POPULARITY
Today, Dr. Geo Santiago-Martinez, Assistant Professor of Molecular and Cell Biology and Microbiology at the University of Connecticut joins the #QualityQuorum to discuss the mysteries of the archaeal world, and how one group of these organisms produce methane gas as a byproduct of metabolism. These methanogens are thus involved in climate, symbioses, biotechnology, and even astrobiology! Host: Mark O. Martin Guest: Geo Santiago-Martinez Subscribe: Apple Podcasts, Spotify Become a patron of Matters Microbial! Links for this episode An essay about how cyanobacteria changed our very planet. A truly wonderful and highly recommended video about Leeuwenhoek and how he was the first to “see through microbial eyes.” PLEASE WATCH THIS AMAZING VIDEO!. A link to the Boerhaave Museum in Amsterdam (well worth the visit!) including how to obtain a replica of the Leeuwenhoek microscope (*I* do not have one—they are awesome!). A video overview of the archaea. A review article on the archaea. Haloquadratum walsbyi: a square archaean. Pyrodictium abyssi: a netlike organism. The process of methanogenesis by archaea (focused on the gut). An essay describing how methanogenic archaea may impact climate change. The famous Volta experiment! An article on Methanosarcina acetivorans, studied by Dr. Santiago-Martinez and his coworkers. A very interesting article on methanogenesis by Dr. Santiago-Martinez. A wonderful video of Dr. Santiago-Martinez and his collaborators' research. The Archaea Power Hour website. The Cientifico Latino website, increasing diversity within STEM. Dr. Santiago-Martinez's faculty website. Dr. Santiago-Martinez's laboratory website. Intro music is by Reber Clark Send your questions and comments to mattersmicrobial@gmail.com
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.26.534279v1?rss=1 Authors: Meineke, B., Heimgärtner, J., Caridha, R., Block, M., Kimler, K. J., Pires, M. F., Landreh, M., Elsässer, S. J. Abstract: Genetic code expansion via stop codon suppression is a powerful strategy to engineer proteins. Suppressor tRNAs are aminoacylated with noncanonical amino acids (ncAAs) by dedicated aminoacyl-tRNA synthetases (aaRS) and direct ncAA incorporation site-specifically during translation. These pairs of tRNA/aaRS must be orthogonal to the host's tRNAs, aaRS and natural amino acids. Pyrrolysyl-tRNA (PylT)/PylRS pairs from methanogenic archaea, as well as engineered tRNA/aaRS pairs derived from bacteria, are used for genetic code expansion in mammalian cells. Amber suppression is routinely achieved by transient introduction of the components leading to short-term and heterogeneous expression. Here, we demonstrate that stable integration of tRNA/aaRS genes allows for efficient, genetically encoded ncAA incorporation in diverse mammalian cell lines. We extend a general plasmid design and PiggyBac (PB) integration strategy developed for the Methanosarcina mazei PylT/PylRS pair to genomic integration of two tRNA/aaRS pairs of bacterial origin. We further explore suppression of ochre and opal stop codons and parallel incorporation of two distinct ncAAs, both accessible for click chemistry, by dual suppression in stable cell lines. Clonal selection allows for isolation of cells with high dual suppression efficiency and dual site-specific fluorescent labeling of a cell surface receptor using bioorthogonal click chemistries on live mammalian cells. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Nayak describes research she has done on methanogenic archaea – microorganisms that produce the potent greenhouse gas methane. One species of methanogens, Methanosarcina acetivorans, has unique chemical modifications on the enzyme it uses to produce methane. Dr. Nayak describes how she used CRISPR/Cas9 genome editing to determine that these modifications are used to protect M. acetivorans from environmental stress to ensure that the organism can support its metabolic needs in a changing environment.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Der in vivo Einbau unnatürlicher Aminosäuren mit besonderer Reaktivität an definierten Positionen in Proteine ist die Methode der Wahl, um Proteineigenschaften zu ändern oder diese mit gewünschten Funktionen auszustatten. In dieser Arbeit wurde das Pyrrolysin-System aus Methanosarcina mazei in E. coli angewendet, um den Einbau reaktiver Pyrrolysin-Analoga in Proteine und deren bioorthogonale Modifizierung zu erlauben. Zum Einen wurde ein Alkin-Analogon mehrfach in YFP eingebracht und mit unterschiedlichen Zucker-Aziden ortsgerichtet glykosyliert. Zum Anderen wurde mittels gerichteter Evolution des Pyrrolysin-Systems der Einbau eines Norbornen-Analogons in Proteine ermöglicht. Dieses konnte im Anschluss selektiv und unter sehr milden Reaktionsbedingungen mit Fluorophoren und PEG-Ketten adressiert werden.
