For a fixed proton number (Z = 91) the impact of changing octupole correlations with neutron number on the configuration of 31Pa and 229Pa was analysed in the present work. A detector optimized for the reaction 231Pa(22 MeV p,t)229Pa at the Munich Universities tandem accelerator laboratory gave experimental clues of the 229Pa ground-state energy. A detailed study of231Pa by Coulomb-excitation with 148 MeV 32S und 255, 260, 261 MeV 58Ni projectiles can answer open questions on octupole correlations and determines a multitude of transition matrix elements as well as their global parameters in an enlarged level scheme. A segmented coincidence detector for backscattered particles with read-out electronics and software for high resolution, combined with Compton-suppressed and background-reduced-gamma spectroscopy following Coulomb-excitation was developed for the NORDBALL gamma-spectrometer of the Niels Bohr Institute Tandem Accelerator Laboratory, Risø (Denmark). An optional extension of the detector system, built by the University of Warsaw (Poland), can be integrated. For some experiments a Si-detector of the College of Industrial Technology Amagasaki (Japan) was used. The 1/2[530] ground-state band 231Pa could be followed up to spin 39/2-, the 1/2[400]+1/2[660] parity-partner band up to 23/2+ and the 3/2[651] side band up to 37/2+. The simulation of Coulomb-excitation with the code GOSIA helped to fit the parameters of a model system consisting of three bands with 47 levels and interconnecting 672 matrix elements of E1, E2, E3, E4 and M1 transitions to experimental data within chi^2/n=1. As far as possible the calculation remained model-independent and led to values for model parameters of multipole moments and deformation. The determination of signs of matrix elements is discussed. Different methods of error analysis were used. The results were related to the experimental known properties of neighbouring nuclei. A comparison of the results with calculations by the Charles University, Prague (Czech Republic) in the one-quasiparticle-plus-phonon model with Coriolis-coupling is given.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
The present work gives an overview on the experimental results of the spectroscopy in the second minimum of the double-humped fission barrier of ^240Pu and the derived conclusions on the structure of collective excitation modes in deformed nuclei. From the combined analysis of γ-decay and conversion electron measurements and an experiment on the transmission resonances in the prompt fission probability a detailed level scheme for the second minimum of an actinide nucleus could be established for the first time. Excitation energies, spins, parities and lifetimes of collective excitations above the groundstate band of the isomer up to β-vibrational multiphonon excitations could be established. Contrary to the experiments in the high-spin region of superdeformed nuclei, which were promoted extraordinarily during the last years, the K-purity of the isomer states populated with low spins allows for a clear separation of vibrational and rotational excitations. Therefore low-lying collective vibrational bands could be identified unambiguously as K^π i=0^-, 1^- and 2^- -octupole bands, as well as the lowest-lying β-vibrational band. After determining the energy of the β-vibrational phonon it became possible to identify the resonance groups in the prompt fission probability as the third and fourth β-vibrational phonon. The complete spectroscopy of the K^ π =0^+ states in the transmission resonance experiment made it possible to determine the excitation energy of the fission isomeric ground state from measured level densities with a recently developed method. Very interesting was furthermore the observation of the predominant population of negative parity states (98 %) in the second minimum, most likely attributed to a filtering action of the inner and outer fission barrier. Finally the measured rotational bands give hints on the behaviour of the moments of inertia of superdeformed nuclei with increasing excitation energy. The measurements could help to better understand the multiphonon states in the first minimum, where much stronger mixing with quasiparticle states occur.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In der vorliegenden Arbeit wird die erstmalige Erzeugung von kontinuierlicher, kohärenter VUV-Strahlung bei Lyman-alpha und die Spektroskopie an Wasserstoff mit dieser Strahlung beschrieben. Die experimentellen Beobachtungen zur VUV-Erzeugung können durch Modell-Rechnungen richtig wiedergegeben werden. Lyman-alpha-Strahlung liegt bei einer Wellenlänge von 121,56 nm im Vakuum-Ultraviolett und wird mithilfe von Vier-Wellen-Mischen erzeugt. Dazu werden drei Laserstrahlen überlagert und in Quecksilberdampf fokussiert. Die erzeugte Strahlung bei Lyman-alpha hat eine Leistung von etwa 20 nW. Der Lyman-alpha-Strahl kreuzt einen Wasserstoff-Atomstrahl und regt Atome zur Fluoreszenz an. Es konnten erstmals 1S-2P-Spektren von Wasserstoff mit einer Linienbreite von nur 120 MHz aufgenommen werden, was nahezu der natürlichen Linienbreite entspricht. Für zukünftige Experimente an Antiwasserstoff ist Strahlung bei Lyman-alpha von zentraler Bedeutung, da sie sowohl zur Spektroskopie als auch zur Laserkühlung benötigt wird.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Hochintensitätslaser erzeugen im Fokus Lichtintensitäten, deren Feldstärke die rapide Beschleunigung vieler Elektronen und über die dadurch hervorgerufenen quasistatischen Felder die Beschleunigung von Ionen auslöst. Durch verschiedene Kernreaktionen (z.B. Fusion) dieser Ionen können Neutronen erzeugt werden. Ziel dieser Arbeit war es, einerseits die Neutronenausbeute im Hinblick auf Anwendungen als Neutronenquelle zu optimieren, und andererseits durch Spektroskopie der Neutronen Rückschlüsse auf die Verteilung der laserbeschleunigten Ionen zu ziehen. Diese wiederum können dann zum Verständnis der Beschleunigungsmechanismen und damit zur Optimierung der Ausbeute herangezogen werden. So gelang es im Laufe der Arbeit, die Erzeugung von bis zu 10^7 Neutronen pro Joule Laserenergie und die weitere Skalierbarkeit zu noch größeren Ausbeuten zu demonstrieren, so daß bei weiterer Entwicklung der duchschnittlichen Laserleistung in einigen Jahren mit einer Anwendung als Quelle für z.B. Neutronenradiographieanwendungen gerechnet werden kann. Andererseits gelang es, durch den Vergleich der experimentellen Neutronenspektren mit 3-dimensionalen PIC- und Monte-Carlo-Rechnungen die Beschleunigungsmechanismen in Laserfokus selbst und auf der Rückseite von dünnen Folientargets zu untersuchen und zu verstehen. So konnte erstmals ein direkter Vergleich dieser beiden Mechanismen angestellt werden, was dazu beitragen konnte, die seit längerem geführte Diskussion über die relative Stärke der beiden Mechanismen beizulegen. Schlußendlich war es zur Erzielung einer zur Spektroskopie ausreichenden Neutronenausbeute zunächst nötig, die dritte Verstärkerstufe des ATLAS-Lasers am Max-Planck-Institut für Quantenoptik in Betrieb zu nehmen und mit adaptiver Optik auszurüsten. Dadurch konnte die Neutronenausbeute um zwei Größenordnungen gesteigert werden. Die adaptive Optik ist die erste ihrer Art zur gleichzeitigen Korrektur großer Wellenfrontabweichungen von Nah- und Fernfeld und funktioniert mittlerweile im Routinebetrieb.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
