Podcasts about durchschneidungen

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Feb 9, 2012LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about durchschneidungen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Gekoppelte Kern- und Elektronendynamik: Molekulare Systeme und deren Kontrolle durch die Bewegung der Elektronen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Feb 9, 2012


Die Steuerung von photochemischen Reaktionen durch die gezielte Kontrolle von elektronischen Wellenpaketen mit ultrakurzen Pulsen im Femtosekunden- oder Attosekundenbereich ist Gegenstand von zahlreichen theoretischen und experimentellen Forschungsprojekten. Im ersten Teil dieser Dissertation werden drei molekulare Reaktionen theoretisch untersucht, die durch die gezielte Steuerung der Elektronendynamik kontrolliert werden. Die zeitliche Entwicklung dieser Systeme wird mit einem Ansatz zur Berechnung einer gekoppelten Kern- und Elektronendynamik beschrieben. Die Elektronenlokalisierung in den dissoziativen Ionisation der Modellsysteme D2 und CO wird durch die absolute Phase des Laserfeldes (Phase zwischen Trägerfrequenz und Einhüllenden) gesteuert. Ein Vergleich der beiden Mechanismen zeigt wesentliche Unterschiede zwischen dem homonuklearen Molekül D2 und dem heteronuklearen Molekül CO. Diese Unterschiede treten sowohl in der Präparation des elektronischen Wellenpaketes und in der Rolle der absoluten Phase des Laserfeldes in der Kontrolle, als auch im Stopp der induzierten Dynamik Elektronenbewegung zu Tage. Durch die selektive Population von lichtbekleideten Zuständen, die durch die relative Phase zweier Pulse in einer Pulssequenz gesteuert wird, lassen sich im Kalium-Dimer zwei unterschiedliche, elektronisch angeregte Zustände kontrolliert besetzen. Diese dritte Reaktion wird zunächst mit einer Doppelpulssequenz implementiert und die Effizienz durch Variation der beiden Parameter Verzögerungszeit zwischen den beiden Subpulsen und Intensität des zweiten Hauptpulses optimiert. Für beide Zustände wurde eine maximale Effizienz von 66% erreicht. Eine Verlängerung der Verzögerungszeit zwischen den beiden Subpulsen führt zu einer signifikanten Abnahme der Effizienz. Eine Analyse dieses Effekts zeigt, dass dieser Verlust der Kontrolleffizienz durch die Kopplung zwischen Kern-- und Elektronendynamik verursacht wird. OCT-Optimierungen an diesem System führen zu einer erheblichen Steigerung der Kontrolleffizienz und erlauben den Rückschluss, dass dieser Starkfeld-Mechanismus im OCT-Suchraum liegt und somit robust und effizient ist. Aufbauend auf diesen Untersuchungen werden die Faktoren identifiziert, welche ausschlaggebend für das optimale Zeitfenster der Kontrolle der Elektronendynamik sind. Mit diesen Erkenntnissen wird eine neue Kontrollstrategie für Photoreaktionen, die über konische Durchschneidungen verlaufen, entwickelt. Das vorgeschlagene Reaktionsschema wird an einem Modellsystem mit experimentell realisierbaren Pulsen getestet. Die kontrollierbaren Populationsverhältnisse bewegen sich in den Grenzen zwischen 24:76 und 74:26%. Im zweiten Teil dieser Dissertation werden theoretische Methoden zur Beschreibung der Starkfeld-Ionisationen von Molekülen neu entwickelt bzw. existierende Methoden modifiziert. Die Starkfeld-Ionisation ist in vielen Experimenten der erste Teilschritt, auf dem alle folgenden aufbauen. Daher ist eine exakte Berechnung dieses Prozesses für eine genaue Beschreibung der Experimente ausschlaggebend. Der Fokus der Untersuchungen liegt vor allem auf der Winkelabhängigkeit des Ionisationsprozesses und auf dem Ionisationszeitpunkt. Für die Berechnung der winkelabhängigen Ionisationswahrscheinlichkeiten wird ein neu entwickelter, quantenmechanischer Ansatz vorgestellt und an der dissoziativen Ionisation der Moleküle D2, N2, O2 und CO getestet. Für die Berechnung des Ionisationszeitpunktes wird der Monte-Carlo-Wellenpaket-Ansatz verwendet und für die Beschreibung zweiatomiger Moleküle verallgemeinert. Sowohl die ursprüngliche Methode als auch die Erweiterung werden an der Doppelionisation des H2-Moleküls als Modellsystem getestet.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Molekulare Schalter mit Cyclohexadien als photoaktivem Zentrum: Struktur, Dynamik und Kontrolle