Methanogenic archaea accumulate glycine betaine in response to hypersalinity, but the regulation of proteins involved, their mechanism of activation and regulation of the corresponding genes are largely unknown. Methanosarcina mazei differs from most other methanoarchaea in having two gene clusters both encoding a potential glycine betaine transporter, Ota and Otb. Western blot as well as quantitative real-time PCR revealed that Otb is not regulated by osmolarity. On the other hand, cellular levels of Ota increased with increasing salt concentrations. A maximum was reached at 300-500 m M NaCl. Ota concentrations reached a maximum 4 h after an osmotic upshock. Hyperosmolarity also caused an increase in cellular Ota concentrations. In addition to osmolarity Ota expression was regulated by the growth phase. Expression of Ota as well as transport of betaine was downregulated in the presence of glycine betaine. Copyright (c) 2007 S. Karger AG, Basel.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Chaperonins are a specific class of barrel-shaped chaperones, present in almost all organisms. Newly synthesized proteins encapsulated by the chaperonin can attain their native structure unimpaired by aggregation during repeated cycles of ATP-dependent binding and release. Chaperonins are generally divided into two groups. Group I chaperonins, such as the barrel-shaped GroEL oligomer, are found predominantly in bacteria and cooperate with cofactors of the Hsp10 familly (i.e. GroES). The Group II chaperonins, on the other hand, do not require a Hsp10- cofactor and are found in the eukaryotic cytosol and in archaea. The function of GroEL is understood in great detail and the substrate interaction proteome has been recently identified. In contrast, our knowledge about the natural substrates of Group II chaperonins is deficient and as a consequence, mechanistical studies on Group II chaperonins have been limited to using the eukaryotic model substrates actin and tubulin as well as heterologous model substrates. In the present study, the complete substrate spectrum of a Group II chaperonin, the thermosome (Ths) of the mesophilic archaeon Methanosarcina mazei (M. mazei), was analysed for the first time. In addition, the unique coexistence of both the goup I and the group II chaperonins in M. mazei, which was confirmed in the initial part of the study, provided the opportunity to obtain new insights into how the substrate selection differs between the two chaperonin groups. For these purposes, the chaperonin substrates were isolated by immunoprecipitation of the chaperonin-substrate complexes and identified by liquid chromatography coupled mass spectrometry (LC-MS) using three different approaches: LC-MS after separation of the proteins (i) by classical 2D-PAGE, (ii) by difference gel electrophoresis (Ettan DIGE) and (iii) by 1D-PAGE. Analysis of substrates of both the thermosome (MmThs) and GroEL/GroES (MmGroEL, MmGroES) of M. mazei revealed that each chaperonin handles a defined set of substrates, and both chaperonins contribute to the folding of ~17% of the proteins in the archaeal cytosol. Bioinformatic analysis revealed that the chaperonin specificity is governed by a combination of a various physical properties (hydrophobicity, net charge and size), structural features (i.e. the domain fold), and less concrete characteristics like the evolutionary status and, in this context, the phylogenetic origin of the substrate.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