New Results in cooling and storing single Indium ions are presented. Cooling almost to the ground state of the trapping potential could be demonstrated for a single ion as well as for a two-ion coulomb-crystal. In high-resolution spectroscopy the narrow-bandwidth clock-transition was measured with a resolution of 1,3*10^(-13). The absolute frequency of this transition was measured with an uncertainty of 1,8*10^(-13). Also the properties of the Indium-Ion as a reference of an optical freqency standard are discussed.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Anwendung der Einzelmolekülspektroskopie auf poröse Festkörper wird erstmals in dieser Arbeit beschrieben. Um diese relativ neue Methode auf die Untersuchung von Farbstoffen in porösen Festkörpern anzuwenden, wurde ein konfokales Mikroskop so umgebaut, daß es zur Detektion und Spektroskopie einzelner Moleküle einsatzfähig ist. Dafür wurden verschiedene optische Detektionssysteme aufgebaut, um alle im Fluoreszenzlicht enthaltenen Informationen zu erhalten. Mit einer Avalanche Photodiode wurde die Empfindlichkeit des Mikroskops auf die Detektion einzelner Lichtquanten gesteigert. Mit einem gepulsten Laser wurde der ZeitbereichObwohl die Einzelmolekülspektroskopie im Vordergrund der Arbeit steht, sind auch einige interessante Beobachtungen an porösen Materialien mit vielen Farbstoffmolekülen (Ensemblemessungen) durchgeführt worden. Aufgrund des hohen dreidimensionalen Auflösungsvermögen des konfokalen Mikroskopes war es möglich, auch an nur wenige Mikrometer großen Kristallen ortsaufgelöste Untersuchungen durchzuführen. Bisher war es oft nicht möglich, zwischen Oberflächeneffekten und Eigenschaften, die in der Porenstruktur hervorgerufen werden, zu unterscheiden. Untersuchungen mit vielen Farbstoffmolekülen (Ensemblemessungen) zeigten, daß auch scheinbar perfekte Kristalle im Inneren oft unregelmäßig aufgebaut sind. So wurde eine Methode entwickelt, um Defektstrukturen in Kristallen mit Fluoreszenzfarbstoff anzufärben und dreidimensional mit dem konfokalen Mikroskop darzustellen. Große kalzinierte MFI Kristalle besitzen Defektstrukturen, die sich im Inneren entlang der langen Kristallachse ausbreiten. Darüber hinaus konnte gezeigt werden, daß scheinbar homogen mit Farbstoff beladene Kristalle oft eine sehr ungleichmäßige Farbstoffverteilung besitzen. Auch Kristalle, die schon während der Synthese mit Farbstoff beladen werden, sind oft nicht gleichmäßig beladen. Dreidimensionale Fluoreszenzbilder von großen und regelmäßig aufgebauten AlPO4-5 Kristallen, die mit dem Farbstoff DCM beladen wurden, zeigten verschiedene geordnete und ungeordnete Strukturen. Durch die Analyse der Polarisation kann die Orientierung der Farbstoffmoleküle untersucht werden. Untersuchungen an verschieden großen Oxazin Farbstoffen, die während der Synthese in AlPO4-5 eingebaut wurden, zeigten, daß die Ausrichtung entlang der Porenrichtung mit steigender Molekülgröße abnimmt. Das kleine Oxazin 1 ist noch relativ gut orientiert, während das große Oxazin 750 ohne Vorzugsrichtung eingebaut wird. In verschiedenen M41S Materialien wurde die Diffusion von Farbstoff untersucht. Fluoreszenzbilder von M41S Monolithen zeigten das Eindiffundieren verschiedener Farbstoffe in den Festkörper. Über die zeitabhängige Analyse der Eindringtiefe konnten dadurch die Diffusionskonstanten ermittelt werden. Es zeigte sich, daß die Diffusion jeweils bei geladenen Molekülen, größeren Molekülen und bei kalziniertem Monolithen verlangsamt wird. Die Untersuchung des Diffusionsverhaltens in einer M41S Nadel zeigte eine etwa doppelt so schnelle Diffusion quer zur Nadel. Dies steht in Übereinstimmung zu elektronenmikroskopischen Bildern, die zeigen, daß die Nadeln aus zirkularen Poren besteht, die quer zur Nadelrichtung orientiert sind. Im Verlauf dieser Arbeit wurden erstmals einzelne Farbstoffmoleküle innerhalb von porösen Festkörpern detektiert. Im Vergleich zu Referenzproben, bei denen der Farbstoff in einer dünnen Polymerschicht eingebettet wird, ist das Signal zu Untergrund Verhältnis der Einzelmoleküluntersuchungen in den porösen Festkörpern etwas geringer. Auch an der Photostabilität der Fluoreszenzfarbstoffe konnte durch die Einlagerung in die Porenstrukturen keine Verbesserung beobachtet werden. Die Moleküle können nicht nur detektiert, sondern auch spektroskopiert werden. Dabei konnten durch die Analyse der Fluoreszenz verschiedene Parameter bestimmt werden, wie folgende Tabelle zeigt: der Detektion bis hinab in den Nanosekundenbereich erweitert. Durch den Einbau einer Lambda-Halbe Platte wurde die Polarisation des Laserlichtes beeinflußt, um die Orientierung eines einzelnen Moleküls zu bestimmen. Schließlich wurde durch den Einsatz eines Prismas und einer empfindlichen CCD-Kamera die spektrale Aufspaltung ermöglicht, um damit die Fluoreszenzspektren zu bestimmen. Mit allen Experimenten war es nicht nur möglich statische Eigenschaften der einzelnen Fluoreszenzfarbstoffe zu bestimmen, sondern auch deren dynamische Veränderungen. Eine der wichtigsten Anforderungen an organische Farbstoffmoleküle für Einzelmolekülspektroskopie ist die Photostabilität. Um geeignete Farbstoff für den Einbau in die Porenstrukturen zu erhalten, wurden die Photostabilitäten verschiedener Farbstoffe untersucht. Dazu wurden von einigen ausgewählten Farbstoffen die detektierbaren Fluoreszenzphotonen gezählt. Es stellte sich heraus, daß das Farbstoffmolekül TDI in einer dünnern PMMA Schicht eine außergewöhnlich hohe Photostabilität besitzt. Einige TDI-Molekülen emittieren sogar 10 11 Fluoreszenzphotonen bis zum irreversiblen Photobleichen. Zum anderen wurde für sehr instabile Farbstoffmoleküle eine Methode entwickelt, um durch Bleichexperimente an einem Ensemble von Molekülen mit dem konfokalen Mikroskop die Anzahl der emittierten Fluoreszenzphotonen zu ermitteln. Für den Einbau in poröse Festkörper wurden daraufhin einige Oxazinfarbstoffe und das in biologischen Untersuchungen häufig verwendete Cy5 ausgewählt. Diese Farbstoffe können im roten Spektralbereich anreget werden und besitzen mit etwa 10 7 emittierten Fluoreszenzphotonen eine relativ gute Photostabilität. Als Porenstruktur wurden besonders zwei Materialien untersucht. Die Porenstruktur AFI, die im Material AlPO4-5 vorkommt, besitzt eindimensionale Kanäle, die hexagonal wie in einer Bienenwabe angeordnet sind. Von diesem Material können auch regelmäßige Kristalle hergestellt werden, die bis zu einem Millimeter lang sind. Leider sind die Poren des AlPO4-5 mit 0,73 nm Innendurchmesser sehr eng. Alle geeigneten Fluoreszenzfarbstoffe sind etwas größer und werden daher in mehr oder weniger großen Deformationen in dem Kristall eingelagert. Größere Poren besitzen die mesoporösen M41S Materialien. In diese passen alle Farbstoffe ohne Deformation hinein. Jedoch ist die Kristallgröße der M41S Materialien auf wenige µm beschränkt. Mit der Methode der homogenen Fällung können die bisher größten hexagonal geordneten MCM-41 Kristalle hergestellt werden. Zentimeter große hexagonale M41S Festkörper (Monolithe), die durch eine Synthese mit einem Flüssigkristall hergestellt werden, verlieren, wie hier gezeigt