Podcasts about komplementation

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 31, 2015LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about komplementation

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 07/07
Untersuchung zur Identifikation und Charakterisierung potentieller Virulenzfaktoren von Cronobacter sakazakii ES5

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 07/07

Play Episode Listen Later Jan 31, 2015


Cronobacter sakazakii ist ein ubiquitäres Gram-negatives Stäbchenbakterium, das neben anderen Lebensmitteln vor allem in Milchpulver vorkommt und insbesondere bei Neonaten zu nekrotisierender Enterocolitis (NEC), Bakteriämie und Meningitis führen kann. Trotz der umfangreichen Forschung der letzten Jahre ist nach wie vor wenig über die Pathogenese von Cronobacter spp. sowie potentielle Virulenzfaktoren bekannt. Um neue Erkenntnisse über Pathogenitätsmechanismen von C. sakazakii zu erhalten, wurden in dieser Arbeit 28 Transposoninsertionsmutanten des klinischen Isolats C. sakazakii ES5 in drei unterschiedlichen Zelllinien auf ihre Fähigkeit an die eukaryotischen Zellen zu adhärieren, in sie einzudringen und in ihnen zu proliferieren, untersucht. Die inaktivierten Gene dieser Mutanten codieren für Proteine des Energiestoffwechsels, der Zellwand und des Biofilms, der Motilität der Bakterien und der Carotinoidbiosynthese. Angelehnt an den in vivo Infektionsweg von C. sakazakii - orale Infektion des Organismus, primäre lokale Infektion im Darm, systemische Infektion über die Invasion in Makrophagen und schließlich das Überschreiten der Blut-Hirn-Schranke und die Infektion des Gehirns - wurden für die Studie Caco-2 Darmepithelzellen, RAW-264.7 Makrophagen-Zellen sowie HBMEC Hirnendothelzellen ausgewählt. Beim Screening aller drei Zelllinien konnte festgestellt werden, dass die Flagellenstruktur betreffende Mutationen bei C. sakazakii ES5 zu fast 100%iger Attenuation der Invasion der Wirtszellen führen. Dies lässt auf die Bedeutung der Flagellen als Pathogenitätsfaktor schließen. Bedingt sein könnte die Attenuierung durch die verminderte Motilität der Bakterien, durch die instabile Interaktion von Flagellen mit den eukaryotischen Zellen selbst oder möglicherweise durch die fehlende Sekretion von Virulenzfaktoren durch das Typ-III-Flagellen-Sekretionssystem. Weiterführende Untersuchungen zu der Motilität der Transposoninsertionsmutanten zeigten, dass die Flagellenfunktion bei C. sakazakii ES5 durch Suppression reguliert zu sein scheint, da die bei C. sakazakii ES5 vorhandene Hemmung des Flagellen-vermittelten Swimmings im Weichagar z.B. unter Zugabe von steril filtriertem Überstand einer C. sakazakii ES5-Kultur wieder aufgehoben werden konnte. Des Weiteren fielen zwei Mutanten mit verminderter Serumresistenz durch reduzierte Virulenz auf, sowie eine Mutante, deren unterbrochenes Gen für einen putativen Reifungsfaktor der 30S-Untereinheit der Ribosomen codiert. Bei diesen drei Mutanten könnten die inaktivierten Gene für potentielle Virulenzfaktoren codieren und sollten näher untersucht werden. Transposonmutanten aus der orthologen Gruppe für Energiestoffwechsel zeigten ebenfalls eine verminderte Invasion. Diese Stämme hatten bei der biochemischen Charakterisierung der Metabolisierung definierter Kohlenstoffquellen bei den Aminosäuren und den Zwischenprodukten des Intermediärstoffwechsels ein vom Wildtyp ES5 abweichendes Metabolisierungsmuster. Die Unterbrechungen im Citratzyklus führten z.B. zur schwächeren Verstoffwechselung von L-Glutamat, dafür wurde L-Asparagin besser als Substrat verwertet. Somit konnte die Fähigkeit zur Anpassung durch Umstellung des Metabolismus bei C. sakazakii ES5 bestätigt werden. Weiterhin ergab der Vergleich des Kohlenstoff-Metabolismus von Cronobacter spp. mit dem von Salmonella enterica sv. Typhimurium einige interessante Unterschiede: C. sakazakii konnte im Gegensatz zu S. Typhimurium eine Vielzahl in der Umwelt vorkommender C-Quellen zur Energiegewinnung nutzen, was darauf schließen lässt, dass das ubiquitäre Bakterium Cronobacter spp. ursprünglich mit Pflanzen assoziiert war. Glucose-6-Phosphat, ein wichtiges Stoffwechselzwischenprodukt, das bei pathogenen Enterobacteriaceae neben Glucose und Mannose intrazellulär als die bevorzugte Kohlenstoffquelle gilt, wurde von C. sakazakii dagegen in vitro nicht metabolisiert. Es bleibt zu klären, ob C. sakazakii in der Lage ist, intrazellulär seinen Stoffwechsel umzustellen und Glucose-6-Phosphat als C-Quelle zu nutzen. C. sakazakii ist ein gelb pigmentiertes Bakterium und synthetisiert die Pigmente über Carotinoid-Biosynthese. In den Infektionsversuchen zeigte sich, dass pigmentlose Mutanten in der Invasion von RAW-264.7-Zellen attenuiert sind. In diesem Zusammenhang konnte auch festgestellt werden, dass bei der de novo Carotinoid-Synthese das CrtY-Protein (Lycopin-ß-Cyclase) die ß-Cyclisierung von Lycopin zu ß-Carotin ausführt. Nach Komplementierung der crtY-Mutante zeigte sich erneut die wildtypische gelbe Pigmentierung der Bakterienkolonien von C. sakazakii ES5crtY::Tn5/pUC19-crtY, anstatt der pinken Koloniefärbung der Mutante. Die Reduzierung der Invasion in HBMEC-Zellen um mehr als 30% konnte durch die Komplementation des crtY-Gens aufgehoben werden: die konstitutive Expression des Gens führte zu einem Invasionswert von 122% des Wildtyps. Im Rahmen dieser Arbeit konnten durch Infektionsexperimente in drei Zelllinien der Infektionsweg von C. sakazakii ES5 nachgestellt, neue potentielle Virulenz-assoziierte Faktoren identifiziert und die Fähigkeit der spezifischen Anpassung an das intrazelluläre Milieu als ein wichtiges Pathogenitätsmerkmal bestätigt werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Bedeutung von Alb4 in der Biogenese der Chloroplasten