In der vorliegenden Arbeit wurden erstmals Vertreter der Chaperoninklassen I und II (MmGroEL/MmGroES und MmThs/MmPfd) eines Archaeon untersucht. Das Chaperonin MmGroEL und sein Kofaktor MmGroES aus Methanosarcina mazei sind oligomere Komplexe, die jeweils aus identischen Untereinheiten aufgebaut sind. MmGroEL ist ein Homotetradecamer mit einer heptameren Doppelringstruktur. MmGroEL zeigt die für Chaperone typische Eigenschaft indem es ungefaltetes Substratprotein bindet und eine Aggregatbildung verhindert. Eine effiziente ATP-abhängige Rückfaltung denaturierter Proteine im Zusammenspiel mit MmGroES durch MmGroEL wird nur unter bestimmten Bedingungen vermittelt. Die Ergebnisse belegen, dass Ammoniumsulfat im Falle für das Modellsubstrat Malat-Dehydrogenase unerlässlich für den funktionellen Ablauf der Reaktivierung ist. Zwar kommt es auch in Abwesenheit von diesem Salz zu einer Faltung, wie dies im Falle des monomeren Substrates Rhodanese nachgewiesen werden konnte. Jedoch bewirkt im Fall der Malat-Dehydrogenase nur eine Zugabe von Ammoniumsulfat die mechanistisch notwendige Einschließung des Substrates in die cis-Kavität des GroEL. Das Gruppe II Chaperonin MmThs ist ein aus drei Untereinheiten bestehender hochmolekularer Komplex. Durch Immunpräzipitationen konnte nachgewiesen werden, dass im endogenen MmThs die Ths-Untereinheiten in einem Verhältnis von 2:1:1 (α:β:γ) vorliegen. Der MmThs Kofaktor MmPfd ist ein hochmolekularer Chaperon-Komplex mit einer heteromeren Untereinheiten-Zusammensetzung von α2β4, ohne jedoch eine ATP Hydrolyseaktivität aufzuweisen. MmPfd hat die für Chaperone typische Eigenschaft der Aggregationsprävention denaturierter Proteine und stabilisiert sie in einen faltungskompetenten Zustand. MmPfd ist zudem in der Lage denaturierte Proteine an MmThs und MmGroEL weiterzugeben.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Mon, 25 Oct 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/2744/ https://edoc.ub.uni-muenchen.de/2744/1/Pflueger_Katharina.pdf Pflüger, Katharina ddc:570, ddc:500
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Zusammenfassung 1. Das für das Proteolipid aus Methanocaldococcus jannaschii kodierende Gen atpK wurde in E. coli DH5alpha und in dem Minizell-Produzenten E. coli DK6 exprimiert. Das Genprodukt wurde durch radioaktive Markierung nachgewiesen. 2. Aus den Membranen der thermophilen, hydrogenotrophen methanogenen Archaea M. jannaschii, Methanothermobacter thermautotrophicus, Methanothermobacter marburgensis sowie aus den Membranen des mesophilen, methylotrophen methanogenen Archäons Methanosarcina mazei Gö1 wurden mit Chloroform/Methanol die Proteolipide der A1AO-ATPasen und die MtrD-Untereinheiten der Methyltetrahydromethanopterin:CoenzymM-methyl-transferase extrahiert. Die einzelnen Peptide wurden mittels N-terminaler Sequenzierung identifiziert. 