wird, während der Synthese ihre eindimensionale Ausrichtung der Poren.Beobachtete Eigenschaft des Lichtes Information aus statischen Bestimmungen Information aus zeitabhängigen Bestimmungen Intensität immer Notwendig Raten (Singulett, Triplett, etc.) Ort Position Diffusion, Transport Polarisation Orientierung Drehung, Rotation Energie Fluoreszenzspektren spektrale Diffusion Diese verschiedenen Untersuchungsmöglichkeiten wurden aufgebaut und an einer Referenzprobe (TDI in PMMA) getestet. Für die Datenanalyse konnte zum Teil auf Methoden in der Literatur zurückgegriffen werden. Es wurde darauf geachtet, daß immer eine Fehlerabschätzung oder eine Simulation durchgeführt wurde, damit die Ergebnisse sinnvoll interpretiert werden konnten. Oft konnten schon an der Referenzprobe (TDI in PMMA) sehr interessante Ergebnisse erhalten werden. So wurden z.B. neben der extrem hohen Photostabilität zwei verschiedene Populationen der Triplettlebensdauer gemessen. Die Position eines einzelnen TDI Moleküls konnte durch die Detektion vieler Photonen auf besser als 1 nm bestimmt werden. Die Analyse von zeitabhängigen Orientierungswinkeln deutet darauf hin, daß ein TDI Molekül in PMMA noch eine sehr geringe Wackelbewegung (~1°) ausführen kann. Bei der Analyse mehrerer 10000 Fluoreszenzspektren von einem TDI Molekül konnten spontane Änderungen der Fluoreszenzwellenlänge und der Schwingungskopplung beobachtet werden. Obwohl die Messungen in den Porenstrukturen aufgrund der geringeren Photostabilität nicht so präzise Ergebnisse liefern, konnten auch hier interessante Beobachtungen gemacht werden. Durch die Analyse der Orientierungswinkel vieler individueller Farbstoffmoleküle konnte gezeigt werden, daß die einzelnen Oxazinfarbstoffe in AlPO4-5 eine gaußförmige Verteilungsfunktion bezüglich ihres Tiltwinkels zur Porenrichtung aufweisen. Die zuvor erwähnten Messungen an einem Ensemble von Molekülen können die Form der Verteilungsfunktion nicht bestimmen. Aufgrund der Kenntnis einer gaußförmige Verteilungsfunktion kann auf ein statistisches Einbauverhalten der Farbstoffmoleküle in Defektstrukturen während der Synthese geschlossen werden. Auch in einem MCM-41 Kristall, dessen große Poren jeden beliebigen Einbauwinkel des Farbstoffes Cy5 erlauben würden, wird eine bevorzugte Orientierung beobachtet. Der Orientierungswinkel zur Porenrichtung zeigt auch hier eine gaußförmige Verteilungsfunktion. Interessanterweise wird bei der frontalen Ansicht auf die hexagonale Struktur (entlang der Bienenwabenstruktur) eine bevorzugte Orientierung auf die Flächen des Sechsecks beobachtet. Eine Ensemblemessung kann unmöglich diese bevorzugte Orientierung detektieren. Neben diesem statischen Verhalten zeigen einige wenige Moleküle auch eine Änderung der Molekülorientierung. Zwei individuelle Oxazin 1 Moleküle änderten ihre Orientierung in AlPO4-5 während der Messung spontan. Im Vergleich zu den anderen Oxazin 1 Molekülen besaßen diese beiden einen ungewöhnlich großen Orientierungswinkel gegen die Porenrichtung. Vermutlich wird die Bewegung durch einen größeren Defekt der Porenstruktur ermöglicht. Ein TDI Molekül im Inneren eines M41S Monolithen zeigte sogar eine mehrfache Drehung zwischen 3 verschiedenen Orientierungen.Eine Dynamik bezüglich des Ortes zeigten einzelne TDI Moleküle im M41S Monolith. Aufgrund der starken hydrophoben Eigenschaften des TDI kann davon ausgegangen werden, daß sich der Farbstoff immer noch im Inneren der Mizelle des Flüssigkristalls befindet, aus dem der Festkörper synthetisiert wurde. Die Diffusionsbewegung kann durch eine Serie von Fluoreszenzbilden mit dem konfokalen Mikroskop direkt verfolgt werden. Entgegen der erwarteten eindimensionalen Diffusion, die die hexagonale Struktur des Monolithen eigentlich erwarten läßt, wird eine isotrope Diffusion ohne Vorzugsrichtung beobachtet (D ~ 0,04 µm 2 /s). Im reinen Flüssigkristall dagegen ist die eindimensionale Diffusion vorhanden. Vermutlich werden die eindimensionalen Poren bei der Synthese der festen Silikatwand so stark verknäult, daß auf der beobachteten Längenskala ein Festkörper ohne Vorzugsrichtung entsteht. Auch die viel langsamere Diffusion im Vergleich zum reinen Flüssigkristall (D ~ 2 µm 2 /s) kann über diese Verknäulung der Poren erklärt werden. Schließlich wurden noch Messungen durchgeführt, um simultane Änderungen der Orientierung, Fluoreszenzspektren oder Triplettraten an einem einzelnen Farbstoffmolekül zu beobachten. Besonders die gleichzeitige Detektion von Fluoreszenzspektren und der Orientierung lassen sich experimentell gut durchführen. Zur Interpretation der Ergebnisse muß hier zwischen einer starken und einer schwachen Kopplung zwischen Gast und Wirt unterschieden werden. Bei einer polaren Probe wird eine starke Wechselwirkung zwischen Gast und Wirt erwartet. Diese müßte dazu führen, daß sich Änderungen in der Orientierung auch in geänderten Fluoreszenzspektren und umgekehrt bemerkbar machen. Bei einem geladenen Molekül wie Oxazin 1 wird solch eine starke Kopplung des elektronischen Systems an die polare AlPO4-5 Umgebung erwartet. Eine starke Änderung des Fluoreszenzspektrums könnte daher von einer Umorientierung des Farbstoffes herrühren. Bei den durchgeführten gleichzeitigen Messungen konnte aber nur spektrale Diffusion (±1-20 nm), aber keine gleichzeitige signifikante Umorientierung (>3°) beobachtet werden. Eine Erklärung für dieses Verhalten könnte die Bewegung des Gegenions des Farbstoffmoleküls sein, dessen Lage einen großen Einfluß auf die Fluoreszenzeichenschaften hat. Eine Umorientierung mit gleichzeitiger Detektion der Fluoreszenzspektren konnte jedoch nicht gemessen werden. Beide Ereignisse, Umorientierungen und spektrale Änderungen, konnten an TDI im M41S Monolith detektiert werden. Dabei zeigte sich aber, daß es sich hier um zwei unabhängige Prozesse handelt. Deutliche spektrale Sprünge (> 3 nm) korrelieren nicht mit deutlichen Umorientierungen (~60°). Eine geometrische Änderung des Farbstoffmoleküls oder der näheren Umgebung scheidet daher als Ursache für die spektrale Diffusion aus. Da hier aber eine schwache Wechselwirkung zwischen dem unpolaren TDI und der unpolaren Tensidumgebung vorliegt, werden auch keine starke Änderungen der Fluoreszenzspektren während der Umorientierung erwartet. Die spektrale Diffusion wird hier vermutlich von kleinen diffundierenden Teilchen (z.B. O2 oder Ionen) verursacht, die sich unabhängig von den Farbstoffmolekül bewegen können. Die Methode der Einzelmolekülspektroskopie liefert neue Einblicke in poröse Festkörper. Besonders durch die zeitabhängigen Untersuchungen können Informationen erhalten werden, die zuvor unter dem Mittelwert verborgen blieben. Ein kleiner Teil der Arbeit beschäftigt sich mit der Tieftemperaturfluoreszenz-spektroskopie an dem grün fluoreszierendem Protein (GFP). Dafür wurden der Wildtyp und verschiedene Varianten mit Mutationen in der Umgebung des zentralen Chromophors bei 2 K untersucht. Im Vergleich zur Raumtemperatur zeigten die Spektren bei tiefen Temperaturen deutlich mehr Struktur. Dadurch konnten verschiedene Sub-Zustände in den Varianten identifiziert werden. Bei fast allen Varianten konnten durch intensive Bestrahlung langwellig absorbierende Photoprodukte erzeugt werden, die erst bei etwa 50 bis 100 K wieder zerfallen. Obwohl eine relativ starke Elektron-Phonon-Kopplung beobachtet wird, ist an einigen ausgewählten Stellen auch hochaufgelöste Tieftemperaturspektroskopie wie spektrales Lochbrennen und Fluoreszenzlinienverschmälerung möglich. Durch Temperatur-Ableitungs-Spektroskopie werden an Wildtyp-GFP die Energien und Verteilungsfunktionen der Zerfallsbarrieren der metastabilen Photoprodukte bestimmt. Schließlich wurde durch temperaturabhängige Kurzzeitspektroskopie an Wildtyp-GFP der 'Excited state proton transfer' (ESPT) charakterisiert. Für diesen wird bis etwa 50 K eine thermische Barriere nach Arrhenius mit einer Aktivierungsenergie von ~2,3 kJ/mol gefunden. Unterhalb von etwa 50 K dominiert vermutlich ein Tunnelprozeß.