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Nov 6, 2006


Diese Arbeit befasst sich mit der Quantendynamik und Kontrolle von photochemischen Reaktionen, die unter Beteiligung von konischen Durchschneidungen im Femtosekundenbereich ablaufen. Durch ultrakurze Laserpulse wird ein Wellenpaket in einem elektronisch angeregten Zustand erzeugt. Der Reaktionspfad des Wellenpaketes lässt sich durch verschieden geformte Laserpulse kontrollieren, die mit Hilfe der Optimal Control Theorie (OCT) ermittelt werden können. Spezielle Beachtung findet die Kontrolle von Fulgiden, die als molekulare Schalter fungieren können. Die Ringöffnung ihres isolierten photochromen Zentrums Cyclohexadien wird auf ab initio-Potentialflächen untersucht. Für die Behandlung der größeren Schaltermoleküle wurde ein flexibles Modell entwickelt, in dem sich der Einfluss verschiedener Parameter auf die Dynamik untersuchen lässt. Dabei werden sowohl die kohärente Laser-Materie-Wechselwirkung als auch die nicht-adiabatischen Kopplungen in den Grundzustand mit einbezogen. Um die Beschreibung der Dynamik zu vervollständigen, wurde eine neue Methode entwickelt, mit der die Relaxation eines Moleküls erstmals auch normerhaltend im Wellenpaketformalismus simuliert werden kann. Der Schwerpunkt dieser Arbeit liegt in der Entwicklung und Anwendung von Kontrollstrategien für reaktive Systeme, die zwei typische Herausforderungen beinhalten: Ein großer Teil der Dynamik spielt sich in einem optisch dunklen Bereich der Potentialflächen ab und zudem sind die Produkte nach der Relaxation durch die konischen Durchschneidungen hoch schwingungsangeregt. Durch das Erarbeiten zweier allgemein anwendbarer Varianten des OCT-Algorithmus konnten diese Schwierigkeiten gelöst und die Reaktionen kontrolliert werden. Durch Anwendung beider Varianten ist es gelungen, den Schaltprozess sowohl durch die konischen Durchschneidungen als auch mittels eines Pump-Dump-Schemas zu kontrollieren und die Ausbeuten zu erhöhen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Ultraschnelle molekulare Quantendynamik durch konische Durchschneidungen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jul 25, 2001


Ultraschnelle (d.h. auf der Femtosekunden-Zeitskala ablaufende) Prozesse spielen eine zentrale Rolle in vielen Bereichen der Photophysik, Photochemie und Photobiologie. Auf diesem Gebiet eroeffneten sich in den 80er Jahren des vergangenen Jahrhunderts sowohl theoretisch (Verfuegbarkeit groeßerer Rechenleistung) als auch experimentell (Femtosekunden- Laserspektroskopie) neue Forschungsmoeglichkeiten. Charakteristischer Reaktionsmechanismus solcher Prozesse sind oft konische Durchschneidungen (Entartungspunkte von Potential- flaechen), da die dort auftretenden starken nicht-adiabatischen Kopplungen zwischen Kern- und Elektronenbewegung ultraschnelle strahlungslose Ubergaenge zwischen verschiedenen elektronischen Zust¨anden ermoeglichen. Im Rahmen dieser Arbeit wird die Quantendynamik ultraschneller photoinduzierter Prozesse in groeßeren Molekuelen mit dem Ziel eines mikroskopischen Verstaendnisses der zugrundeliegenden Mechanismen untersucht. Fuer quantenmechanische Studien im Bereich konischer Durchschneidungen wird fast immer eine diabatische Darstellung verwendet, haeufig in Kombination mit einer Normalmodenentwicklung. Dagegen wird in der vorliegenden Arbeit eine adiabatische Beschreibung unter Verwendung realistischer ab initio Potentiale und Kopplungen vorgestellt. Diese erlaubt nun erstmals, sowohl die Entwicklung zu den Entartungspunkten hin ueber einen relativ großen Bereich des Koordinatenraumes zu verfolgen als auch den Durchgang durch mehrere konische Durchschneidungen zu untersuchen. Diese Methode wurde auf die photoinduzierte Ringoeffnung von Cyclohexadien angewendet, wobei zunaechst ein reduziertes Modell fuer dieses hochdimensionale System erarbeitet wurde. Daran anschließend wurden die Potentialflaechen fuer den Grund- und den ersten angeregten Zustand sowie die Kopplungen zwischen diesen beiden aus ab initio Daten interpoliert. Bei der Untersuchung der Wellenpaketdynamik wurde eine von den Anfangsbedingungen abhaengige Verzweigung bereits im angeregten Zustand gefunden, sodass zwei konische Durchschneidungen erreicht werden. Nach der Rueckkehr zum Grundzustand verzweigt sich das Wellenpaket erneut zu den beiden Produkten Cyclohexadien und cZc-Hexatrien. Diese Aufspaltung faellt an den beiden konischen Durchschneidungen unterschiedlich aus, was Moeglichkeiten der Kontrolle der Produktverteilung eroeffnet. Sowohl die Zeitskala der Reaktion als auch die resultierende Produktverteilung stimmen sehr gut mit den in Experimenten beobachteten Werten ueberein. Daneben widmet sich ein Teil dieser Arbeit dem Na-H2-Stoßprozess, bei dem durch Laseranregung ein schwach gebundenes Wellenpaket entsteht, das ¨uber einen konischen Schnitt zum Grundzustand zur¨uckkehren kann. Bei diesem Prozess handelt es sich um ein dreidimensionales System mit nur einer konischen Durchschneidung, so dass die weitverbreitete diabatische Beschreibung eingesetzt werden kann. Neben der Dynamik werden an diesem Beispiel Moeglichkeiten der kohaerenten Kontrolle ultraschneller Prozesse diskutiert. Die Dynamikrechnungen belegen, dass ein in einem reduzierten niedrigdimensionalen Modell mittels Optimal Control Theory berechneter Puls das Optimierungsziel – die Erzeugung eines lokalisiertenWellenpaketes in der Naehe der konischen Durchschneidung – auch in der vollen dreidimensionalen Rechnung naeherungsweise erreichen kann. Fuer die numerischen Rechnungen wurde im Rahmen dieser Arbeit ein vielseitig einsetzbarer Parallelcode implementiert, mit dem Dynamik- und Optimal Control-Rechnungen sowohl im adiabatischen als auch im diabatischen Bild moeglich sind.