3. Durch MALDI-TOF-Analyse wurde die molekulare Masse des maturen Proteolipids aus M. jannaschii zu 21316 Da und 21183 Da (Methionin-freie Form) bestimmt. Zusammen mit der Gensequenz konnte daraus gefolgert werden, daß es sich um eine triplizierte Form des bakteriellen 8-kDa Proteolipids handelt, also 3 Haarnadel-Domänen ausweist. Die ionentranslozierenden Carboxylate sind nur in Haarnadel 2 und 3 konserviert. Bei einer angenommenen Anzahl von 24 Helices im c-Oligomer bedeutet das, daß ein Ionen/ATP-Verhältnis von 2,7 für die Synthese von ATP ausreichen würde. 4. Die Proteolipide aus M. thermautotrophicus und M. marburgensis besitzen duplizierte Proteolipide. Die aktiven Carboxylat-Reste sind im Gegensatz zu den bisher bekannten duplizierten Proteolipiden der V1VO-ATPasen in beiden Haarnadeln konserviert. 5. Die archäellen A1AO-ATPasen-Operone der Pyrococcen enthalten ebenfalls Gene, die für duplizierte Proteolipide kodieren. Allerdings sind die für die Ionentranslokation essentiellen Carboxylat-Reste wie in den Proteolipiden der V-Typ-ATPasen nur in der zweiten Haarnadel vorhanden. Die Abtrennung der A1AO- und V1VO-ATPasen muß daher vor der Entwicklung der Eukaryonten erfolgt sein. 6. Sequenzanalysen haben gezeigt, daß das Proteolipid-Gen aus Methanopyrus kandleri dreizehnmal so groß wie das aus Bakterien ist. Es kodiert für ein Protein mit 13 Haarnadel-Domänen. Die Ionenbindstelle ist in jeder Haarnadel konserviert. 7. Alle heute bekannten Formen der Proteolipide der V- und F-ATPasen waren schon in den Archaea enthalten. Die Vielfalt an Proteolipid-Größen und -Formen der archäellen ATPasen läßt vermuten, daß sie ein Reservoir an Möglichkeiten darstellen, aus denen die V1VO- und F1FO-ATPasen gespeist wurden. 8. Durch Sequenzvergleich mit den Na+-translozierenden Proteolipiden der bakteriellen F1FO-ATPasen wurde auch in den Proteolipiden der A1AO-ATPasen ein Na+-Bindemotiv identifiziert. Es lautet: P/S/T-XXX-Q/E (Motiv I in Helix eins), ET/S (Motiv II in Helix zwei). 9. Aus Membranen von Sulfolobus acidocaldarius und M. jannaschii wurden durch Chloroform/Methanol Lipide extrahiert, anschließend wurde aus diesen Lipiden Liposomen hergestellt, in die die A1AO-ATPase aus M. jannaschii rekonstituiert wurde. Die Synthese von ATP konnte jedoch nicht nachgewiesen werden. 10. Die ATPase-Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG wurden in den Fusionsvektor pMal kloniert und in Escherichia coli exprimiert. Die Fusionsproteine wurden aus dem Zellextrakt isoliert und zur Immunisierung von Kanninchen eingesetzt. Die erhaltenen Antiseren gegen die ATPase-Untereinheiten AhaA, AhaB, AhaC und AhaE waren spezifisch und wurden für die Analysen dieser Arbeit eingesetzt. 11. Das für die gesamte A1AO-ATPase kodierende Operon ahaHIKECFABDG des methanogenen Archäons Methanosarcina mazei Gö1 wurde in den Expressionsvektor pVSBAD2 hinter den ara-Promotor kloniert. Das Konstrukt wurde pRT1 genannt. 12. Die auf pRT1 lokalisierten Gene wurden heterolog in E. coli DK8 exprimiert. Die A1AO-ATPase war in E. coli membran-assoziiert und funktionell. Die spezifische ATPase-Aktivität an Membranen von E. coli DK8 betrug 150 mU/mg Protein. 13. DCCD und der für archäelle ATPasen spezifische Inhibitor DES hemmten das Enzym. Die I50-Wert betrugen 0,5 mM/mg Protein, beziehungsweise 200 nmol/mg Protein. 14. Die Synthese von AhaA, AhaB, AhaC, AhaE, AhaH, AhaK, und zum ersten Mal auch des gesamten AhaI, konnten nachgewiesen werden. Gegen AhaF, AhaD und AhaG lagen keine funktionellen Antikörper vor.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