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Das Ziel dieser Arbeit war die Untersuchung der Primaerreaktion der Photosensoren Sensorrhodopsin I und II aus dem Archaebakterium Halobacterium salinarum und Sensorrhodopsin II aus Natronobacterium pharaonis sowie die Durchfuehrung vergleichender Messungen an dem zur selben Familie gehoerenden Membranprotein Bakteriorhodopsin. Spektral aufgel�oste Anreg-Abtast-Experimente im sichtbaren Spektralbereich ermoeglichten dabei einen umfassenden Einblick in die schnellsten Prozesse nach der Lichtanregung. Da Femtosekundenlasersysteme mit den erforderlichen Spezifikationen zu Beginn dieser Arbeit noch nicht kommerziell erhaeltlich waren, musste zur Realisierung der Experimente ein Ti:Saphir-Laseroszillator und ein CPA-Verstaerker entwickelt werden, der die benoetigten Lichtimpulse von ca. 100 fs Dauer und 1 mJ Ausgangsleistung bei hoher Stabilitaet lieferte. Erste Hinweise auf das Verhalten der elektronisch angeregten Zustaende der Sensorrhodopsine vermittelten die in einem modifizierten hochempfindlichen Ramanspektrometer aufgenomenen Fluoreszenzspektren. Dabei konnten erstmalig die Fluoreszenzquantenausbeuten der Sensorrhodopsine bestimmt werden und unter gewissen Annahmen auch die Lebensdauern ihrer elektronisch angeregten Zustaende abgeschaetzt werden. Die Anreg-Abtast-Experimente wurden mit einer Zeitau �osung von ca. 100 fs im Spektralbereich von etwa 400 nm bis 700 nm durchgef�uhrt, wobei Absorptionsaenderungen im Promillebereich aufgeloest werden konnten. Innerhalb der ersten 200 fs nach der Lichtanregung wurden bei allen untersuchten Proben schnelle, nichtexponentielle Reaktionskinetiken beobachtet, die durch eine stark gedaempfte Abwaertssbewegung des auf der Potential flaeche des elektronisch angeregten Zustands praeparierten Wellenpakets interpretiert werden koennen. Diese Ergebnisse stuetzen mehrdimensionale Modelle der Primaerreaktion, bei denen der Isomerisierung des Retinals eine schnelle Relaxation hochfrequenter Schwingungsmoden vorausgeht. Die Rueckreaktion in den elektronischen Grundzustand und die damit verbundene Isomerisierung des Retinals verlaeuft im Fall des Photosensors Sensorrhodopsin II trotz der unterschiedlichen Grundzustandsspektren sehr aehnlich zu Bakteriorhodopsin. Bei Sensorrhodopsin I wurde jedoch eine sehr langsame Rueckreaktion innerhalb einiger Pikosekunden beobachtet, die bei dem eingestellten pH-Wert vermutlich zumindest teilweise durch eine veraenderte elektrostatische Wechselwirkung mit dem Gegenion der Schiss- schen Base verursacht wird. Ueber den Vergleich mit Literaturdaten an Halorhodopsin und BR-Mutanten konnten Vermutungen, dass die Geschwindigkeit der Primaerreaktion stark von dieser Wechselwirkung beein usst wird, weiter bestaetigt werden. Aus den aufgenommenen Daten konnten weiterhin die erst lueckenhaft bekannten Photozyklen der Sensorrhodopsine um einige Schritte ergaenzt werden und die Absorptionsquerschnite der gefundenen Zwischenzust�ande berechnet werden. Schliesslich konnte ein qualitatives Modell fuer die Prim�arreaktion der Familie der Retinalproteine vorgeschlagen werden, das als Grundlage fuer zuk�unftige Arbeiten dienen kann.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Verfärbt sich die Probe während eines in situ Ramanexperimentes, wird die gemessene Ramanintensität stark abgeschwächt. Um einen Intensitätsvergleich zwischen den zu verschiedenen Zeitpunkten erhaltenen Ramanspektren zu ermöglichen, muß daher der Zusammenhang zwischen der Absorption der Proben und der gemessenen Ramanintensität berücksichtigt werden. Für die Abhängigkeit der Ramanintensität ψ∞ und der Reflektivität R der Probe gilt näherungsweise: Ψ∞=ρ I (0 ) s ⋅R ∞(1 R ∞) (1 R ∞)=ρ I (0 ) s ⋅G (R ∞) (= Ramanstreukoeffizient, s= Reflektivitätskonstante, I(0)= Eingestrahlte Lichtintensität) Es wird vorgeschlagen, daß die Reflektivität R der Probe parallel zum in situ Ramanexperiment, z.B. durch Einkoppelung einer Plasmalinie des Lasers, gemessen wird und die Ramanintensität mit Hilfe der Beziehung G (R ∞)=R ∞(1 R ∞) (1 R ∞)korrigiert wird. Die Funktion G(R ) ist hierbei proportional zur beobachteten Ramanintensität. Da der Ramanstreukoeffizient ρ proportional zu ν 4 ist, kann er durch c ⋅ν 4 ersetzt werden. Wird die Frequenzabhängigkeit von R berücksichtigt, so gibt die Funktion Ψ ∞die Abhängigkeit des Ramanstrahlungsflusses von der verwendeten Erregerfrequenz an: Ψ∞(ν)=c ν 4 I (0 ) s ⋅R ∞(ν)(1 R ∞(ν)) (1 R ∞(ν))=c I (0 ) s ⋅G (R ∞(ν))⋅ν 4 R (ν)kann direkt aus dem UV-vis-Spektrum der Probe erhalten werden. Das Maximum der Funktion Ψ∞(ν)zeigt die erwartete optimale Laserfrequenz an. Zu hohe Laserleistung kann zur Veränderungen der Probe innerhalb des Laserspots führen. Um Artefakte zu vermeiden, sollte die optimale Laserleistung durch Vergleich mehrerer in situ Ramanexperimente bei verschiedenen Laserleistungen ermittelt werden. Zirkondioxid-Proben neigen zu erhöhtem Untergrund in den Ramanspektren. Die physikalischen Ursachen dafür sind weitgehend ungeklärt, es könnte sich aber um einen Streuprozess handeln, der mit dem Hydratisierungsgrad der Probe zu tun hat. Um erhöhten Untergrund zu vermeiden, sollten diese Proben vor jedem Ramanexperiment bei Temperaturen zwischen 673 und 773 K in trockenem Sauerstoff vorbehandelt werden. Die Charakterisierung durch DTA-TG, Ramanspektroskopie, UV-vis, TPR und FTIR am unpromotierten WO3/ZrO2-Katalysator (WZ) bestätigt die in der Literatur beschriebenen Strukturmodelle 9,11,96,103 . . Die Wolframphase liegt nicht als kristallines Wolframtrioxid, sondern als amorphe Oberflächenwolframate vor, wobei die Wolframatome weitgehend verzerrt oktaedrisch koordiniert und über W—O—W-Brücken untereinander verknüpft sind. Diese Spezies sind über W—O—Zr-Brücken mit dem tetragonalen Zirkondioxid-Träger verbunden. W=O-Gruppen kommen ebenfalls vor und sättigen möglicherweise die Valenzen an den Rändern der Oberflächenwolframate. Hochtemperatur-FTIR-Spektroskopie zeigt, daß trotz Dehydratisierung in trockenem Sauerstoff bei 573 K molekulares Wasser auf dem Katalysator verbleibt. ESR-Spektroskopie an der oxidierten WZ-Probe zeigt, abgesehen von Fe 3+ -Verunreinigungen, die im Zirkondioxid-Träger lokalisiert sind, keinerlei paramagnetische Spezies. ESR-Spektroskopie und UV-vis-Spektroskopie zeigen, daß unter Reaktions-temperaturen (> 473 K) durch die Wechselwirkung mit Wasserstoff die WZ-Probe reduziert wird, wobei W 5+ -Zentren entstehen. Es können mehrere W 5+ -Zentren unterschieden werden, wobei ein O2-Adsorptionsexperiment nahelegt, daß zum einen koordinativ ungesättigte oberflächennahe W 5+ -Zentren und zum anderen