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Oct 31, 2007


Mitglieder der evolutionär konservierten Oxa-Proteinfamilie wirken an der korrekten Insertion von integralen Membranproteinen in Bakterien, Mitochondrien und Chloroplasten mit. In den sehr proteinreichen Thylakoidmembranen der Chloroplasten höherer Pflanzen spielt das Oxa-Homolog Alb3 eine essentielle Rolle bei der Integration von LHC-Proteinen und weiteren Komponenten des Photosynthese-Apparates. Im Rahmen dieser Arbeit wurde ein weiteres Protein aus Arabidopsis identifiziert und als neues Mitglied der Oxa-Proteinfamilie beschrieben. Die experimentell gestützte Annotation zeigt, dass das Alb4-Protein eine zentrale 60KD_IMP-Domäne besitzt, welche für die Oxa-Proteine charakteristisch ist. Die Zugehörigkeit zur Oxa-Proteinfamilie konnte funktionell durch die Komplementation einer Hefe-oxa1-Mutante bestätigt werden. Immunologische und fluoreszenzmikroskopische Untersuchungen konnten weiterhin zeigen, dass es sich bei Alb4 um ein chloroplastidäres Protein handelt, welches als integrales Membranprotein in den Thylakoiden lokalisiert ist. Durch die Analyse von T-DNA-Insertions- und RNAi-Linien konnte gezeigt werden, dass eine Reduktion des Alb4-Gehaltes zu vergrößerten und nicht länger linsenförmigen Chloroplasten führt, in denen die Thylakoidmembranen aufgelockerter erscheinen. Ein Verlust der Lebensfähigkeit konnte jedoch nicht beobachtet werden, selbst wenn der Alb4-Gehalt in den Chloroplasten der Pflanzen um mehr als 90% reduziert war. Im Vergleich zu Cyanobakterien besitzt die Thylakoidmembran von Arabidopsis mit Alb4 und Alb3 gleich zwei Oxa-Homologe. Möglicherweise ist nach der Umwandlung des cyanobakteriellen Endosymbionten zu einem eukaryotischen Organell diese Duplizierung nötig geworden, um sowohl die Ausbildung als auch den Erhalt der Thylakoidstruktur zu gewährleisten. Zusätzlich zur Identifizierung von Alb4 konnte durch Transkript-Analysen desweiteren gezeigt werden, dass auch der N-Terminale Teil des ehemaligen Genmodells F21J9.13 (Artemis, nun Alb4 und RWK1) für ein eigenständiges Gen kodiert. Das abgeleitete Protein aus dem N-terminalen Teil, RWK1, ähnelt dem Rezeptor-Teil von pflanzlichen Rezeptor-Kinasen, eine entsprechende Kinase-Domäne fehlt jedoch vollständig. RWK1 kommt in zwei Spleißvarianten vor, der für die meisten eukaryotischen mRNAs typische polyA-Schwanz fehlt jedoch beiden Varianten. RWK1 könnte als neuartiger Rezeptor ein weiteres Glied in der internen Kommunikationskette der Zelle bilden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Isolierung und Charakterisierung von Kupferhomeostase-Faktoren aus Trametes versicolor und deren Einfluss auf die Laccase-Expression