1.Die A1-ATPase-Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG wurden in den Fusionsvektor pMal-c2 kloniert und in Escherichia coli exprimiert.Die Fusionsproteine wurden aus dem Zellextrakt isoliert und zur Immunisierung von Kaninchen eingesetzt.Die spezifischen Antiseren gegen die A1-ATPase- Untereinheiten AhaA,AhaB,AhaC,AhaE und AhaF wurden für die Studien dieser Arbeit eingesetzt. 2.Die für die hydrophile Domäne der A1-ATPase kodierenden Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG des methanogenen Archäons Methanosarcina mazei Gö1 wurden in den Überexpressionsvektor pGEM-4Z hinter die lac und T7-Promotoren kloniert.Dieses Konstrukt wurde pTL2 genannt.pTL2 enthält zusätzlich 162 Bp stromaufwärts von ahaE 3.Die auf pTL2 lokalisierten Gene wurden heterolog in E. coli DK8 exprimiert und die A1-ATPase funktionell synthetisiert.Die spezifische ATPase-Aktivität im zellfreien Extrakt von E. coli DK8 (pSÖ1)betrug 186 mU/mg Protein.Die Synthese der A1-ATPase-Untereinheiten AhaA,AhaB,AhaC und AhaF konnte nachgewiesen werden.AhaE und AhaG konnten nicht detektiert werden. 4.Die A1-ATPase wurde aus dem Zellextrakt von E. coli DK8 (pTL2)über Ultra- zentrifugation,Ammoniumsulfatfällung,Gelfiltration an BioPrep SE 1000/17, Ionenaustauschchromatographie an BioScale DEAE und einer zweiten Gelfiltration an Sephacryl S-300 HR bis zur apparenten Homogenität gereinigt. 5.Das gereinigte Enzym wies eine molekulare Masse von 355 kDa auf und setzte sich aus 5 verschiedenen Untereinheiten zusammen.Die einzelnen Untereinheiten AhaA (65 kDa),AhaB (55 kDa),AhaC (41 kDa),AhaD (28 kDa)und AhaF (9 kDa)wurden mittels N-terminaler Sequenzierung identifiziert und wiesen im ATPase-Komplex eine Stöchiometrie von A3B3CDF auf.AhaE und AhaG waren nicht im Komplex enthalten. 6.Der ATPase-Testpuffer wurde für die heterolog exprimierte A1-ATPase optimiert (50 mM MES-HCl,40 mM Na-Acetat,30 mM NaHSO3,8 mM MgSO4,4 mM ATP,pH 5,2).Na-Acetat und Sulfit stimulieren die A1-A7.Die gereinigte A1-ATPase aus M. mazei Gö1 hydrolysierte Mg-ATP (im Verhältnis 2:1)als bevorzugtes Substrat mit einem V von 13 ± 3 U/mg Protein und einem K von 1,3 ± 0,3 mM für ATP. 8.DES,Hexestrol und Dienestrol wurden als spezifische Inhibitoren der archäellen A1-ATPase identifiziert.Die I Werte dieser Hemmstoffe betrugen 5 µmol Hexestrol/mg Protein,3 µmol DES/mg Protein und 6 µmol Dienestrol/mg Protein. 9.Quervernetzungsexperimente konnten belegen,dass die Kopien der Untereinheit AhaA in direkter Nachbarschaft zueinander stehen.Dies trifft auch für die Kopien der Untereinheit AhaB und für die Untereinheiten AhaA und AhaB untereinander zu.Zudem konnte eine direkte Nachbarschaft der Untereinheiten AhaA und AhaD festgestellt werden. 10.Die A1-ATPase besitzt eine dreifache Achsensymmetrie.Der Kopfteil der A1-ATPase ist hexagonal geformt und setzt sich aus sechs peripheren und einer zentralen Masse zusammen. 11.Die über Röntgenkleinwinkelstreuung ermittelten Dimensionen der A1-ATPase sind:Gesamtlänge =17,8 nm,Länge Kopfteil =9,4 nm,Stiellänge =8,4 nm, Stieldurchmesser =6 nm,Kopfdurchmesser (variabel,abhängig vom Substrat)= 10,06 nm,Kopfradius (variabel,abhängig vom Substrat)=5,03 nm. TPase,wohingegen sich alkoholische Lösungsmittel die ATPase-Aktivität hemmten.