tiefergelegene W 5+ -Zentren entstehen. Mit steigender Reduktionstemperatur werden zunehmend tiefergelegene W 5+ -Zentren reduziert. In weit geringerem Maße entstehen bei der Reduktion auch Zr 3+ -Zentren. Ramanspektroskopie am mit Wasserstoff reduzierten Katalysator zeigt keine nennenswerten Veränderungen, da bei den verwendeten Reduktionstemperaturen nur eine partielle Reduktion eintritt. FTIR-Spektroskopie am mit Wasserstoff bzw. Deuterium reduzierten Katalysator zeigt die Entstehung von neuen OH- bzw. OD-Gruppen. Tieftemperatur-CO-Adsorption läßt darauf schließen, daß die durch die Reduktion gebildeten OH-Gruppen weniger azide sind als die OH-Gruppen, die vor der Reduktion vorhanden sind. Insgesamt läßt sich sagen, daß die in der Literatur postulierte Bildung von W 5+ -Zentren 11,13,103,116,117 und OH-Gruppen 11,13,103,116,117,118 durch die Wechselwirkung mit Wasserstoff voll bestätigt werden kann. WZ besitzt Aktivität für die Isomerisierung von n-Pentan zu Isopentan, wobei aber neben Isopentan zahlreiche gesättigte und ungesättigte Crack-Produkte entstehen. Es wird der typische, bereits in vorhergehenden Arbeiten beschriebene Aktivitätsverlauf beobachtet. Nach einer Induktionsperiode und einem Aktivitätsmaximum kommt es zur Des-aktivierung und Stabilisierung auf niedrigem Aktivitätsniveau. Die Produktverteilung spricht weder für einen Haag-Dessau-Cracking-Mechanismus noch für einen monomolekularen oder bimolekularen Mechanismus. Eine mögliche Erklärung für das konstante Verhältnis der Entstehungsraten der Nebenprodukte zum Hauptprodukt Isopentan wäre, daß alle Produkte aus der gleichen höhermolekularen Zwischenstufe entstehen und somit alle Produkte über den gleichen Reaktionsweg (Reaktionsweg A) gebildet werden. Dieser Reaktionsweg steht wahrscheinlich mit höhermolekularen organischen Ablagerungen in Zusammenhang, bei denen es sich möglicherweise um Polyalkenyl-Spezies handelt. Die unpromotierte WZ-Probe zeigt Aktivität für die Hydrierung von Propen. Nach dem Prinzip der mikroskopischen Reversibiltät erscheint eine Aktivierung der Alkane durch Dehydrierung an den Wolframaten möglich, wobei das W 5+ /W 6+ -Redoxsystem ausgenutzt wird. Das Zusammenlagern der Alken-Zwischenstufen führt möglicherweise zu den höhermolekularen organischen Ablagerungen, deren langsame Bildung eine Erklärung für die Induktionsperiode wäre. Die Zugabe von Wasserstoff in den Produktstrom führt zu einer Zunahme der Selektivität für Isopentan. Dies ist wahrscheinlich auf die zusätzliche Ermöglichung eines monomolekularen Reaktionsweges (Reaktionsweg B) zurückzuführen. Dieser mono-molekulare Reaktionsweg wird durch die Reduktion der Wolframate durch Wasserstoff im Eduktstrom ermöglicht und führt zur effektiveren Desorption der Alken-Zwischen-stufen. Diese zeigen wegen der verringerten Lebensdauer / Konzentration eine geringere Tendenz, sich zu höhermolekularen Ablagerungen zusammenzuschließen. Es wird vorgeschlagen, daß bei diesem monomolekularen Reaktionsweg B die Desorption über die Hydrierung des verzweigten Alkens an den Wolframaten, d.h. über den umgekehrten Weg der Aktivierung des linearen Alkans (Dehydrierung), geschieht. Vorreduktion führt zu niedrigerer Aktivität und höherer Selektivität. Es wird keine Induktionsperiode der Gesamtaktivität beobachtet. Bei niedrigen Laufzeiten dominiert wahrscheinlich der monomolekulare Mechanismus (Reaktionsweg B). Der Einfluß des für die Induktionsperiode verantwortlichen Reaktionsweg A ist zu gering, als daß sich die Induktionsperiode auf die Gesamtaktivität auswirken würde. in situ UV-vis-Spektroskopie zeigt, neben starker Verfärbung des Katalysators, Banden organischer Ablagerungen (405, 432, 613 nm), die mit zunehmender Laufzeit stärker werden. Es handelt sich wahrscheinlich um Polyalkenylkationen, die mit dem Reaktionsweg A in Zusammenhang stehen. Die Kettenlänge der Polyalkenylkationen scheint sich mit zunehmender Laufzeit zu vergrößern. in situ Ramanspektroskopie zeigt die Bildung prägraphitischer Ablagerungen. Zunehmende Laufzeit, die Zugabe von Wasserstoff in den Produktstrom sowie Vorreduktion des Katalysators haben keinerlei Einfluß auf die Art der Ablagerungen. Es kann keinerlei Zusammenhang zwischen der beobachteten Aktivität / Selektivität und der Bildung der prägraphitischen Teilchen beobachtet werden. Die beobachteten prägraphitischen Teilchen stehen mit der Isomerisierungsreaktion nicht in Zusammenhang, sondern sind ein Nebenprodukt. Sie tragen möglicherweise, aber nicht ausschließlich, zur Desaktivierung des Katalysators bei. in situ ESR-Spektroskopie zeigt die Bildung von organischen Radikalen sowie von oberflächennahen W 5+ -Zentren nach der Reaktion mit n-Pentan. Die Bildung von organischen Radikalen ist möglicherweise ein Hinweis auf eine schrittweise Oxidation zum Alken. Möglicherweise sind die beobachteten Radikale aber auch auf höhermolekulare, ungesättigte organische Ablagerungen zurückzuführen. Der mit Platin promotierte Katalysator PtWZ wird durch die Wechselwirkung mit Wasserstoff erheblich leichter reduziert. Analog zu der unpromotierten Probe führt die Reduktion der Wolframate zu W 5+ -Zentren und OH-Gruppen. ESR-Spektroskopie zeigt, daß alle bei 673 K reduzierbaren Zentren auch bei Raumtemperatur reduziert werden. Tieftemperatur CO-Adsorption läßt darauf schließen, daß die durch die Reduktion gebildeten OH-Gruppen weniger azide sind als die OH-Gruppen, die vor der Reduktion vorhanden sind. Die Effekte sind darauf zurückzuführen, daß Pt die Reduktion mit Wasserstoff katalysiert, wobei der Wasserstoff dissoziativ auf der Platinoberfläche adsorbiert wird und auf die Wolframate übertritt („Spillover“). Die in der Literatur postulierte erleichterte Reduktion der Wolframate durch Wasserstoff bei der An-wesenheit von Platin unter Bildung von W 5+ -Zentren 11,13,103,116,117 und OH-Gruppen 11,13,103,116,117,118 kann bestätigt werden. PtWZ zeigt bei der Isomerisierung von n-Pentan ohne Wasserstoff eine leicht erhöhte Aktivität gegenüber der unpromotierten Probe WZ. Das verstärkte Auftreten von Alkenen wird auf Nebenreaktionen an den durch das Alkan partiell reduzierten PtOx-Partikeln zurückgeführt (Reaktionsweg C). Die Zugabe von Wasserstoff in den Produktstrom bei der Isomerisierung von n-Pentan an PtWZ führt zu einer ca. 60 mal höheren Aktivität im Vergleich zur maximalen Aktivität von WZ sowie zu Selektivitäten für Isopentan von ca. 95%. Erhöhte Aktivität und Selektivität werden auf das hauptsächliche Vorliegen des selektiv und schnell ablaufenden monomolekularen Reaktionsweges (Reaktionsweg B) zurückgeführt. Die Nebenprodukte entstehen wahrscheinlich durch Hydrogenolyse des n-Pentans an den Platinpartikeln (Reaktionsweg D). Vorreduktion führt zur maximalen Aktivität und Selektivität zu Anfang der Reaktion. Das Experiment bestätigt, daß die Rolle des zugegebenen Wasserstoffs nicht nur in der Reduktion der PtOx-Partikel zu metallischem Platin besteht, sondern daß Wasserstoff eine aktive Rolle bei der Isomerisierung spielt. Durch den Verlust des im System gespeicherten Wasserstoffes werden die Reaktionswege B und D, die an PtWZ in Anwesenheit von Wasserstoff ablaufen, durch die Reaktionswege A und C abgelöst, die an PtWZ in Abwesenheit von Wasserstoff ablaufen. Eisenpromotierung erschwert generell die Reduktion durch Wasserstoff. Die Wolframate