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Nov 11, 2002


In dieser Arbeit wurden vier Gene aus T. versicolor isoliert und charakterisiert, die an der Kupferversorgung des Trans-Golgi-Netzwerks, in dem Laccase mit Kupfer beladen wird,beteiligt sind. Die zwei Kupferpermease-Gene cupA und cupB (copper uptake permease) konnten durch Komplementation der S. cerevisiae Deletionsmutanten ∆ctr1 bzw. ∆cup5 mit einer T. versicolor cDNA-Bank isoliert werden. Die aus den beiden Genen abgeleiteten Proteinsequenzen zeigen strukturelle Homologien zu den Proteinen aus der Ctr-Familie und weisen ein in dieser Familie konserviertes MxxxM-Motiv auf. Die Expression beider Gene wird in T. versicolor durch Kupfermangel induziert und durch Kupfergabe reprimiert. Das Gen für das cytosolische Kupferchaperon TahA (Trametes ATX1 homolog) wurde mittels PCR mit degenerierten Primern isoliert. TahA zeigt deutliche Homologie zu Atx1 aus S. cerevisiae, HAH1 aus dem Menschen und CCH aus A. thaliana. TahA kann in Hefe Atx1 funktionell ersetzen: sowohl als Kupfertransportprotein zur im Golgi lokalisierten Kupfer-ATPase Ccc2, als auch bei der Entgiftung von reaktiven Sauerstoff-Spezies (ROS). Der Promotor des tahA-Gens enthält Motive, die im Promotor der durch Kupfer regulierten Gene Metallothionein (CUP1) und Cu/Zn-Superoxiddismutase (SOD1) aus S. cerevisiae konserviert sind. Das tahA-Gen wird unter erhöhten Kupferkonzentrationen (>0,25 µM) exprimiert und unter Kupfermangel reprimiert. Es unterscheidet sich somit in der Regulation deutlich vom ATX1-Gen, das unter Eisenmangel und oxidativem Stress induziert wird. Das Gen für die im Golgi-Netzwerk lokalisierte Kupfer-P-Typ-ATPase, ctaA (copper transport ATPase), wurde durch die funktionelle Komplementation einer Hefe ∆ccc2-Mutante mit einer T. versicolor cDNA-Bank isoliert. Dadurch wurde zugleich die physiologische Funktion des Proteins bei der Kupferversorgung des Golgi-Netzwerks gezeigt. CtaA weist deutliche Homologien zu den bekannten Kupfer-P-Typ-ATPasen aus dem Menschen (MNKP und WNDP), aus A. thaliana (RAN1) und S. cerevisiae (Ccc2) auf. CtaA enthält alle wichtigen Motive, die für die Kupfertransport- und ATPase-Funktionen in allen anderen Kupfer-P-Typ-ATPasen konserviert sind. Durch die deregulierte Koexpression von tahA und ctaA in S. cerevisiae sowie in T. versicolor konnte eine im Vergleich zum Wildtypstamm bis zu achtfach höhere Laccase-Expression erreicht werden. Dies zeigt, dass die Überexpression von Genen, die an der Versorgung des sekretorischen Systems mit Kupfer beteiligt sind, ein Mittel darstellt, um die Expression von sekretierten, kupferabhängigen Enzymen zu steigern. Durch Anzucht von T. versicolor unter Kupfermangel wurde eine Apo-Form der Laccase hergestellt und gereinigt, die kein für blaue Oxidasen typisches Absorptionsmaximum bei 600 nm besaß und die kaum Aktivität aufwies. AAS-Untersuchungen zeigten, dass weniger als ein Kupferion pro Laccase-Molekül in dieser Proteinpräparation vorhanden war. Durch die in vitro Beladung dieser Apo-Laccase mit Kupfer konnte die Enzymaktivität wiederhergestellt werden. Die Bedingungen hierfür waren ein niedriger pH-Wert,reduzierende Bedingungen und das Vorhandensein von NaCl. Eine spontane Beladung der Laccase im Golgi scheint daher ohne Mitwirkung eines weiteren Faktors möglich zu sein.