der mit Eisen promotierten FeWZ-Katalysatoren (FeWZ(N) und FeWZ(S)) können erst bei einer Reduktionstemperatur von 673 K unter Ausbildung von W 5+ -reduziert werden. Bei einsetzender Reduktion der Wolframate werden die Eisen(III)-Zentren zu niedrigeren Oxidationsstufen reduziert. Es konnten keine Unterschiede im Reduktionsverhalten zwischen der FeWZ(N) und der FeWZ(S)-Probe festgestellt werden. PtFeWZ-Katalysatoren (PtFeWZ(N) und PtFeWZ(S)) werden im Gegensatz zu dem PtWZ-Katalysator bei Raumtemperatur nur in geringem Maße reduziert. Im Gegensatz zu PtWZ, wo bereits bei Raumtemperatur die maximale Intensität des W 5+ -Signals zu beobachten ist, vergrößert sich das Signal mit steigender Reduktionstemperatur. Mit steigender Reduktionstemperatur wird zunehmend Fe 3+ zu niedrigeren Oxidationstufen reduziert. Die erschwerte Reduktion ist wahrscheinlich auf einen kinetischen Effekt zurückzuführen, wobei die Eisenpromotierung einen der Platinpromotierung entgegen-gesetzten Effekt hat und die Reduktion der Wolframate kinetisch hemmt. FeWZ(N) ist unter den gegebenen Reaktionsbedingungen mit oder ohne Zugabe von Wasserstoff nahezu inaktiv. Die beiden PtFeWZ-Proben zeigen ohne Zugabe von Wasserstoff ebenfalls nur geringe Aktivität. Produktverteilung und Aktivitätsverlauf ähneln den bei PtWZ beobachteten. Eisen hat nur einen positiven Effekt auf die Isomeriserung von n-Pentan, wenn sowohl Platin vorhanden ist als auch Wasserstoff in den Produktstrom hinzugegeben wird. Sind diese Bedingungen erfüllt, verbessert Eisenpromotierung die Selektivität der PtFeWZ-Proben. Im Fall der Isomerisierung an PtFeWZ(S) kann zusätzlich zur verbesserten Selektivität eine deutlich erhöhte Aktivität beobachtet werden. Da die Nebenprodukte, die zur Erniedrigung der Selektivität führen, wahrscheinlich durch Hydrogenolyse des n-Pentans auf den Platinpartikeln (Reaktionsweg D) entstehen, wird die Erhöhung der Selektivität gegenüber n-Pentan durch den Einfluß der Eisenpromotierung auf die Platin-partikel erklärt. Möglicherweise hat die Eisenpromotierung Einfluß auf die Dispersion des Platins, oder es bilden sich Fe/Pt-Legierungen bzw. -Verbindungen aus. Die erhöhte Aktivität der PtFeWZ(S)-Probe wird auf einen kooperativen Effekt zwischen den Wolframaten und SO4 2- -Spezies zurückgeführt, die nach der Synthese möglicherweise auf der Oberfläche des PtFeWZ(S)-Katalysators vorhanden sind. Ramanspektroskopie an SZ zeigt den typischen tetragonalen Träger sowie zwei verschiedene Sulfat-Spezies. Zeitabhängige in situ Ramanspektroskopie an SZ während der Isomeriserung von n-Pentan zeigt, daß im Laufe der Reaktion eine dieser Spezies verschwindet. Dies wird auf Reduktion zu H2S durch das eingesetzte Alkan zurückgeführt. Gleichzeitig wird der für diese Proben typische Aktivitätsverlauf (Induktionsperiode, rasche Desaktivierung) beobachtet. Im Gegensatz zu Berichten in der Literatur kann keine Bande bei 1600 cm -1 beobachtet werden, die in dieser Arbeit auf prägraphitische Teilchen zurückgeführt wurde. Geht man davon aus, daß die Isomerisierung an SZ ähnlich wie an WZ abläuft, bestätigt dies, daß es sich bei diesen Spezies um ein Nebenprodukt handelt, das nicht direkt mit der Isomerisierungsreaktion zu tun hat.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Tue, 24 Jul 2001 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/456/ https://edoc.ub.uni-muenchen.de/456/1/Spoerlein_Sebastian.pdf Spörlein, Sebastian ddc:530, ddc:500, Fa
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurden drei verschiedene Schwerpunkte gesetzt: (a) Phosphonium- und Diphosphanium-Kationen, (b) Phosphor-Bor-Addukte und (c) Phosphorazid-Verbindungen. •= Es konnte gezeigt werden, daß die Phosphortrihalogenide PCl3, PBr3, PI3 und P2I4 wie auch die Phosphor-Chalkogenide P4S3 und P4Se3 aufgrund ihrer schwachen Donoreigenschaft nur sehr schwachgebundene Spezies mit Elektronenacceptoren bilden. So sind die gebildeten Komplexverbindungen X3P⋅BY3 (X = Cl, Br, I; Y = Br, I) und (P4E3)⋅(BX3) (X = Br, I) wie auch die PX4 +- (X = Br, I) und P2I5 +-Salze nur im Festkörper stabil. In Lösung hingegen neigen diese Spezies gewöhnlich zur Dissoziation. Die Donorfähigkeit von Phosphinen hingegen ist aufgrund des positiven induktiven Effekts der Alkyl- oder Arylgruppen deutlich höher. So konnte z.B. gezeigt werden, daß die Verbindungen H2PMe2 +AlCl4 − und n-Pr3P⋅BX3 (X = Cl, Br, I) im Gegensatz zu den oben genannten Komplexen auch in Lösung stabil sind. •= Die 31P-NMR-Resonanzen der PI4 +-Spezies zeigen in Abhängigkeit vom jeweiligen Anion ungewöhnlich starke Hochfeldverschiebungen im Bereich zwischen −295 ppm (PI4 +GaI4 −, ∆ δcoord = −532 ppm, Abb. 61) und −519 ppm (PI4 +AsF6 −, ∆ δcoord = −756 ppm, Abb. 61), welche auf Spinbahn-Effekte zurückzuführen sind. Durch Röntgenstrukturanalyse (PI4 +AlCl4 −, PI4 +AlBr4 −, PI4 +GaI4 −), 31P-MAS-NMR- und Schwingungsspektroskopie konnte gezeigt werden, daß das PI4 +-Kation je nach Eigenschaft des Gegenanions "isoliert" oder polymer vorliegt. Die intermolekularen Kation ⋅⋅⋅ Anion- Wechselwirkungen in den PI4 +-Komplexen nehmen in der Reihenfolge PI4 +GaI4 − ≥ PI4 +AlI4 − > PI4 +GaBr4 − ≥ PI4 +AlBr4 − > PI4 +AlCl4 − > PI4 +SbF6 − ≥ PI4 +AsF6 − ab. Die dadurch steigende P-I-Bindungsordnung (kürzere P-I-Bindungslängen, stärkere P-IKraftkonstanten) im PI4 +-Kation verursacht eine Verschiebung der 31P-Resonanz zu niedrigeren Frequenzen (höherem Feld) bzw. eine Verschiebung der Normalschwingungen zu höheren Wellenzahlen (ν1 (PI4 +) = 150 − 180 cm−1). Dieses Phänomen ist in den PBr4 +-Spezies weniger ausgeprägt ( δ = −72 bis −83 ppm, ν1 (PBr4 +) = 250 − 266 cm−1) (s. 3.1). •= Durch Auftragen der P-I-Bindungslänge gegen die 31P-chemische Verschiebung bzw. gegen die ν1-Streckschwingung des PI4 +-Kations konnte zum ersten Mal der P-I-Abstand in PI4 +AsF6 − abgeschätzt werden (d (P-I) ≈ 2.352(2) Å, s. 3.1). •= Mit den Reaktionssystemen PBr3 / I3 +MF6 − (M = As, Sb) und PBr3 / IBr / EBr3 (E = Al, Ga) gelang es erstmalig, die Existenz der bisher unbekannten gemischt substituierten Bromoiodophosphonium-Kationen PBrnI4−n + (0 ≤ n ≤ 3) durch 31P-MAS-NMRSpektroskopie nachzuweisen. Es konnte sowohl experimentell als auch durch quantenchemische Berechnungen gezeigt werden, daß der Hochfeldshift für PBrnI4−n + aufgrund der anwachsenden Spinbahn-Beiträge entlang PBr4 + < PBr3I+ < PBr2I2 + < PBrI3 + < PI4 + ansteigt (s. 3.1). •= Die Verbindungen P2I5 +EI4 − (E = Al, Ga, In) sind auf zwei unterschiedlichen Synthesewegen darstellbar. Das P2I5 +-Kation wird im Festkörper durch schwache I ⋅⋅⋅ IKontakte mit den EI4 −-Anionen stabilisiert. Die 31P-Resonanz des Phosphoratoms des PI3- Fragments zeigt eine deutliche Hochfeldverschiebung von der Resonanz von P2I4 (∆ δcoord = δ (−PI3 +, P2I5 +) − δ (−PI2, P2I4) = −267 ppm, Abb. 61), welche − wie auch in den PI4 +- Spezies − auf Spinbahn-Beiträge der schweren Iodsubstituenten zurückzuführen sind (s. 3.2). •= Durch Röntgenstrukturanalyse von H2PMe2 +AlCl4 −, welches aus HPMe2, HCl und AlCl3 dargestellt wurde, konnte die strukturelle Aufklärung der Dimethylphosphonium-Kationen HnPMe4−n + (0 ≤ n ≤ 3) vervollständigt werden (s. 3.3). •= Die Umsetzung von PBr3 mit Ph3P führte zu einer definierten Verbindung, welche durch 31P-MAS-NMR-Spektroskopie als Ph2P−PBr2 +Br− identifiziert wurde. Im Gegensatz zu früheren Arbeiten, in denen oft über die Zusammensetzung und Struktur der durch die Umsetzungen von Phosphorhalogeniden mit Alkyl- oder Arylphosphinen erhaltenen Reaktionsprodukte (orange Niederschläge) spekuliert wurde, konnte hier gezeigt werden, daß die Festkörper-Spektroskopie eine geeignete Methode zur Untersuchung derartiger Verbindungen darstellt (s. 3.4). •= Im Zusammenhang mit der Untersuchung des Koordinationsverhalten von Phosphor- Basen (Elektronendonoren) gegenüber Lewis-Säuren (Elektronenacceptoren) wie BX3 (X = Cl, Br, I) konnten zahlreiche Addukt-Verbindungen dargestellt werden (Gleichung 20). Base + BX3 → Base⋅BX3 (20) für X = Br, I: Base = PCl3, PBr3, PI3, n-Pr3P, P4S3, P4Se3 für X = Cl: Base = n-Pr3P •= Strukturell konnten die zum Teil sehr schwachgebundenen Komplexe Br3P⋅BBr3, I3P⋅BBr3 und n-Pr3P⋅BBr3 durch Röntgenstrukturanalyse am Einkristall bestimmt werden (s. 3.5 − 3.6). •= Aufgrund der 31P-MAS-NMR- und Schwingungsdaten und konnte gezeigt werden, daß die Reaktion von BX3 (X = Br, I) mit P4S3 zu apikalen Addukten, mit P4Se3 jedoch zu basalen Addukten führt. Zusätzlich konnten die Molekülstrukturen von (P4S3)⋅(BBr3) und (P4S3)⋅(BI3) durch Röntgen-Pulverbeugung eindeutig bestimmt werden (s. 3.7). •= In Analogie zu früheren Arbeiten konnte bestätigt werden, daß die Acceptorstärke (Lewis- Acidität) von BX3 (X = Cl, Br, I) in der Reihenfolge BCl3 < BBr3 < BI3 ansteigt. So bildet die schwache Lewis-Säure BCl3 nur noch mit starken Phosphor-Basen wie Alkyl- oder Arylphosphinen stabile Komplexe. Bezüglich der Stabilität der Reaktionsprodukte konnte für die BX3-Addukte (X = Br, I) sowohl theoretisch (quantenchemische Berechnungen) als auch experimentell folgende Reihenfolge beobachtet werden: P4S3 < PCl3 < PBr3 < P4Se3 < PI3 < n-Pr3P (s. 3.5 − 3.7). •= Durch Analyse der Bindungsorbitale (NBO) von X3P⋅BY3 (X = Cl, Br, I, Me) konnte gezeigt werden, daß: (a) die Bindungsordnung entlang der BCl3- < BBr3- < BI3-Addukte zunimmt und (b) der Ladungstransfer in der gleichen Reihenfolge ansteigt. blaue Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PI3); roter Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (P2I4); grüne Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PBr3); brauner Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PCl3); orangefarbene Balken: Koordinationsshift ∆ δcoord = δ (Pap; Komplex) − δ (Pap; P4S3); lila Balken: Koordinationsshift ∆ δcoord = δ (Pbas; Komplex) − δ (Pbas; P4Se3). •= Die bei der Koordination in der Reihe Cl3P⋅BBr3 (∆ δcoord = −110 ppm) < Br3P⋅BBr3 (∆ δcoord = −149 ppm) < I3P⋅BBr3 (∆ δcoord = −268 ppm) < I3P⋅BI3 (∆ δcoord = −278 ppm) ansteigende Hochfeldverschiebung der 31P-Resonanz (Abb. 61) ist ebenfalls (vgl. PI4 +- und P2I5 +-Salze) auf Schweratomeffekte zurückzuführen (s. 3.5). •= Ein entgegengesetzter Trend wurde für die Addukte (P4E3)⋅(BX3) (X = Br, I) und (P4Se3)⋅(NbCl5) gefunden: Der Koordinationsshift der Phosphor-Chalkogenid-Komplexe ist im Gegensatz zu den Komplexen X3P⋅BY3 positiv (Verschiebung zum tieferen Feld) und liegt für die apikalen P4S3-Addukte bei ca. 50 − 60 ppm (Abb. 61). Für die basalen P4Se3-Addukte ist der Tieffeld-Koordinationsshift deutlich größer und steigt in der Reihe NbCl5 (∆ δcoord = +64.2 ppm) < BBr3 (∆ δcoord = +104.1 ppm) < BI3 (∆ δcoord = +177.0 ppm) an (s. 3.7, Abb. 61). •= Durch die Umsetzung von [PhNPCl3]2 und [(C6F5)NPCl3]2 mit TMS-N3 konnten die Phosphorazid-Spezies [PhNP(N3)3]2 und [(C6F5)NP(N3)3]2 dargestellt werden. Durch Kernresonanz- und Schwingungsspektroskopie konnte gezeigt werden, daß [PhNP(N3)3]2 sowohl in Lösung als auch im Festkörper als dimere Verbindung zweier monomerer PhNP(N3)3-Einheiten vorliegt, während das analoge Pentafluorphenylderivat durch die elektronenziehende Wirkung der perfluorierten Phenylgruppen in Lösung überwiegend monomer als (C6F5)NP(N3)3, im Festkörper jedoch als Dimer [(C6F5)NP(N3)3]2 vorliegt (s. 3.8). •= [PhNP(N3)3]2 und [(C6F5)NP(N3)3]2 konnten durch Röntgenbeugung am Einkristall charakterisiert werden (Abb. 62) und sind somit die ersten strukturell charakterisierten Phosphorazid-Spezies, in welchen das Phosphoratom verzerrt trigonal-bipyramidal von drei Azidgruppen umgeben ist. Die Molekülstruktur von [PhNP(N3)3]2 zeigt eine ungewöhnliche Bindungssituation mit vier deutlich unterschiedlichen Phosphor- Stickstoff-Bindungslängen. Sowohl im 14N-NMR-Spektrum als auch in den Schwingungsspektren (Raman, IR) konnte eine Aufspaltung durch die chemisch nicht äquivalenten Azidgruppen (eine axiale, zwei äquatoriale N3-Gruppen) beobachtet werden (s. 3.8). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 58 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Orginalarbeiten als Literaturstelle angegeben. Tabelle 58 Im Rahmen der vorliegenden Arbeit dargestellte Verbindungen Verbindung Schwingungsspektroskopie Kernresonanzspektroskopie Röntgenstrukturanalyse Lit. PBr4 +AsF6 − Raman, IR 31P-MAS-NMR 14 PI4 +AlBr4 − Raman, IR 31P-MAS-NMR Einkristall 14 PI4 +GaBr4 − Raman, IR 31P-MAS-NMR, 71Ga-MAS-NMR 14 PI4 +AlCl4 − Raman, IR 31P-MAS-NMR Einkristall 14 PI4 +GaI4 − Einkristall 6,7,14 P2I5 +AlI4 − a Raman, IR 31P-MAS-NMR 27,31 P2I5 +GaI4 − Raman, IR 31P-MAS-NMR Einkristall 31 P2I5 +InI4 − Raman, IR 31P-MAS-NMR 31 H2PMe2 +AlCl4 − Raman, IR 31P-, 13C-, 1H-NMR Einkristall 45 Ph3P−PBr2 +Br− Raman 31P-MAS-NMR Cl3P⋅BBr3 b Raman, IR 31P-MAS-NMR 54,73 Cl3P⋅BI3 b Raman 54,73 Br3P⋅BBr3 b Raman, IR 31P-MAS-NMR Einkristall 52,73 Br3P⋅BI3 b Raman 54,73 I3P⋅BBr3 b Raman, IR 31P-MAS-NMR Einkristall 56,73,74 I3P⋅BI3 b Raman, IR 31P-MAS-NMR 57,73 n-Pr3P⋅BCl3 Raman, IR 31P-, 11B-, 13C- ,1H-NMR n-Pr3P⋅BBr3 Raman, IR 31P-, 11B-, 13C-, 1H-NMR Einkristall 74 n-Pr3P⋅BI3 Raman, IR 31P-, 11B-, 13C-, 1H-NMR (P4S3)⋅(BBr3) Raman, IR 31P-MAS-NMR Pulver 119 (P4S3)⋅(BI3) Raman, IR 31P-MAS-NMR Pulver 119,120 (P4Se3)⋅(NbCl5)a Raman, IR 31P-MAS-NMR 112,119 (P4Se3)⋅(BBr3) Raman, IR 31P-MAS-NMR 119 (P4Se3)⋅(BI3) Raman, IR 31P-MAS-NMR 113,119 [PhNP(N3)3]2 Raman, IR 31P-, 14N-, 13C-, 1H-NMR Einkristall 142 [(C6F5)NP(N3)3]2 Raman, IR 31P-, 14N-, 13C-{19F}-, 19F- NMR Einkristall 143 a Verbindung bekannt, bisher nur durch Röntgenstrukturanalyse charakterisiert; b Verbindung bereits bekannt, wurde aber in der Literatur nur schlecht charakterisiert. Durch die vorliegende Dissertationsschrift konnten neue Aspekte und Einblicke über die vielfältigen chemischen Eigenschaften und Bindungsverhältnisse binärer und ternärer kationischer Phosphor-Spezies sowie Phosphor-Bor-Addukt-Komplexe und Phosphorazide gewonnen werden. Insbesondere gibt diese Arbeit einen Überblick über den Einfluß und das Ausmaß relativistischer Effekte am Phosphor in Gegenwart schweren Halogensubstituenten, denn: "Aufgabe der Naturwissenschaft ist es nicht nur, die Erfahrung stets zu erweitern, sondern in diese Erfahrung eine Ordnung zu bringen." Niels Bohr (1885 − 1962), dänischer Physiker, Nobelpreis für Physik (1922).
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Fri, 19 May 2000 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/401/ https://edoc.ub.uni-muenchen.de/401/1/Niering_Markus.pdf Niering, Markus ddc:530, ddc:500, Fakultät für Physik
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die spektroskopische Untersuchung einzelner Moleküle in kondensierter Phase erstreckt sich erst über einen Zeitraum von zehn Jahren. In dieser verhältnismäßig kurzen Zeit vollzog sich eine rasante Entwicklung mit einer Vielzahl von Ergebnissen. Dies findet seinen Ausdruck in eigenen Tagungen und Zeitschriften und nicht zuletzt auch in einer Nobelkonferenz im Jahre 1999. Während sich anfangs die Untersuchungen auf eine Reihe faszinierender Tieftemperaturexperimente mit spektraler Selektion der einzelnen Moleküle beschränkten, verschob sich seit Mitte der 90er Jahre der Schwerpunkt der Forschung auf diesem Gebiet hin zu Experimenten mit räumlicher Selektion bei Raumtemperatur, die seit kurzer Zeit auch relativ uneingeschränkt bei Tieftemperatur möglich sind. Diese Entwicklung spiegelt sich auch in dieser Dissertation wider. Zu Beginn dieser Arbeit stand eine spektral hochauflösende Apparatur zur Einzelmolekülspektroskopie bei kryogenen Temperaturen zur Verfügung. Mit dieser wurden Einzelmoleküluntersuchungen an dem neu synthetisierten Farbstoff Terrylendiimid (TDI) durchgeführt. TDI ist kein reiner Kohlenwasserstoff, wie die bis dahin üblicherweise verwendeten Chromophore, und lässt sich durch seine Seitengruppen an andere Systeme anbinden. Er zeigt neben exzellenten Fluoreszenzeigenschaften die zur spektralen Selektion nötigen schmalen Absorptionslinien. Wegen seiner Struktur lässt sich TDI nicht in einen Kristall einlagern. Mit Polyethylen und Hexadecan wurden jedoch zwei Matrizen gefunden, die es erlauben, Fluoreszenzanregungsspektren von einzelnen Molekülen zu detektieren. In Hexadecan konnte bei Sättigungsuntersuchungen das theoretisch vorhergesagte Verhalten nachgewiesen werden. Dabei wurden Zählraten von fast 500 000 Counts pro Sekunde von einem einzelnen Molekül erreicht. Durch die Aufnahme und Auswertung der Fluoreszenzintensitäts-Autokorrelationsfunktion konnten die Populations- und Depopulationsraten der Triplett-Subniveaus bestimmt werden. Dabei wurde auch spektrale Diffusion der Moleküle beobachtet, die mit Hilfe von Two-Level Systems (TLS) erklärt werden konnte. Mit einem komplexen theoretischen Modell und aufwendigen numerischen Berechnungen konnte die bei 2,5 K auftretende Verteilung von Linienbreiten der beobachteten Moleküle simuliert werden. Damit konnte den beiden Matrizen über die Analyse ihrer TLS-Dichte ein unterschiedlicher Grad an Unordnung zugeordnet werden. In temperaturabhängigen Untersuchungen der Linienform konnte der Unterschied im Ordnungsgrad der Matrizen bestimmt werden. Ferner konnten die Theorie von Hsu und Skinner in der Tieftemperaturnäherung bestätigt werden und ein tieferer Einblick in die auftretende Dynamik gewonnen werden. In der Auswertung der temperaturabhängigen Linienverschiebung wurde erstmals der Einfluss von Matrixexpansion berücksichtigt und als unverzichtbar für eine gute Beschreibung des Systems erkannt. Parallel zu den ersten Experimenten wurde eine aktive Stabilisierung des Farbsto?asers aufgebaut. Damit konnte eine Verfälschung der Ergebnisse durch Laserdrift ausgeschlossen werden. Weitere Tieftemperaturuntersuchungen hatten die Beobachtung von Förster Energietransfer (oder FRET, Fluorescence Resonance Energy Transfer) an einem individuellen Donor-Akzeptor-Paar in seiner speziellen Konformation zum Ziel. Als Farbstoffmolekül stand ein Bichromophor aus Perylen und kovalent angebundenem TDI zur Verfügung. Obwohl beide Chromophore sich für Einzelmoleküluntersuchungen eignen und inzwischen schon mehrfach verwendet wurden, gelang es nicht, ein bezüglich Linienbreite und Frequenzposition identisches Fluoreszenzanregungsspektrum sowohl über Perylen-Fluoreszenz als auch über TDI-Fluoreszenz (nach Energietransfer) zu detektieren. Der Energietransferprozess scheint mit einem Linienverbreiterungsmechanismus verknüpft zu sein, so dass eine Beobachtung mit dem Aufbau in der Anfangsphase der Dissertation nicht möglich war. Eine Wiederaufnahme dieser Untersuchungen mit der neuen Apparatur ist zukünftigen Doktoranden vorbehalten. Um allgemein temperaturabhängige Untersuchungen an fluoreszierenden Molekülen durchführen zu können, wurde ein Tieftemperaturmikroskop aufgebaut. Dafür wurde die Rastertechnik gewählt. Um die bekannten Probleme des Probenscannens im Kryostaten, wie kleiner Scanbereich und fehlender Zugang im abgekühlten Zustand, zu vermeiden, wurde ein konfokales Laserscanning-Mikroskop entworfen und aufgebaut. Zur Strahlablenkung wurden zwei Galvanometerspiegel gewählt und der Drehpunkt über ein telezentrisches System in das Objektiv abgebildet, das gemeinsam mit der Probe im Kryostaten sitzt. Die Detektion des Fluoreszenzlichts wird von einer hochempfindlichen Avalanche-Photodiode mit geringer Dunkelzählrate übernommen. Die Funktion des Scanners und des gesamten optischen Aufbaus konnte an Testmustern und Testproben erfolgreich demonstriert werden. Einschränkend muss jedoch erwähnt werden, dass die erreichte DetektionseŽzienz die Erwartungen nicht erfüllte. Das liegt im Wesentlichen am Objektiv, aber auch an den Abbildungsfehlern und Reflexionen der zahlreichen Elemente im Strahlengang. Die maximal erreichten Zählraten lagen bei 50 000 Counts pro Sekunde am System Terrylen in Polyethylen. Für Systeme mit einer ausreichend hohen Fluoreszenzrate ist es mit dieser Apparatur möglich, Fluoreszenzbilder, Zeitspuren, spektral hochauflösende Fluoreszenzanregungsspektren, Fluoreszenzspektren und Fluoreszenzkorrelationsfunktionen von einzelnen Molekülen aufzunehmen, um damit spektrale und dynamische Eigenschaften der Moleküle zu bestimmen. Durch Variation der Temperatur können die Temperaturabhängigkeit der Messgrößen und Barrierenhöhen ermittelt werden. Mit der neuen Apparatur wurden Untersuchungen in zwei neuen Themenbereichenbegonnen, nämlich an einzelnen Sondenmolekülen in Nanoporen und an den fluoreszierenden Proteinen GFP (Grün Fluoreszierendes Protein) und PEC (Phycoerythrocyanin). Erste Fluoreszenzanregungsspektren einzelner Terrylen-Moleküle in den Kanalstrukturen von mesoporösen Systemen der M41S-Klasse konnten beobachtet werden. Dabei ist die hohe spektrale Auflösung von großem Vorteil bei der Untersuchung der spektralen Dynamik der Sondenmoleküle. Im Bereich biologischer Proben konnten einzelne Moleküle des Grün Fluoreszierenden Proteins isoliert beobachtet werden. Die Anzahl an Fluoreszenzphotonen pro Molekül, die vor dem ¨Ubergang in einen Dunkelzustand an diesem System detektiert werden konnten, war allerdings sehr gering. Deshalb wurden Untersuchungen an einzelnen Proteinen aus dem Lichtsammelkomplex von Cyanobakterien begonnen, die in einer laufenden Doktorarbeit von P. Zehetmayer fortgeführt werden. Bei den Proteinproben handelt sich um Untereinheiten von Phycoerythrocyanin: die ‹-Untereinheit und das Trimer bzw. Monomer, in denen offenkettige Tetrapyrrhol-Moleküle als Farbstoffe an die Proteinmatrix angebunden sind. Neben Fluoreszenzbildern und Zeitspuren konnten bereits Anregungsspektren detektiert werden, die starke spektrale Dynamik zeigen und weitere Untersuchungen herausfordern. Wesentliche Teile dieser Arbeit wurden bereits in internationalen Zeitschriften und auf Tagungen veröffentlicht. Eine Übersicht befindet sich am Ende unter Veröffentlichungen und Tagungsbeiträge.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Thu, 27 May 1999 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/314/ https://edoc.ub.uni-muenchen.de/314/1/Hartl_Ingmar.pdf Hartl, Ingmar dd